Lab #12: Digestive Physiology

Similar documents
Lab Activity 30. Digestive Enzymes. Portland Community College BI 233

#9 - Digestion. Objectives: Prelab Activity. I Digestive System

LAB 3: Biomolecules and Digestion

The gallbladder. Bile secretion:

Chapter 9: Digestion Review Assignment

Digestive Lecture Test Questions Set 4

Digestive Enzyme Lab

Digestive System Processes *

The digestive system, also called the gastrointestinal system, consists of the

Digestive System. Part A Multiple Choice. 1. Which of the following is NOT a digestive enzyme? A. Pepsin. B. Ptyalin. C. Gastrin. D. Trypsin.

Protein Content (grams) 25 g 5 g 30 g 0 g 28 g 2 g. 20 g 10 g 30 g 0 g 27 g 3 g. 20 g 10 g 20 g 10 g 26 g 4 g. 10 g 20 g 10 g 20 g 10 g 20 g

Chemical and Physical Processes of Digestion

Biology 20: Digestive System Did you get it? Questions and Answers

Summary of chemical breakdown of food by hydrolytic enzymes (Protein enzymes).

The process of digestion is accomplished by mechanical & chemical processes:- The buccal cavity performs two major functions, mastication of food &

Class XI Chapter 16 Digestion and Absorption Biology

Digestive System. Part 3

LAB 5 - Enzymes BACKGROUND INFORMATION


L1, 2 : Biochemical Aspects of Digestion of Lipids, Proteins, and Carbohydrates

1) Four main feeding mechanisms of animals a) Suspension feeders i) (1) Humpback whales b) Substrate feeders i)

Bio& 242 Unit 1 / Lecture 4

Energy, Chemical Reactions and Enzymes

Lecture Overview. ** Digestive System ** (cont d) A&P II Lecture Notes Pages

All organisms must obtain and process essential nutrients (food) *** Exception: Venus Fly Traps undergo photosynthesis but needs source of nitrogen

BIO 139 ANATOMY AND PHYSIOLOGY II THE DIGESTIVE SYSTEM

Chapter 8: Digestion. Structure and Functions of Digestive Organs Macronutrients Digestive Enzymes

The Digestive System. 1- Carbohydrates 2- Proteins 3- Lipids 4- Water 5- Vitamins 6- Minerals 7- Fibers

Digestive System. Digestive System. Digestion is the process of reducing food to small molecules that can be absorbed into the body.

Sphincters heartburn diaphragm The Stomach gastric glands pepsin, chyme The Small Intestine 1-Digestion Is Completed in the Small Intestine duodenum

Gastrointestinal Anatomy and Physiology. Bio 219 Napa Valley College Dr. Adam Ross

Physiology Unit 4 DIGESTIVE PHYSIOLOGY

AN ANIMAL S DIET MUST SUPPLY CHEMICAL ENERGY, ORGANIC MOLECULES, AND ESSENTIAL NUTRIENTS

PHYSIOLOGY OF THE DIGESTIVE SYSTEM

Topic 6: Human Physiology

Chapter 15 Gastrointestinal System

Chapter 3 Reading Guide Be sure to use the many figures and tables provided by the book to help answer these questions.

Biology 12. Biochemistry. Water - a polar molecule Water (H 2 O) is held together by covalent bonds.

Chemical Digestion and Absorption: A Closer Look

Objective 4- Digestion

The Small Intestine. The pyloric sphincter at the bottom of the stomach opens, squirting small amounts of food into your small intestine.

Digestive System 7/15/2015. Outline Digestive System. Digestive System

DIGESTIVE SYSTEM ALIMENTARY CANAL / GI TRACT & ACCESSORY ORGANS. Mar 16 10:34 PM

Biology 12 Unit 5 Pretest

Human Digestive System

1. Animals are heterotrophs that require food for fuel, carbon skeletons, and essential nutrients: an overview

The small intestine THE DUODENUM

Ques*ons. Ques*ons 4/11/12. Which macromolecule has the highest energy content?

a. parotid b. sublingual c. submandibular

The Digestive System. Basic process of digestion. Mouth and Teeth 10/30/2016

e. Undigested material is compacted and stored until the colon is full. When the colon is full, a signal to empty it is sent by sensors in the walls

UNDERSTANDING THE DIGESTIVE SYSTEM

c.uma sankar.kanchipuram.

The Digestive System. Prepares food for use by all body cells.

BPK 312 Nutrition for Fitness & Sport. Lecture 2. Digestion & Absorption of Food Nutrients

Ch 7 Nutrition in humans

UNDERSTANDING THE DIGESTIVE SYSTEM

NOTES: CH 41 Animal Nutrition & Digestion

The Digestive System. What is the advantage of a one-way gut? If you swallow something, is it really inside you?

Physiology 12. Overview. The Gastrointestinal Tract. Germann Ch 19

Nutrition. Autotrophs. plants, some protists & bacteria producers

At the end of this lesson, you should be able to:

Abdulrahman Alhanbali. Lojayn Salah. Mohammad Khatatbeh. 1 P a g e

- Most nutrients are absorbed before reaching the ileum. - Colon is responsible for final removal of electrolytes and water.

Figure Nutrition: omnivore, herbivore, carnivore

Work in groups of 3 to 4 students (enough materials for 5 groups total)

THE DIGESTIVE SYSTEM

9. At about 0 C., most enzymes are (1.) inactive (2.) active (3.) destroyed (4.) replicated

Digestive Care Advisor Training #1. Digestion 101 & H.O.P.E.

This Assignment is due

Chapter 14: The Digestive System

KRISHNA TEJA PHARMACY COLLEGE HUMAN ANATOMY AND PHYSIOLOGY. DIGESTIVE SYSTEM Dr.B.Jyothi

Overview of Gastroenterology

The Digestive System. Chapter 25

Topic No. & Title: Topic 8 Digestion & Absorption of Dietary Components

Nutrients, Enzymes and Digestion Lesson 4: Digestion and Absorption. Digestive Tract and Accessory Organs

Section 2.1: Enzymes and Digestion

Digestion Introduction Lecture MMHS Science Chitraroff

Assessment Schedule 2015 Demonstrate understanding of biological ideas relating to a mammal(s) as a consumer(s) (90929)

ANATOMY & PHYSIOLOGY ONLINE COURSE - SESSION 13 THE DIGESTIVE SYSTEM

The Digestive System

Name: Period: Date: Testing for Biological Macromolecules Lab

Where are we heading?

Two main groups Alimentary canal continuous coiled hollow tube Accessory digestive organs

Day Date Title Instructor 5 th Ed 6 th Ed. Protein digestion and AA absorption

Nutrition and Digestion

the following objectives: 1. Describe the environment of the stomach and its relation to protein digestion.

Digestive Tract. Also called alimentary canal or gastrointestinal tract. stomach small intestine large intestine - anus

Digestive System. Why do we need to eat? Growth Maintenance (repair tissue) Energy

CLASS XI BIOLOGY. Digestion And Absorption. Finish Line & Beyond send your queries to

Overview. Physiology 1. The Gastrointestinal Tract. Guyton section XI

In this lab, you will determine, through observation, which protease is secreted into the stomach, and which is secreted into the small intestine.

Digestion, Absorption, Transport, and Excretion of Nutrients

B4 NUTRITION 4.3 Animal Nutrition

Chapter 3: Biochemistry Adapted from PPT by S. Edwards. By PresenterMedia.com

Human Biology. Digestive System

University of Buea. Faculty of Health Sciences. Programme in Medicine

Questions on Digestion

Gastrointestinal Physiology. Secretion

Includes mouth, pharynx, esophagus, stomach, small intestine, large intestine, rectum, anus. Salivary glands, liver, gallbladder, pancreas

Transcription:

Background In order for the nutrients in food to be absorbed, they must first be broken down into particles that are small enough to be transported through carrier proteins into the epithelial cells that form the mucosal lining of the digestive tract. This process of breaking down food is called digestion, and occurs primarily within three particular segments of the digestive tract: the mouth, the stomach, and the small intestine. Digestion occurs through two different processes: physical digestion, where large chunks of food are ground into tiny particles, and chemical digestion, whereby through the use of enzymes released into the digestive tract large polymeric biomolecules are broken into individual monomers or oligomers (e.g. dimers or trimers). Chemical digestion is essential for breaking food into particles that can be absorbed by the epithelium of the small and large intestine, and will be the focus of this lab exercise. The Importance of Enzymes in Chemical Digestion There are many different substances that are secreted into the different segments of the digestive tract. Mucus, bile salts, bilirubin, hydrochloric acid (HCl), and solium bicarbonate (NaHCO 3 ) are just some of the substances mixed with the food as it passes through the digestive tract, and many of these substances facilitate the breakdown of food. However, the most important substances secreted for the purpose of digestion are the digestive enzymes. Digestive enzymes greatly enhance the rate at which the covalent bonds that link subunits together to form polymeric biomolecules are broken. Indeed, without the presence of these enzymes, chemical digestion would essentially not occur. Although substances such as HCl and NaHCO 3 can alter noncovalent bonding patterns within and among biomolecules, they typically cannot break down covalent bonds. Enzymatic Activity 37 C Temperature Fig 11.1. Influence of temperature on the rates of enzyme-catalyzed reactions. Not that both low and very high temperatures lead to the reduction of reaction rates. We have previously discussed many aspects of enzyme structure, catalytic activity, and factors that influence this catalytic activity (e.g., enzyme, substrate, and cofactor concentrations, see Lab #4). Two factors that influence enzyme activity deserve further consideration here in the context of digestion: temperature and ph. Recall that temperature can have considerable influence on the rate at which enzyme-catalyzed reactions proceed. Low temperatures result in slow reaction rates because overall kinetic energy is reduced since particles are moving more slowly, substrate binds to the enzyme less frequently, the reaction converting substrate to product lasts longer, and the random collisions that dislodge the product from the substrate occur less often and with less force. Very high temperatures can also slow the rate of an enzyme catalyzed reaction because high temperatures destabilize the noncovalent interactions that give enzymes the specific tertiary and quaternary structures that enable them to function as catalysts. This highlights the importance of the stable core body temperatures of humans in their digestive processes. The relatively high (but not extremely high) temperature of the human body enables digestive enzymes to break down food at near maximal rates. Organisms with more variable and lower core body temperatures (e.g. reptiles) p.1

Enzyme Activity 0 Salivary (Ptylalin) Trypsin 2 4 6 8 10 12 ph Fig 11.2. Effect of ph on catalytic activity in three digestive enzymes from different segments of the digestive tract. will often bask after feeding to elevate body temperature and facilitate enzymatic digestion. Enzyme activity is also influenced by the ph of the surrounding fluid. Recall that [H + ] can influence whether acidic and basic amino acid side chains are bound to a hydrogen ion or not, thus influencing the charge on those side chains and, in turn, alter ionic and hydrogen bonding patterns in those proteins, thus inducing changes in the tertiary and quaternary structure of proteins. Thus enzymes have a particular ph where they have the proper conformation to have maximal catalytic activity, and significant deviation from that ph will typically result in a decrease in catalytic activity. Interestingly, ph varies widely among different segments of the digestive tract, and different enzymes have maximum catalytic activity at these various ph s, effectively restricting the function of that enzyme to a particular region of the digestive tract (Fig 11.2). For example, gastric enzymes such as pepsin have maximum catalytic activity at the very low ph of the stomach, and no longer function once moved into the alkaline conditions of the small intestine. In contrast, intestinal and pancreatic enzymes, such as trypsin, function optimally at moderately alkaline ph. Altering ph among different regions of the digestive tract effectively enables a stepwise process of chemical digestion, where enzymes are activated for digestion at one point and then deactivated at the next. Chemical Digestion of Carbohydrates. Carbohydrates are the first type of biomolecule to be chemically digested in the digestive tract, as chemical digestion begins in the oral cavity through a salivary enzyme called salivary amylase (or ptyalin). Salivary amylase begins the breakdown of the polysaccharide amylose (starch, the principle storage carbohydrate in plants) into the disaccharide maltose. However, when food is swallowed and transferred to the small intestine, chemical digestion of carbohydrates effectively stops. Only when the chyme passes into the small intestine will carbohydrate digestion resume. In the small intestine the chyme is exposed to pancreatic amylase (which continues the process of breaking down starch and glycogen into disaccharides and trisaccharides) and certain brush-border enzymes (e.g., lactase, sucrase, and maltase) that break down specific oligosaccharides into the monosaccharides that are absorbed by the intestinal epithelium. Chemical Digestion of Protein. Chemical digestion of protein begins in the stomach. The lining of the stomach produces a mixture of fluids called gastric juice in response to neural stimulation (induced by smell, site and taste of food), by distension of the stomach as food enters, and by ph changes induced as the more neutral ph food enters the acidic stomach. Gastric juice contains a number of substances, but the two most important for initiating protein digestion are hydrochoric acid (HCl) and the protease pepsin. HCl is secreted by parietal cells in the gastric mucosa. The low ph (~2) of the gastric juice aids protein digestion in a couple of ways. First, the low ph denatures the tertiary structures of ingested protein, making them easier to digest enzymatically. Secondly, the low ph is required for the activation of pepsin. is produced by chief cells of the gastric mucosa in an inactive (zymogenic) form called pepsinogen. ogen is inactive when released in the gastric pits, but once it diffuses into the lumen of the stomach the acidic conditions enable it to have a weak proteolytic activity (Fig 11.3). ogen can digest some p.2

Fig 11.3. Activation of pepsin in the stomach. Image from S.I. Fox Human Physiology, 8 th ed. McGraw Hill. ingested protein, but more importantly pepsinogen molecules will partially digest one another, removing inhibitory segments of the polypeptide chain and thus converting each other into the fully active enzyme pepsin. breaks peptide bonds between amino acids with hydrophobic side chains in the middle of polypeptides, thus it cleaves long polypeptides into shorter polypeptides. Although the chemical digestion of protein begins in the stomach through the actions of pepsin, most of the digestion of protein takes place in the small intestine. Indeed, individuals with complete gastrectomies can still completely digest protein, although the homogenization of chyme through chemical and physical digestion in the stomach aids this process. The proteases that function in the small intestine come from Fig 11.5. Activation of pancreatic zymogens in the small intestine by brush-border enzymes. The brushborder enzyme enterokinase (EN) phosphorylates the protease zymogen trypsinogen, converting it to its active form (trypsin). Trypsin, in turn digests other pancreatic zymogens into their active forms. Image from S.I. Fox Human Physiology, 8 th ed. McGraw Hill two major sources: membrane bound enzymes on the brush-border of the intestinal mucosa, and enzymes secreted into the small intestine from the pancreas. The pancreatic enzymes, along with bicarbonate salts, are components of pancreatic juice which is secreted primarily when food enters the small intestine through the pyloric sphincter. Chemicals in the chyme induce cells in the small intestine to secrete the hormones secretin, which stimulates water and bicarbonate secretion in the pancreas, and cholecystokinin (CCK), which stimulates enzyme secretion in the pancreas. These hormones, in turn, cause the pancreas to release pancreatic juice through the duodenal papilla (Fig 11.4). A number of different proteases are found within pancreatic juice, but most are released as zymogens (inactive enzymes). Enzymes in the brush-border activate these zymogens (Fig 11.5), which ultimately digest the polypeptides into a combination of free amino acids, dipeptides, and tripeptides that are absorbed by the intestinal epithelium. Chemical Digestion of Fat Fig 11.4. The pancreas, gall bladder, and duodenum. Image from http://www.ucpancreas.org/pancreas.htm Lipids (principally triglycerides, or fat) are a particularly challenging group of biomolecules to digest chemically. This is because fats, being p.3

hydrophobic, tend to aggregate in large droplets within the fluid of the digestive tract, minimizing the surface area of contact between the fat and the surrounding water. Since the digestive enzymes are water soluble, they can only come into contact with and digest those triglyceride molecules at the surface of the droplets. Thus, for fat digestion to be efficient, these large droplets must be broken into much smaller droplets and held in these smaller droplets in order to increase surface area and enable fat-digesting enzymes (lipases) adequate contact with their substrate. Although there is a gastric lipase secreted in the stomach that causes a small amount of fat digestion, and infants produce a salivary lipase, almost all of the digestion of fat takes place in the small intestine. Like protein digestion, fat digestion is achieved through the activity of both pancreatic and intestinal brush border lipases. However, efficient fat digestion also involves the secretion of bile from the liver and gall bladder. Bile contains a mixture of bilirubin (formed from the heme units of dead and digested erythrocytes), cholesterol, phospholipids, inorganic ions, phospholipids, and negatively charged cholesterol derivatives called bile salts. Secretion of bile into the small intestine is triggered by CCK (the same hormone that induces pancreatic enzyme secretion). The bile salts are particularly important for fat digestion in that they serve as emulsification agents. Since bile salts are amphipathic molecules, they help to break the large fat droplets into tiny emulsification droplets and Fig 11.6. Emulsification and digestion of fat in the small intestine. Image from S.I. Fox Human Physiology, 8 th ed. McGraw Hill prevent them from reforming into large droplets (Fig 11.6). This greatly increases the surface area over which lipases can come into contact with the triglycerides and hydrolyze them into amphipathic free fatty acids and monoglycerides, both of which can be absorbed by the intestinal epithelium. The liberation of free fatty acids, which are acids, would lead to a decrease in the ph of the fluid passing through the intestine, although normally the presence of bicarbonate in the pancreatic juices buffers against a decrease in ph. p.4

Experiment: Chemical Digestion of Nutrients. 5 min hot water NOTE: Your group will be performing only one of these three experiments. However, you need to obtain data for all three experiments to fill out your datasheet, and will need to understand why all three experiments had the results they did. Acid Experiment I: Chemical Digestion of Carbohydrate This experiment will examine the effects of the presence of enzymes, variable ph, and high temperatures on the digestion of starch (a polysaccharide) into maltose (a disaccharide) using salivary amylase. 1. Obtain four test tubes and label them 1-4 2. Add the following solutions to the four tubes (see Fig 11.7): o TUBE 1: 3.0 ml water o TUBE 2: 3.0 ml amylase solution o TUBE 3: 3.0 ml amylase solution and 10 drops of HCl solution o TUBE 4: 3.0 ml amylase solution, then place tube in boiling water for 5 min Water 1 2 3 4 Fig 11.7. Preparation of samples for the carbohydrate digestion experiment 3. Add 5.0 ml of starch solution to each tube 4. Place all four tubes in a 37 C water bath for 1 hr to incubate 5. After incubation, obtain another set of four test tubes labeled 1-4. Split the four incubated solutions evenly among the two sets of tubes. One set of solutions will be tested for the presence of undigested starch (Lugol s test), whereas the other will be tested for the presence of maltose (Benedict s test) 6. Lugol s Test (Fig 11.8) add a few drops of Lugol s iodine solution to each of the four tubes in one set of solutions. o If the solution has an amber coloration (like the Lugol s reagent) then there is no starch present (-) o If the solution turns blue or black, start is present in the solution (+) 7. Benedicts Test (Fig 11.9) add 5 ml of Benedict s reagent to each of the four solutions, and place the four tubes in boiling water for 10 min. o If the solution is blue (like the Benedict s reagent), there is no maltose present in the solution (-) o If the solution has a greenish coloration, then a small amount of maltose is present (+) o If the solution has a yellowish coloration, then a moderate amount of maltose is present (+++) o If the solution has a orange or reddish coloration, then a large amount of maltose is present 1 2 3 4 or (-) (+) Fig 11.8. Lugol s test for the presence of undigested starch. 1 2 3 4 (-) (+) (++) (+++) Fig 11.9. Benedict s test indicates the presence of and (qualitatively) the amount of maltose in solution. p.5

Experiment II: Chemical Digestion of Protein Water Acid Acid Acid Base This experiment will examine the effects of the presence of enzymes, variable ph, and low temperatures on the digestion of protein using a gastric protease (pepsin) 1. Obtain a set of five labeled test tubes Water 2. Add a small sliver of hard-boiled egg white to each of the five tubes 1 2 3 4 5 3. Add the following solutions to the tubes (see Fig 11.10): o TUBE 1: Add 5 ml pepsin solution and 10 drops of water Fig 11.10. Preparation of samples for the protein digestion experiment. o TUBE 2: Add 5 ml pepsin solution and 10 drops of HCl o TUBE 3: Add 5 ml pepsin solution and 10 drops HCl, then place on ice. o o TUBE 4: Add 5 ml water and 10 drops HCl TUBE 5: Add 5 ml pepsin solution and 10 drops of NaOH 4. Place Tubes 1, 2, 4 and 5 in a 37 C water bath to incubate for 90 min. 5. Examine the egg white following incubation. Note any digestion that occurs to the egg white (Fig 11.11), and any color changes that may have happened to the solution. undigested digested Fig 11.11. Comparison of undigested and digested egg white from the protein experiment Experiment II: Chemical Digestion of Fat This experiment will examine the effects of the presence of enzymes and emulsifiers on the digestion of triglyceride using a pancreatic lipase (pancreatin) 1. Obtain a set of three test tubes 2. Add 3.0 ml heavy cream to each tube Bile Salt Water Pancreatin Pancreatin Bile Salt 3. Add the following to each tube (Fig 11.12): o TUBE 1: 5 ml water and a few grains of bile salts o TUBE 2: 5 ml pancreatin solution o TUBE 3: 5 ml pancreatin and a few grains of bile salt Fig 11.12. Preparation of samples for the fat digestion experiment 4. Shake tubes rigorously to mix the contents p.6

5. Measure the initial ph of each solution with the probe of a ph meter, cleaning off the probe in detergent and rinsing with distilled water between each measurement. 6. Place the tubes into the 37 C water bath for incubation 7. Repeat the ph measurements of each solution at 20 min, 40 min, and 60 min after the beginning of incubation. p.7