Physical Characteristics of

Similar documents
Chapter 23. Composition and Properties of Urine

cleansing the blood and ridding the body of waste. regulation of ph, a function shared with the lungs and the buffers in the blood.

12/7/10. Excretory System. The basic function of the excretory system is to regulate the volume and composition of body fluids by:

PHYSICAL PROPERTIES AND DETECTION OF NORMAL CONSTITUENTS OF URINE

Topic Objectives. Physical Examination LECTURE MODULE 3; PHYSICAL EXAMINATION OF URINE. Appearance. Odor Specific Gravity Volume

Chapter 10: Urinary System & Excretion

Nephrology - the study of the kidney. Urology - branch of medicine dealing with the male and female urinary systems and the male reproductive system

Ch17-18 Urinary System

EXCRETION QUESTIONS. Use the following information to answer the next two questions.

Routine urine examination

Renal System Dr. Naim Kittana Department of Biomedical Sciences Faculty of Medicine & Health Sciences An-Najah National University

Body Fluid Regulation and Excretion. Chapter 36

BCH472 [Practical] 1

The Urinary System. Lab Exercise 38. Objectives. Introduction

Excretory System 1. a)label the parts indicated above and give one function for structures Y and Z

Detection and Estimation of Some Abnormal Constituents. Amal Alamri

April 08, biology 2201 ch 11.3 excretion.notebook. Biology The Excretory System. Apr 13 9:14 PM EXCRETORY SYSTEM.

Excretory System. Biology 2201

Excretory System. Excretory System

Chapter 44. Regulating the Internal Environment. AP Biology

Excretion and Water Balance

AP Biology. Homeostasis. Chapter 44. Regulating the Internal Environment. Homeostasis

URINANLYSIS. Pre-Lab Guide

Science of Veterinary Medicine. Urinary System Unit Handouts

PARTS OF THE URINARY SYSTEM

Human Physiology - Problem Drill 17: The Kidneys and Nephronal Physiology

Structures of the Excretory System include: ü Skin ü Lung ü Liver ü Kidneys ü Ureter ü Urinary Bladder ü Urethra

Excretion and Water Balance

Kidneys and Homeostasis

November 30, 2016 & URINE FORMATION

UNIT 3 Conditions supporting life

Renal System and Excretion

1. a)label the parts indicated above and give one function for structures Y and Z

Kidney Lab. Name: By the end of this lab, you should:

Nephron Structure inside Kidney:

organs of the urinary system

RENAL PHYSIOLOGY. Danil Hammoudi.MD

The Excretory System

Clinical Laboratory Science: Urinalysis

A&P of the Urinary System

Renal Functions: Renal Functions: Renal Function: Produce Urine

I. Metabolic Wastes Metabolic Waste:

Urinary system. Lab-7

Lesson Overview. The Excretory System. Lesson Overview The Excretory System

1. Urinary System, General

The Urinary System 15PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

The Urinary System. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

Sunday, July 17, 2011 URINARY SYSTEM

Fal Fal P h y s i o l o g y 6 1 1, S a n F r a n c i s c o S t a t e U n i v e r s i t y

WHY DO WE NEED AN EXCRETORY SYSTEM? Function: To eliminate waste To maintain water and salt balance To maintain blood pressure

PRINCIPLE OF URINALYSIS

Regulating the Internal Environment. AP Biology

Osmoregulation and Excretion

Ch. 44 Regulating the Internal Environment

NOTES: CH 44 Regulating the Internal Environment (Homeostasis & The Urinary System)

1. remove: waste products: urea, creatinine, and uric acid foreign chemicals: drugs, water soluble vitamins, and food additives, etc.

Excretion and Waste Management. Biology 30S - Miss Paslawski

Urinary System and Excretion. Bio105 Lecture 20 Chapter 16

Kidney Physiology. Mechanisms of Urine Formation TUBULAR SECRETION Eunise A. Foster Shalonda Reed

Use the following diagram to answer the next question. 1. In the diagram above, pressure filtration occurs in a. W b. X c. Y d. Z

Urinary System. Analyze the Anatomy and Physiology of the urinary system

Osmoregulation and Renal Function

Osmoregulation_and_Excretion_p2.notebook June 01, 2017

*Function maintains homeostasis by regulating the water balance and by removing harmful substances

Excretory System-Training Handout

The Excretory System. Biology 20

GENERAL URINE EXAMINATION (URINE ANALYSIS)

S.N.KANSAGRA SCHOOL BIOLOGY DEPARTMENT. 1. Fibrous connective tissue covering the kidneys.

Title: Oct 12 3:37 PM (1 of 39) Ch 44 Osmoregulation and Excretion

Excretory Physiology

Outline Urinary System. Urinary System and Excretion. Urine. Urinary System. I. Function II. Organs of the urinary system

WJEC. BY4 Kidney Questions

EXCRETION IN HUMANS 31 JULY 2013

UNIT 4: EXCRETION AND WASTE MANAGEMENT. Introduction

Functions of the Urinary System

Chapter 13 The Urinary System

Osmotic Regulation and the Urinary System. Chapter 50

Chapter 12. Excretion and the Interaction of Systems

5.Which part of the nephron removes water, ions and nutrients from the blood?

Outline Urinary System

28/04/2013 LEARNING OUTCOME C13 URINARY SYSTEM STUDENT ACHIEVEMENT INDICATORS STUDENT ACHIEVEMENT INDICATORS URINARY SYSTEM & EXCRETION

A. Correct! Flushing acids from the system will assist in re-establishing the acid-base equilibrium in the blood.

The kidneys are excretory and regulatory organs. By

Osmoregulation and the Excretory System

It s not just water! What is Urinalysis?

Question 1: Solution 1: Question 2: Question 3: Question 4: Class X The Excretory System Biology

Other Factors Affecting GFR. Chapter 25. After Filtration. Reabsorption and Secretion. 5 Functions of the PCT

CREATININE: is another nitrogenous waste. Creatinine comes from creatinine phosphate in muscle metabolism (a Phosphate-storage molecule)

Urinary System BIO 250. Waste Products of Metabolism Urea Carbon dioxide Inorganic salts Water Heat. Routes of Waste Elimination

A&P 2 CANALE T H E U R I N A R Y S Y S T E M

EXCRETORY SYSTEM E. F. G. H.

Mouth. Digestion begins in the Mouth. Chewing begins the process of digestion. breakdown of large pieces of food into smaller pieces.

BCH 450 Biochemistry of Specialized Tissues

Chapter 16. Urinary System and Thermoregulation THERMOREGULATION. Homeostasis

Chapter 11 Lecture Outline

BIOLOGY - CLUTCH CH.44 - OSMOREGULATION AND EXCRETION.

The principal functions of the kidneys

Biology Slide 1 of 36

Transcription:

Physical Characteristics of Urine Bởi: OpenStaxCollege The urinary system s ability to filter the blood resides in about 2 to 3 million tufts of specialized capillaries the glomeruli distributed more or less equally between the two kidneys. Because the glomeruli filter the blood based mostly on particle size, large elements like blood cells, platelets, antibodies, and albumen are excluded. The glomerulus is the first part of the nephron, which then continues as a highly specialized tubular structure responsible for creating the final urine composition. All other solutes, such as ions, amino acids, vitamins, and wastes, are filtered to create a filtrate composition very similar to plasma. The glomeruli create about 200 liters (189 quarts) of this filtrate every day, yet you excrete less than two liters of waste you call urine. Characteristics of the urine change, depending on influences such as water intake, exercise, environmental temperature, nutrient intake, and other factors ([link]). Some of the characteristics such as color and odor are rough descriptors of your state of hydration. For example, if you exercise or work outside, and sweat a great deal, your urine will turn darker and produce a slight odor, even if you drink plenty of water. Athletes are often advised to consume water until their urine is clear. This is good advice; however, it takes time for the kidneys to process body fluids and store it in the bladder. Another way of looking at this is that the quality of the urine produced is an average over the time it takes to make that urine. Producing clear urine may take only a few minutes if you are drinking a lot of water or several hours if you are working outside and not drinking much. Normal Urine Characteristics Characteristic Color Odor Volume Normal values Pale yellow to deep amber Odorless ph 4.5 8.0 750 2000 ml/24 hour 1/6

Normal Urine Characteristics Characteristic Normal values Specific gravity 1.003 1.032 Osmolarity Urobilinogen White blood cells Leukocyte esterase Protein Bilirubin Ketones Nitrites Blood Glucose 40 1350 mosmol/kg 0.2 1.0 mg/100 ml 0 2 HPF (per high-power field of microscope) or trace <0.3 mg/100 ml Urinalysis (urine analysis) often provides clues to renal disease. Normally, only traces of protein are found in urine, and when higher amounts are found, damage to the glomeruli is the likely basis. Unusually large quantities of urine may point to diseases like diabetes mellitus or hypothalamic tumors that cause diabetes insipidus. The color of urine is determined mostly by the breakdown products of red blood cell destruction ([link]). The heme of hemoglobin is converted by the liver into water-soluble forms that can be excreted into the bile and indirectly into the urine. This yellow pigment is urochrome. Urine color may also be affected by certain foods like beets, berries, and fava beans. A kidney stone or a cancer of the urinary system may produce sufficient bleeding to manifest as pink or even bright red urine. Diseases of the liver or obstructions of bile drainage from the liver impart a dark tea or cola hue to the urine. Dehydration produces darker, concentrated urine that may also possess the slight odor of ammonia. Most of the ammonia produced from protein breakdown is converted into urea by the liver, so ammonia is rarely detected in fresh urine. The strong ammonia odor you may detect in bathrooms or alleys is due to the breakdown of urea into ammonia by bacteria in the environment. About one in five people detect a distinctive odor in their urine after consuming asparagus; other foods such as onions, garlic, and fish can impart their own aromas! These food-caused odors are harmless. 2/6

Urine Color Urine volume varies considerably. The normal range is one to two liters per day ([link]). The kidneys must produce a minimum urine volume of about 500 ml/day to rid the body of wastes. Output below this level may be caused by severe dehydration or renal disease and is termed oliguria. The virtual absence of urine production is termed anuria. Excessive urine production is polyuria, which may be due to diabetes mellitus or diabetes insipidus. In diabetes mellitus, blood glucose levels exceed the number of available sodium-glucose transporters in the kidney, and glucose appears in the urine. The osmotic nature of glucose attracts water, leading to its loss in the urine. In the case of diabetes insipidus, insufficient pituitary antidiuretic hormone (ADH) release or insufficient numbers of ADH receptors in the collecting ducts means that too few water channels are inserted into the cell membranes that line the collecting ducts of the kidney. Insufficient numbers of water channels (aquaporins) reduce water absorption, resulting in high volumes of very dilute urine. Urine Volumes Volume condition Volume Causes Normal 1 2 L/ day 3/6

Urine Volumes Volume condition Volume Causes Polyuria Oliguria Anuria >2.5 L/ day 300 500 ml/day <50 ml/ day Diabetes mellitus; diabetes insipidus; excess caffeine or alcohol; kidney disease; certain drugs, such as diuretics; sickle cell anemia; excessive water intake Dehydration; blood loss; diarrhea; cardiogenic shock; kidney disease; enlarged prostate Kidney failure; obstruction, such as kidney stone or tumor; enlarged prostate The ph (hydrogen ion concentration) of the urine can vary more than 1000-fold, from a normal low of 4.5 to a maximum of 8.0. Diet can influence ph; meats lower the ph, whereas citrus fruits, vegetables, and dairy products raise the ph. Chronically high or low ph can lead to disorders, such as the development of kidney stones or osteomalacia. Specific gravity is a measure of the quantity of solutes per unit volume of a solution and is traditionally easier to measure than osmolarity. Urine will always have a specific gravity greater than pure water (water = 1.0) due to the presence of solutes. Laboratories can now measure urine osmolarity directly, which is a more accurate indicator of urinary solutes than specific gravity. Remember that osmolarity is the number of osmoles or milliosmoles per liter of fluid (mosmol/l). Urine osmolarity ranges from a low of 50 100 mosmol/l to as high as 1200 mosmol/l H 2 O. Cells are not normally found in the urine. The presence of leukocytes may indicate a urinary tract infection. Leukocyte esterase is released by leukocytes; if detected in the urine, it can be taken as indirect evidence of a urinary tract infection (UTI). Protein does not normally leave the glomerular capillaries, so only trace amounts of protein should be found in the urine, approximately 10 mg/100 ml in a random sample. If excessive protein is detected in the urine, it usually means that the glomerulus is damaged and is allowing protein to leak into the filtrate. Ketones are byproducts of fat metabolism. Finding ketones in the urine suggests that the body is using fat as an energy source in preference to glucose. In diabetes mellitus when there is not enough insulin (type I diabetes mellitus) or because of insulin resistance (type II diabetes mellitus), there is plenty of glucose, but without the action of insulin, the cells cannot take it up, so it remains in the bloodstream. Instead, the cells are forced to use fat as their energy source, and fat consumed at such a level produces excessive 4/6

ketones as byproducts. These excess ketones will appear in the urine. Ketones may also appear if there is a severe deficiency of proteins or carbohydrates in the diet. Nitrates (NO 3 ) occur normally in the urine. Gram-negative bacteria metabolize nitrate into nitrite (NO 2 ), and its presence in the urine is indirect evidence of infection. There should be no blood found in the urine. It may sometimes appear in urine samples as a result of menstrual contamination, but this is not an abnormal condition. Now that you understand what the normal characteristics of urine are, the next section will introduce you to how you store and dispose of this waste product and how you make it. Chapter Review The kidney glomerulus filters blood mainly based on particle size to produce a filtrate lacking cells or large proteins. Most of the ions and molecules in the filtrate are needed by the body and must be reabsorbed farther down the nephron tubules, resulting in the formation of urine. Urine characteristics change depending on water intake, exercise, environmental temperature, and nutrient intake. Urinalysis analyzes characteristics of the urine and is used to diagnose diseases. A minimum of 400 to 500 ml urine must be produced daily to rid the body of wastes. Excessive quantities of urine may indicate diabetes insipidus or diabetes mellitus. The ph range of urine is 4.5 to 8.0, and is affected by diet. Osmolarity ranges from 50 to 1200 milliosmoles, and is a reflection of the amount of water being recovered or lost by renal nephrons. Review Questions Diabetes insipidus or diabetes mellitus would most likely be indicated by. B 1. anuria 2. polyuria 3. oliguria 4. none of the above The color of urine is determined mainly by. C 1. diet 2. filtration rate 3. byproducts of red blood cell breakdown 4. filtration efficiency 5/6

Production of less than 50 ml/day of urine is called. D 1. normal 2. polyuria 3. oliguria 4. anuria Critical Thinking Questions What is suggested by the presence of white blood cells found in the urine? The presence of white blood cells found in the urine suggests urinary tract infection. Both diabetes mellitus and diabetes insipidus produce large urine volumes, but how would other characteristics of the urine differ between the two diseases? Diabetes mellitus would result in urine containing glucose, and diabetes insipidus would produce urine with very low osmolarity (low specific gravity, dilute). 6/6