Clinical Significance of Persistent Tumor in Bone Marrow during Treatment of High-risk Neuroblastoma

Similar documents
Morphologic Alteration of Metastatic Neuroblastic Tumor in Bone Marrow after Chemotherapy

Presence of Differentiating Neuroblasts in Bone Marrow is a Favorable Prognostic Factor for Bone Marrow Metastatic Neuroblastoma at Diagnosis

into tandem high-dose chemotherapy and autologous stem cell transplantation for high-risk neuroblastoma: results of the SMC NB-2009 study

Neuroblastoma Originating from Extra-abdominal Sites: Association with Favorable Clinical and Biological Features

Histopathology Defines Prognostic Subsets of Ganglioneuroblastoma, Nodular

재발성혹은불응성신경모세포종환자에서의활성화 T- 림프구세포치료 2 예

NEUROBLASTOMA IS a common solid tumor of

Extranodal natural killer/t-cell lymphoma with long-term survival and repeated relapses: does it indicate the presence of indolent subtype?

J Korean Med Sci 2010; 25: ISSN DOI: /jkms

High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Children with High-Risk or Recurrent Bone and Soft Tissue Sarcomas

Neuroblastoma. Elizabeth Roberts. Data Coordinator CIBMTR Data Managers Mentor. Tandem Meeting February 18

Hematologic Recovery after Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation in Children with High-Risk Solid Tumors

The Diabetes Epidemic in Korea

NEUROBLASTOMA IS the most common extracranial

Outcomes of patients with peripheral T-cell lymphoma in first complete remission: data from three tertiary Asian cancer centers

Changes in the seroprevalence of IgG anti-hepatitis A virus between 2001 and 2013: experience at a single center in Korea

Only Estrogen receptor positive is not enough to predict the prognosis of breast cancer

Autologous Stem Cell Transplantation for the Treatment of Neuroblastoma in Korea

Modified Number of Extranodal Involved Sites as a Prognosticator in R-CHOP-Treated Patients with Disseminated Diffuse Large B-Cell Lymphoma

A.M.W. van Marion. H.M. Lokhorst. N.W.C.J. van de Donk. J.G. van den Tweel. Histopathology 2002, 41 (suppl 2):77-92 (modified)

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

The Epidemiology of Diabetes in Korea

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

A Case of Nongerminomatous Germ Cell Tumor with Fulminant Course Concomitant Leptomeningeal Metastasis

Clinical Characteristics and Treatment Results of Pediatric Osteosarcoma: The Role of High Dose Chemotherapy with Autologous Stem Cell Transplantation

Neuroblastoma: experience from National University Health System, Singapore ( )

Tandem high-dose chemotherapy and auto-sct for malignant brain tumors in children under 3 years of age

BONE MARROW involvement by neuroblastoma is

NK/T cell lymphoma Recent advances. Y.L Kwong University Department of Medicine Queen Mary Hospital

Treatment outcomes and prognostic factors of gallbladder cancer patients after postoperative radiation therapy

ganglioneuroma (GN; Schwannian stroma-dominant); Takeda et al. Journal of Medical Case Reports (2018) 12:119 /s

Small cell lung cancer (SCLC) comprises approximately

Is the Initial Size of Tuberculous Lymphadenopathy associated with Lymph Node Enlargement during Treatment?

Poor-prognostic advanced Germ Cell Tumors

Is Hepatic Resection Needed in the Patients with Peritoneal Side T2 Gallbladder Cancer?

Journal of Breast Cancer

Update: Chronic Lymphocytic Leukemia

Is Transplant a Necessity or a Choice: Focus on the necessity for CR and MRD

Enlarged and Prominent Nucleoli May Be Indicative of MYCN Amplification

The Younger Patients Have More Better Prognosis in Limited Disease Small Cell Lung Cancer

The prognostic value of fast molecular response of marrow disease in patients aged over 1 year with stage 4 neuroblastoma

CCG-3891 LONG TERM OUTCOME FOR CHILDREN WITH HIGH RISK NEUROBLASTOMA Additional Information on Corrected Overall Survival Results April 10, 2014

: Ajou University College of Medicine, Suwon, Korea; Ajou University College of Medicine, Graduate

Epidemiologic characteristics of cervical cancer in Korean women

Incidence and Predictors of Stent Thrombosis after Percutaneous Coronary Intervention in Acute Myocardial Infarction

Analysis of the outcome of young age tongue squamous cell carcinoma

Prediction of Cancer Incidence and Mortality in Korea, 2018

NOTE: This policy is not effective until March 1, To view the current policy, click here.

ORIGINAL ARTICLE. Summary. Introduction

All India Institute of Medical Sciences, New Delhi, INDIA. Department of Pediatric Surgery, Medical Oncology, and Radiology

Dr.Dafalla Ahmed Babiker Jazan University

Cancer Statistics in Korea: Incidence, Mortality and Survival in

Research Article Adult versus Pediatric Neuroblastoma: The M.D. Anderson Cancer Center Experience

Histopathology (International Neuroblastoma Pathology Classification) and MYCN Status in Patients with Peripheral Neuroblastic Tumors

Outcome of acute leukemia patients with central nervous system (CNS) involvement treated with total body or CNS irradiation before transplantation

J Clin Oncol 29: by American Society of Clinical Oncology INTRODUCTION

Unilateral lateral rectus muscle advancement surgery based on one-fourth of the angle of consecutive esotropia

Philadelphia chromosome-positive acute lymphoblastic leukemia in childhood

Prediction of Cancer Incidence and Mortality in Korea, 2013

Are there the specific prognostic factors for triplenegative subtype of early breast cancers (pt1-2n0m0)?

Current update on diagnosis and management of neuroblastoma

EXPERIMENTAL AND THERAPEUTIC MEDICINE 9: , 2015

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Clinical activity of fulvestrant in metastatic breast cancer previously treated with endocrine therapy and/or chemotherapy

COG-ANBL1232: Utilizing Response- and Biology-Based Risk Factors to Guide Therapy in Patients with Non-High-Risk Neuroblastoma

AHSCT in Hodgkin lymphoma - indication and challenges. Bastian von Tresckow German Hodgkin Study Group Cologne University Hospital

Pediatrics, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea

Published Ahead of Print on October 3, 2011 as /JCO J Clin Oncol by American Society of Clinical Oncology INTRODUCTION

Biology of Blood and Marrow Transplantation 12: (2006) 2006 American Society for Blood and Marrow Transplantation

Performance of the Real-Q EBV Quantification Kit for Epstein-Barr Virus DNA Quantification in Whole Blood

Effective local and systemic therapy is necessary for the cure of Ewing tumor Most chemotherapy regimens are a combination of cyclophosphamide,

두경부영역의악성림프종 태경 1 이형석 1 서인석 1 이용섭 1 조석현 1 최정혜 2 안명주 2. Hodgkin s and Non-Hodgkin s Lymphoma of Head and Neck

Supplementary Appendix

Tandem High-Dose Chemotherapy and Autologous Stem Cell Transplantation for High-Grade Gliomas in Children and Adolescents

Reduced-intensity Conditioning Transplantation

A survey of dental treatment under general anesthesia in a Korean university hospital pediatric dental clinic

A new classification system of nasal contractures

invasion by neuroblastoma

Confronto Real world e studi registrativi

Induction Therapy & Stem Cell Transplantation for Myeloma

Quality of life (QoL) in metastatic breast cancer patients with. maintenance paclitaxel plus gemcitabine (PG) chemotherapy:

Significant Papers in Pediatric Oncology: Phase I Studies Current Status and Future Directions

Limited Role of Bone Marrow Aspiration and Biopsy in the Initial Staging Work-up of Gastric Mucosa-Associated Lymphoid Tissue Lymphoma in Korea

Consolidation and maintenance therapy for transplant eligible myeloma patients

Brief Communication Diagnostic Hematology

Prediction of a high-risk group based on postoperative nadir CA-125 levels in patients with advanced epithelial ovarian cancer

Repeated Favorable Responses to Epidermal Growth Factor Receptor- Tyrosine Kinase Inhibitors in a Case of Advanced Lung Adenocarcinoma

Epidermal growth factor receptor mutation and pattern of brain metastasis in patients with nonsmall cell lung cancer

The Effects of National Health Insurance Denture Coverage Policies for the Elderly on the Unmet Dental Needs of the Edentulous Elderly

A Korean single center, real world, retrospective study of first line weekly paclitaxel in patients with metastatic angiosarcoma

Insulin Secretory Capacity and Insulin Resistance in Korean Type 2 Diabetes Mellitus Patients

Recommendations for Reporting of Tumors of the Adrenal Cortex and Medulla

THORACIC MALIGNANCIES

Hematopoietic Stem-Cell Transplantation for Solid Tumors of Childhood

Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer

Factors Influencing the Prevalence of Amblyopia in Children with Anisometropia

Acute myeloid leukemia: prognosis and treatment. Dimitri A. Breems, MD, PhD Internist-Hematoloog Ziekenhuis Netwerk Antwerpen Campus Stuivenberg

Regression of Advanced Gastric MALT Lymphoma after the Eradication of Helicobacter pylori

Hematopoietic Cell Transplantation for Solid Tumors of Childhood

Role of consolidation therapy in Multiple Myeloma. Pieter Sonneveld. Erasmus MC Cancer Institute Rotterdam The Netherlands

Transcription:

ORIGINAL ARTICLE Oncology & Hematology http://dx.doi.org/1.3346/jkms.15.3.8.162 J Korean Med Sci 15; 3: 162-167 Clinical Significance of Persistent Tumor in Bone Marrow during Treatment of High-risk Neuroblastoma Young Bae Choi, 1 * Go Eun Bae, 2 * Na Hee Lee, 1 Jung-Sun Kim, 2 Soo Hyun Lee, 1 Keon Hee Yoo, 1 Ki Woong Sung, 1 and Hong Hoe Koo 1 Departments of 1 Pediatrics and 2 Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea * Young Bae Choi and Go Eun Bae equally contributed to this work. Received: 27 January 15 Accepted: 3 April 15 Address for Correspondence: Ki Woong Sung, MD Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul 135-71, Korea Tel: +82.2-341-3529, Fax: +82.2-341-43 E-mail: kwsped@skku.edu Funding: This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (No. HI13C1521). The records of 63 high-risk neuroblastoma patients with bone marrow (BM) tumors at diagnosis were retrospectively reviewed. All patients received nine cycles of induction chemotherapy followed by tandem high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT). Follow-up BM examination was performed every three cycles during induction chemotherapy and every three months for one year after the second HDCT/auto-SCT. BM tumor cells persisted in 48.4%, 37.7%, 23.3%, and.4% of patients after three, six, and nine cycles of induction chemotherapy and three months after the second HDCT/auto-SCT, respectively. There was no difference in progression-free survival (PFS) rate between patients with persistent BM tumor and those without during the induction treatment. However, after tandem HDCT/auto-SCT, the PFS rate was worse in patients with persistent BM tumor than in those without (probability of 5-yr PFS 14.7% ± 13.4% vs. 64.2% ± 8.3%, P =.9). Persistent BM tumor during induction treatment is not associated with a worse prognosis when intensive tandem HDCT/auto-SCT is given as consolidation treatment. However, persistent BM tumor after tandem HDCT/ auto-sct is associated with a worse prognosis. Therefore, further treatment might be needed in patients with persistent BM tumor after tandem HDCT/auto-SCT. Keywords: Neuroblastoma; Bone Marrow Tumors; Prognosis; Treatment INTRODUCTION Neuroblastoma is the most common extracranial solid tumor of children. Many patients have metastatic disease at diagnosis. The bone marrow (BM) is a common metastatic site, and many high-risk patients have BM tumor at diagnosis. The current treatment for high-risk neuroblastoma consists of induction treatment, high-dose chemotherapy and autologous stem cell transplantation (HDCT/auto-SCT) as consolidation treatment, and 13-cis-retinoid acid treatment to reduce relapse from possible residual disease. Regular evaluation of tumor response during and after treatment is needed to assess treatment efficacy. Several researchers have reported that persistent BM tumor after a certain period of induction treatment is associated with poor outcomes (1-3). However, these studies differed in the timing of BM examination and used strategies with various treatment intensities and durations. Therefore, it remains controversial whether persistent BM tumor is really a significant risk factor. In our previous retrospective reports, a longer induction treatment followed by tandem HDCT/auto-SCT to increase treatment intensity was associated with a better outcome in patients with high-risk neuroblastoma (4). We have prospectively used tandem HDCT/auto-SCT following nine cycles of induction chemotherapy since January 4. Interestingly, many patients with persistent BM tumor during induction treatment were found to remain progression free. This finding suggests that the significance of persistent BM tumor might differ from what was previously reported when treatment intensity and duration are increased. For this reason, we retrospectively evaluated the significance of persistent BM tumor in patients with high-risk neuroblastoma treated at our center. MATERIALS AND METHODS Patients Among 197 patients who were newly diagnosed with neuroblastoma at Samsung Medical Center from January 4 to December 12, 88 had high-risk tumors. In the present study, 63 high-risk neuroblastoma patients with BM tumor at diagnosis were retrospectively reviewed. Patients were staged according to the International Neuroblastoma Staging System (5). MYCN amplification was determined using competitive PCR, quantitative RT-PCR (qrt-pcr), or fluorescence in situ hybridization. Tumors were classified as histologically favorable or unfavorable according to the International Neuroblastoma Pathology Classification (6). Serum ferritin, neuron-specific enolase (NSE), lactic acid dehydrogenase (LDH), and 24-hr urine vanillylmandelic acid (VMA) were measured at diagnosis. Stage 4 tumors 15 The Korean Academy of Medical Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. pissn 111-8934 eissn 1598-6357

in patients older than 1 yr or any MYCN-amplified tumors were stratified as high-risk tumors. Treatment of patients For induction chemotherapy, CEDC (cisplatin + etoposide + doxorubicin + cyclophosphamide) and ICE (ifosfamide + carboplatin + etoposide) regimens were used in an alternating manner (Table 1). Overall, nine cycles of induction chemotherapy were administered prior to HDCT/auto-SCT. Excisional biopsy of the primary tumor was performed at diagnosis if the tumor was resectable. Otherwise, incisional or percutaneous needle biopsy was performed, and definitive surgery was deferred until after six cycles of chemotherapy. Peripheral blood stem cells (PBSCs) were collected during the recovery phase after the seventh chemotherapy cycle. After induction treatment, tandem HDCT/auto-SCT was administered. The CEC (carboplatin + etoposide + cyclophosphamide) regimen was used for the first HDCT. As the second HDCT regimen, a TM (thiotepa + melphalan)-total body irradiation (TBI) regimen was used for patients who were diagnosed up until December 8. For patients diagnosed from January 9 onward, TBI was substituted with high-dose 131 I-metaiodobenzylguanidine (MIBG) treatment to reduce late adverse effects (Table 1). Local radiotherapy was applied to the primary site in all patients about 6 weeks after the second HDCT/auto-SCT. Differentiation therapy with 13-cisretinoic acid (125 mg/m 2 /day for 14 days every 4 weeks) along with immunotherapy using interleukin-2 (2 1 6 U/m 2 /day for 5 days every 4 weeks) was administered until one year after HD- Table 1. Induction and high-dose chemotherapy regimens Regimen/drugs Dose Schedule Induction regimens CEDC Cisplatin Etoposide Doxorubicin Cyclophosphamide ICE Ifosfamide Carboplatin Etoposide First HDCT regimen Carboplatin Etoposide Cyclophosphamide Second HDCT regimen 4-8 Thiotepa Melphalan TBI 9-12 Thiotepa Melphalan 131 I-MIBG mg/m 2 /dose 1 mg/m 2 /dose 3 mg/m 2 /dose 3 mg/kg/dose 1, mg/m 2 /dose 4 mg/m 2 /dose 1 mg/m 2 /dose 65 mg/m 2 /dose 65 mg/m 2 /dose 1, mg/m 2 /dose mg/m 2 /dose mg/m 2 /dose 3.33 Gy/dose mg/m 2 /dose mg/m 2 /dose 12 or 18 mci/kg Day Days 2, 5 Day 2 Days 3, 4 Days -4 Days -1 Days -4 Days -7, -6, -5 Days -7, -6, -5 Days -4, -3, -2 Days -8, -7, -6 Days -5, -4 Days -3, -,2, -1 Days -6, -5, -4 Days -3, -2 Day -21 HDCT, high-dose chemotherapy; TBI, total body irradiation; 131 I-MIBG, 131 I-metaiodobenzylguanidine. CT/auto-SCT to reduce relapse from possible residual tumor cells (7). BM examination BM examination (bilateral aspiration and biopsies) was performed at diagnosis, after every three cycles of induction chemotherapy, and then every three months for the first year after tandem HDCT/auto-SCT. Hematoxylin and eosin (H&E) sections were prepared from paraffin embedded biopsy specimens fixed in 1% buffered formalin. Tumor cells in the BM biopsy were confirmed by immunohistochemical staining with antibodies against NSE (1:1, polyclonal, CAT 18-42, Invitrogen, Carlsbad, CA, USA) and CD56 (1:, CD564, NCL-56-541, Novocastra, Newcastle upon Tyne, UK) (8, 9). The degree of BM tumor differentiation (undifferentiated neuroblasts, differentiating neuroblasts, and ganglion cells), stroma composition (neuropil and Schwannian stroma), and presence of rosettes, necrosis, fibrosis, hemorrhage, calcification, and foam cells was evaluated. The percent tumor area was calculated as the proportion of the area occupied by tumor cells in the total BM area. Detection of tyrosine hydroxylase (TH) transcripts The levels of TH transcripts in PBSCs were measured. PBSC samples were collected in EDTA tubes and mononuclear cells were separated. The mononuclear cells were lysed in Trizol reagent (Invitrogen, Carlsbad, CA, USA), and RNA was extracted according to the manufacturer s instructions. When RNA could not be extracted on collection day, the specimen was immediately stored below -7 C and RNA was extracted later (Ambion, Austin, TX, USA). Complementary DNA was generated using an RNA PCR kit (Applied Biosystems, Foster City, CA, USA). Real-time qrt-pcr was performed using the Real-Q TH Quantification Kit (BioSewoom, Seoul, Korea) on a LightCycler (Roche Diagnostics, Mannheim, Germany). qrt-pcr was performed under the following cycling conditions: denaturation at 95 C for 1 min, 45 cycles at 95 C for 1 sec, C for 1 sec, and 72 C for 3 sec, followed by a cooling step at 4 C for 3 sec. Samples were regarded as TH transcript positive if a cycle threshold value was 42 or less. The levels of TH transcripts in biopsied BM samples were also measured according to the methods which we previously reported (1). In brief, fresh biopsied BM tissues were directly lysed in Trizol agent immediately after biopsy, and the following RNA isolation steps were identical to those used for PBSCs. Statistical analysis The Mann-Whitney U-test and Kruskal Wallis test were used to compare continuous variables between groups. The chi-square test was used to compare frequencies between groups. The progression-free survival (PFS) rate and 95% confidence interval were determined using the Kaplan-Meier method. Differences http://dx.doi.org/1.3346/jkms.15.3.8.162 http://jkms.org 163

in the PFS rates between groups were compared using the logrank test. P value <.5 were considered significant. Ethics statement The institutional review board (IRB) of Samsung Medical Center approved this study and waived the requirement for informed consent (IRB No. 14-12-123). RESULTS Patient characteristics A total of 63 high-risk patients (39 boys and 24 girls) had BM tumors at diagnosis during the study period. Median age at diagnosis was 39.5 months (range 1-231). Twenty-two patients had MYCN-amplified tumors and 47 patients had histologically unfavorable tumors. Three patients experienced progression during induction treatment. The remaining patients underwent the first HDCT/auto-SCT, and three patients died from toxicities during the first HDCT/auto-SCT. Therefore, 57 patients underwent the second HDCT/auto-SCT. Twenty patients experienced relapse/progression after the second HDCT/auto-SCT (nine patients within one year after the second HDCT/auto- SCT). Result of BM examination A total of 484 BM biopsies from 63 patients were reviewed. The proportion of patients with persistent BM tumor gradually decreased during induction treatment and follow-up after tandem HDCT/auto-SCT (Fig. 1A). BM tumor cells were persistent in 14 (23.3%) of biopsies at the end of induction and 11 (.4%) of 54 biopsies at three months after the second HDCT/auto-SCT. In patients with persistent BM tumor, the BM tumor area decreased significantly during the first three cycles of chemotherapy; however, it did not change during further follow-up (Fig. 1B). The evidence of tumor maturation (proportions of ganglion cells and Schwannian stroma) gradually increased during treatment and follow-up (Fig. 1C and D). Detection of TH mrna transcripts TH transcripts in PBSCs were positive in 1 of 22 patients with persistent BM tumor and 1 of 37 patients without BM tumor after six cycles of induction chemotherapy (P = 1.). While the former patient remains progression free, the latter patient experienced progression. When the presence of BM tumor was evaluated with qrt-pcr for TH, the results were correlated with those with histologic examination (sensitivity 71.6% and specificity 82.8%). TH transcripts were positive in 25 (17.2%) of 145 P <.1 Number 7 5 4 3 1 BM+ BM- 1% 48.4% 37.7% 23.3%.4% A Tumor area (%) 1 4 P =.39 B P <.1 P <.1 1 1 Ganglion cell (%) 4 Schwannian stroma (%) 4 C D Fig. 1. Results of bone marrow examination. (A) Proportion of patients with persistent BM tumor gradually decreases during follow-up. (B) In patients with persistent BM tumor, tumor area in BM decreases significantly during the first three cycles of chemotherapy (Dx-C3); however, it does not change during further follow-up (C3-T3). Proportions of ganglion cell (C) and Schwannian stroma (D) gradually increase during treatment and follow-up. 164 http://jkms.org http://dx.doi.org/1.3346/jkms.15.3.8.162

BM samples without tumor in histological examination. PFS according to presence/absence of BM tumors There was no difference in the PFS rates between patients with persistent BM tumor and those without at each time point during induction treatment (Fig. 2A-C). However, the PFS rate in patients with BM tumor was worse than those without at three months after tandem HDCT/auto-SCT (probability of 5-yr PFS 14.7 ± 13.4% vs. 64.2 ± 8.3%, P =.9, Fig. 2D). When TH transcript positive BM samples without histological evidence were regarded as having persistent BM tumors, the prognostic significance of persistent BM tumors was not changed during induction treatment. However, after tandem HDCT/auto-SCT, the prognostic significance of persistent BM tumors disappeared (probability of 5-yr PFS.7 ± 9.3% vs. 42.9 ± 13.8%, P =.359). While seven of 11 patients with histologically persistent BM tumors experienced relapse/progression, only one of seven TH transcript positive patients without histological evidence experienced relapse/progression (P =.14). Factors determining early BM response Various clinical and pathologic parameters associated with BM response were analyzed after the first three cycles of chemotherapy (Table 2). High NSE level (> 1 ng/ml) and low 24 hr urine VMA level (< 15 mg/day) at diagnosis were associated with lower frequency of persistent BM tumor after the first three cycles of chemotherapy. Younger age (< 18 months) and MYCN amplification were also associated with lower frequency of persistent BM tumor, but with borderline significance. Pathologic parameters associated with poor outcome BM specimens were analyzed in 29 of 3 patients with persistent BM tumor after the first three cycles of induction chemotherapy to evaluate a possible association between pathologic findings after three chemotherapy cycles and subsequent prognosis (Table 3). A higher proportion of differentiating neuroblasts in the BM tumor was associated with a higher probability of subsequent progression/relapse. However, there was no difference in the presence of rosettes, necrosis, fibrosis, hemorrhage, calcifications, and foam cells between patients who experienced 1 1 4 4 P =.892 P =.268 12 24 36 48 72 84 96 18 1 132 A 12 24 36 48 72 84 96 18 1 132 B 1 1 4 4 P =.639 P =.9 12 24 36 48 72 84 96 18 1 132 12 24 36 48 72 84 96 18 1 132 C D Fig. 2. PFS according to presence/absence of persistent BM tumor. There was no difference in progression free survival (PFS) rates between patients with persistent BM involvement (BMI) of tumor and those without at three (A), six (B), and nine (C) cycles of induction chemotherapy. (D) However, the PFS rate in patients with BMI of tumor was worse than those without at three months after tandem HDCT/auto-SCT. http://dx.doi.org/1.3346/jkms.15.3.8.162 http://jkms.org 165

subsequent relapse/progression and those who did not. There was also no difference in percent tumor area between the two patient groups. DISCUSSION According to previous studies, persistent BM tumor during induction treatment is a poor prognostic factor (1-3). However, Table 2. Clinical factors determining BM response after three cycles of chemotherapy Parameters Age at diagnosis < 18 months (n = 7) 18 months (n = 55) MYCN amplification Absent (n = 41) Present (n = 21) Pathology (INPC) Favorable (n = 11) Unfavorable (n = 46) Unknown (n = 5) Differentiation Undifferentiated (n = 14) Poorly differentiated (n = 25) Differentiating (n = 12) Ganglioneuroblastoma (n = 6) Unknown (n = 5) LDH (U/L) < 1,5 (n = 29) 1,5 (n = 27) Unknown (n = 6) Ferritin (ng/ml) < 3 (n = 29) 3 (n = 28) Unknown (n = 5) NSE (ng/ml) < 1 (n = 26) 1 (n = 33) Unknown (n = 3) 24-hr urine VMA (mg/day) < 15 (n = 26) 15 (n = 32) Unknown (n = 4) Persistent BM tumor (n = 3) 1 (14.3%) 29 (52.7%) 23 (56.1%) 7 (33.3%) 6 (54.5%) 21 (45.7%) 3 (.%) 3 (21.4%) 12 (48.%) 8 (66.7%) 3 (5.%) 4 (.%) 16 (55.2%) 1 (37.%) 4 (66.7%) 13 (44.8%) 14 (5.%) 3 (.%) 16 (61.5%) 11 (33.3%) 3 (1%) 8 (3.8%) 19 (59.4%) 3 (75.%) P value.55.9.596.136.174.696.31.3 BM, bone marrow; INPC, International Neuroblastoma Pathology Classification; LDH, lactic acid dehydrogenase; NSE, neuron-specific enolase; VMA, vanillylmandelic acid. these studies differed in the timing of BM examination and used various regimens with different treatment intensity and duration. Some studies used single HDCT/auto-SCT after a relatively short induction treatment (1, 2) while others used conventional chemotherapy (3). In our previous reports for high-risk neuroblastoma, we showed that longer induction treatment and intensive consolidation using tandem HDCT/auto-SCT is associated with better outcomes (4, 7). We hypothesized that the significance of persistent BM tumor might differ from what has been previously reported when intensive tandem HDCT/ auto-sct is administered as a consolidation treatment. The results indicate that persistent BM tumor during induction treatment was not associated with worse prognosis. This finding suggests that the prognostic significance of persistent BM tumor during induction treatment may be irrelevant if intensive consolidation treatment is given. However, histologically persistent BM tumor even after tandem HDCT/auto-SCT was associated with worse prognosis. This finding suggests that further treatment with a novel strategy is needed in patients with persistent BM tumor after tandem HDCT/auto-SCT. Various clinical and pathologic parameters associated with early BM response after the first three cycles of chemotherapy were analyzed. Higher NSE level and lower urine VMA level at diagnosis were associated with lower frequency of persistent BM tumors after the first three cycles of chemotherapy. Younger age and MYCN amplification were also associated with lower frequency of persistent BM tumors, but with borderline significance. Higher urine VMA level (i.e., more mature tumor) at diagnosis and higher proportion of differentiating (not undifferentiated) neuroblasts in BM tumor after three cycles of chemotherapy were associated with lower frequency of persistent BM tumors after the first three cycles of chemotherapy and higher probability of subsequent progression, respectively. These findings suggest that favorable tumor biology might not indicate a favorable prognostic factor in high-risk patients who receive intensive treatment. We previously reported that the degree of tumor volume reduction during the early phase of induction che- Table 3. Pathologic characteristics according to outcome in patients with persisting tumor cells in BM after three cycles of chemotherapy Characteristics Progression free (n = 19) Progression (n = 1) P value Presence of neuropil 14 (73.7%) 9 (9.%).33 Presence of rosettes 5 (26.3%) 4 (4.%).449 Presence of necrosis (%) 1 (1.%).161 Presence of fibrosis 5 (26.3%) 1 (1.%).33 Presence of hemorrhage 1 (5.3%) (%).4 Presence of calcifications 1. Presence of foam cells 1. Tumor area (% BM area)* 5 (1-7) 15 (3-3).247 Undifferentiated neuroblast (% total tumor cells) 63 (-1) 4 (-97).464 Differentiating neuroblast (% total tumor cells) 15 (-) 45 (3-1).35 Ganglion cell (% total tumor cells) (-1) (-5).588 Schwannian stroma (% tumor area) (-5) (-5).796 *Tumor area BM area 1; Percent of neuroblasts or ganglion cells among total tumor cells; Stroma area tumor area 1. BM, bone marrow. 166 http://jkms.org http://dx.doi.org/1.3346/jkms.15.3.8.162

motherapy was higher in undifferentiated and MYCN-amplified tumors (11). Similarly, the current findings suggest that tumors with unfavorable biology in high-risk neuroblastoma patients show better treatment response when treated with longer and more intensive protocols. The detection of minimal residual disease (MRD) status in PBSCs might be crucial in high-risk neuroblastoma because PBSCs contaminated with tumor cells are thought to contribute to relapse (12, 13). Detection of TH transcripts by RT-PCR is one way to assess whether PBSCs are contaminated with tumor cells. The present study evaluated whether persistent BM tumor at time of PBSC collection is related to tumor cell contamination in PBSCs. There was no difference in TH positivity of PBSCs between patients with persistent BM tumor and those without. These findings suggest that it might not be necessary to defer PBSC collection even when BM tumors were persistent after 6 cycles of chemotherapy. However, it is not clear whether PBSC could be collected without tumor cell contamination in the earlier treatment period when BM tumors were persistent. The significance of minimal residual BM tumors detected only with qrt-pcr after tandem HDCT/auto-SCT was different from that of histologically persistent BM tumors. There was no difference in the PFS between patients with MRD in the BM and those without after tandem HDCT/auto-SCT. These findings suggest that minimal residual BM tumors which can be detected only with qrt-pcr might be controlled by subsequent differentiation treatment and immunologic treatment. In conclusion, persistent BM tumor during induction treatment is not associated with a worse prognosis when intensive tandem HDCT/auto-SCT is given as consolidation treatment. However, persistent BM lesions after tandem HDCT/auto-SCT are associated with a worse prognosis. Therefore, further treatment with a novel strategy might be required in patients with persistent BM tumor after tandem HDCT/auto-SCT. DISCLOSURE The authors have no competing financial conflicts of interest to declare. AUTHOR CONTRIBUTION Conception and coordination of the study: Sung KW. Design of ethical issues: Choi YB, Lee NH. Acquisition of clinicopathological data: Bae GE, Kim JS, Sung KW. Analysis and interpretation of data: Choi YB, Sung KW. Manuscript preparation: Choi YB, Sung KW. Critical review of manuscript: Lee SH, Yoo KH, Koo HH. Manuscript approval: all authors. ORCID Young Bae Choi http://orcid.org/-1-716-8827 Ki Woong Sung http://orcid.org/-1-5989-4772 REFERENCES 1. Seeger RC, Reynolds CP, Gallego R, Stram DO, Gerbing RB, Matthay KK. Quantitative tumor cell content of bone marrow and blood as a predictor of outcome in stage IV neuroblastoma: a Children s Cancer Group Study. J Clin Oncol ; 18: 467-76. 2. Fukuda M, Miyajima Y, Miyashita Y, Horibe K. Disease outcome may be predicted by molecular detection of minimal residual disease in bone marrow in advanced neuroblastoma: a pilot study. J Pediatr Hematol Oncol 1; 23: 1-3. 3. Cai JY, Pan C, Tang YJ, Chen J, Ye QD, Zhou M, Xue H, Tang JY. Minimal residual disease is a prognostic marker for neuroblastoma with bone marrow infiltration. Am J Clin Oncol 12; 35: 275-8. 4. Sung KW, Lee SH, Yoo KH, Jung HL, Cho EJ, Koo HH, Lee SK, Kim J, Lim DH, Suh YL, et al. Tandem high-dose chemotherapy and autologous stem cell rescue in patients over 1 year of age with stage 4 neuroblastoma. Bone Marrow Transplant 7; 4: 37-45. 5. Brodeur GM, Pritchard J, Berthold F, Carlsen NL, Castel V, Castelberry RP, De Bernardi B, Evans AE, Favrot M, Hedborg F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993; 11: 1466-77. 6. Peuchmaur M, d Amore ES, Joshi VV, Hata J, Roald B, Dehner LP, Gerbing RB, Stram DO, Lukens JN, Matthay KK, et al. Revision of the International Neuroblastoma Pathology Classification: confirmation of favorable and unfavorable prognostic subsets in ganglioneuroblastoma, nodular. Cancer 3; 98: 2274-81. 7. Sung KW, Son MH, Lee SH, Yoo KH, Koo HH, Kim JY, Cho EJ, Lee SK, Choi YS, Lim DH, et al. Tandem high-dose chemotherapy and autologous stem cell transplantation in patients with high-risk neuroblastoma: results of SMC NB-4 study. Bone Marrow Transplant 13; 48: 68-73. 8. Ahn S, Lee JJ, Ha SY, Sung CO, Kim J, Han J. Clinicopathological analysis of 21 thymic neuroendocrine tumors. Korean J Pathol 12; 46: 221-5. 9. Lee SS, Kang M, Ha SY, An J, Roh MS, Ha CW, Han J. Morphologic analysis of pulmonary neuroendoscrine tumors. Korean J Pathol 13; 47: 16-. 1. Lee ST, Suh YL, Ko YH, Ki CS, Sung KW, Kim HJ, Kim JW, Kim SH, Chueh H, Lee SH, et al. Measurement of tyrosine hydroxylase transcripts in bone marrow using biopsied tissue instead of aspirates for neuroblastoma. Pediatr Blood Cancer 1; 55: 273-8. 11. Yoo SY, Kim JS, Sung KW, Jeon TY, Choi JY, Moon SH, Son MH, Lee SH, Yoo KH, Koo HH. The degree of tumor volume reduction during the early phase of induction chemotherapy is an independent prognostic factor in patients with high-risk neuroblastoma. Cancer 13; 119: 656-64. 12. Burchill SA, Kinsey SE, Picton S, Roberts P, Pinkerton CR, Selby P, Lewis IJ. Minimal residual disease at the time of peripheral blood stem cell harvest in patients with advanced neuroblastoma. Med Pediatr Oncol 1; 36: 213-9. 13. Moss TJ, Cairo M, Santana VM, Weinthal J, Hurvitz C, Bostrom B. Clonogenicity of circulating neuroblastoma cells: implications regarding peripheral blood stem cell transplantation. Blood 1994; 83: 385-9. http://dx.doi.org/1.3346/jkms.15.3.8.162 http://jkms.org 167