General Ultrasound. What is General Ultrasound Imaging?

Similar documents
General Ultrasound. What is General Ultrasound Imaging?

An abdominal ultrasound produces a picture of the organs and other structures in the upper abdomen.

Children's (Pediatric) Ultrasound - Abdomen

Ultrasound - Prostate

Abdominal Ultrasound

Ultrasound - Musculoskeletal

Ultrasound - Pelvis. What is Pelvic Ultrasound Imaging?

General Ultrasound. What is General Ultrasound Imaging?

Human Systems. Technology - Ultrasounds

Children's (Pediatric) Contrast-enhanced Voiding Urosonography

Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions.

Ureteral Stenting and Nephrostomy

relieve pressure on the lungs treat symptoms such as shortness of breath and pain determine the cause of excess fluid in the pleural space.

Intravascular Ultrasound

relieve pressure on the lungs treat symptoms such as shortness of breath and pain determine the cause of excess fluid in the pleural space.

Intravenous Pyelogram (IVP)

Nuclear Medicine - Hepatobiliary

X-ray (Radiography) - Chest

Children's (Pediatric) Nuclear Medicine

X-ray (Radiography) - Bone

Catheter-directed Thrombolysis

Lymphoscintigraphy is a special type of nuclear medicine imaging that provides pictures called scintigrams of the lymphatic system.

X-ray (Radiography) - Lower GI Tract

Scintimammography. What is scintimammography?

Computed Tomography (CT) - Sinuses

Pelvic Ultrasound.

Therapeutic Enema for Intussusception

Galactography (Ductography)

Children's (Pediatric) Voiding Cystourethrogram

Venous sampling. What is venous sampling? What are some common uses of the procedure?

Bone Densitometry. What is a Bone Density Scan (DXA)? What are some common uses of the procedure?

Video Fluoroscopic Swallowing Exam (VFSE)

Brachytherapy. What is brachytherapy and how is it used?

Breast Cancer Screening

Breast Tomosynthesis. What is breast tomosynthesis?

Computed Tomography (CT) - Head

Radioembolization (Y90)

Dental Cone Beam CT. What is Dental Cone Beam CT?

Positron Emission Tomography - Computed Tomography (PET/CT)

Computed Tomography (CT) - Spine

Biopsies - Overview. What are biopsies? What are some common uses of the procedure?

Computed Tomography (CT) - Body

Computed Tomography (CT) - Abdomen and Pelvis

Pancreatic Cancer. What is pancreatic cancer?

Fistulogram/Sinogram. What is a Fistulogram/Sinogram? What are some common uses of the procedure?

Stereotactic Breast Biopsy

Magnetoencephalography

Computed Tomography (CT) - Body

Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Liver Tumors

Computed Tomography (CT) - Chest

Lymphoma is a cancer that develops in the white blood cells (lymphocytes) of the lymphatic system, which is part of the body's immune system.

Computed Tomography (CT) - Chest

Fecal Incontinence. What is fecal incontinence?

Esophageal Cancer. What is esophageal cancer?

Cryotherapy. What is Cryotherapy? What are some common uses of the procedure?

Prostate Cancer. What is prostate cancer?

Magnetic Resonance Imaging (MRI) Dynamic Pelvic Floor

Mammography. What is Mammography?

Radiofrequency Ablation (RFA) / Microwave Ablation (MWA) of Lung Tumors

FOR APPOINTMENT: MULTIMEDIA HEALTH EDUCATION

Brain Tumors. What is a brain tumor?

Children's (Pediatric) PICC Line Placement

Mammography. What is Mammography? What are some common uses of the procedure?

Breast Cancer. What is breast cancer?

Breast Cancer. What is breast cancer?

Magnetic Resonance Imaging (MRI) - Body

Children's (Pediatric) MRI for Appendicitis

Lung Cancer Screening

Ovarian Vein Embolization

Lung Cancer Screening

Magnetic Resonance Imaging (MRI) - Body

Magnetic Resonance Imaging (MRI) - Body

Magnetic Resonance Imaging (MRI) - Head

What is head and neck cancer? How is head and neck cancer diagnosed and evaluated? How is head and neck cancer treated?

Magnetic Resonance, Functional (fmri) - Brain

Head and Neck Cancer. What is head and neck cancer?

Magnetic Resonance, Functional (fmri) - Brain

Having an Ultrasound Scan

Angioplasty and Vascular Stenting

Magnetic Resonance Imaging (MRI) - Prostate

CT Colonography. What is CT Colonography?

Magnetic Resonance Imaging (MRI) - Breast

Contrast Materials Patient Safety: What are contrast materials and how do they work?

Prostate Cancer Treatment

MR Angiography 1. What is MR Angiography? What are some common uses of the procedure? August 17, 2007

Prostate Cancer. What is prostate cancer?

Magnetic Resonance Imaging (MRI) - Knee

Duplex Ultrasound. A Detailed Look at Your Blood Vessels

Magnetic Resonance Imaging (MRI) - Breast

Colorectal Cancer Screening

Ultrasound Table of contents

Pancreatic Cancer Treatment

Anesthesia Safety. What is anesthesia and how does it work? Local anesthesia

Colorectal Cancer Treatment

Magnetic Resonance Imaging (MRI) - Cardiac (Heart)

Patient Education. Ultrasound

Vertebroplasty & Kyphoplasty

Vascular Testing. and. You

Magnetic Resonance Imaging (MRI) - Spine

Cervical Cancer Treatment

Transcription:

Scan for mobile link. General Ultrasound Ultrasound imaging uses sound waves to produce pictures of the inside of the body. It is used to help diagnose the causes of pain, swelling and infection in the body s internal organs and to examine a baby in pregnant women and the brain and hips in infants. It s also used to help guide biopsies, diagnose heart conditions, and assess damage after a heart attack. Ultrasound is safe, noninvasive, and does not use ionizing radiation. This procedure requires little to no special preparation. Your doctor will instruct you on how to prepare, including whether you should refrain from eating or drinking beforehand. Leave jewelry at home and wear loose, comfortable clothing. You may be asked to wear a gown. What is General Ultrasound Imaging? Ultrasound is safe and painless, and produces pictures of the inside of the body using sound waves. Ultrasound imaging, also called ultrasound scanning or sonography, involves the use of a small transducer (probe) and ultrasound gel placed directly on the skin. High-frequency sound waves are transmitted from the probe through the gel into the body. The transducer collects the sounds that bounce back and a computer then uses those sound waves to create an image. Ultrasound examinations do not use ionizing radiation (as used in x-rays), thus there is no radiation exposure to the patient. Because ultrasound images are captured in real-time, they can show the structure and movement of the body's internal organs, as well as blood flowing through blood vessels. Ultrasound imaging is a noninvasive medical test that helps physicians diagnose and treat medical conditions. Conventional ultrasound displays the images in thin, flat sections of the body. Advancements in ultrasound technology include three-dimensional (3-D) ultrasound that formats the sound wave data into 3-D images. A Doppler ultrasound study may be part of an ultrasound examination. General Ultrasound Page 1 of 7

Doppler ultrasound, also called color Doppler ultrasonography, is a special ultrasound technique that allows the physician to see and evaluate blood flow through arteries and veins in the abdomen, arms, legs, neck and/or brain (in infants and children) or within various body organs such as the liver or kidneys. There are three types of Doppler ultrasound: Color Doppler uses a computer to convert Doppler measurements into an array of colors to show the speed and direction of blood flow through a blood vessel. Power Doppler is a newer technique that is more sensitive than color Doppler and capable of providing greater detail of blood flow, especially when blood flow is little or minimal. Power Doppler, however, does not help the radiologist determine the direction of blood flow, which may be important in some situations. Spectral Doppler displays blood flow measurements graphically, in terms of the distance traveled per unit of time, rather than as a color picture. It can also convert blood flow information into a distinctive sound that can be heard with every heartbeat. What are some common uses of the procedure? Ultrasound examinations can help to diagnose a variety of conditions and to assess organ damage following illness. Ultrasound is used to help physicians evaluate symptoms such as: pain swelling infection Ultrasound is a useful way of examining many of the body's internal organs, including but not limited to the: heart and blood vessels, including the abdominal aorta and its major branches liver gallbladder spleen pancreas kidneys bladder uterus, ovaries, and unborn child (fetus) in pregnant patients eyes thyroid and parathyroid glands scrotum (testicles) brain in infants hips in infants spine in infants Ultrasound is also used to: General Ultrasound Page 2 of 7

guide procedures such as needle biopsies, in which needles are used to sample cells from an abnormal area for laboratory testing. image the breasts and guide biopsy of breast cancer (see the Ultrasound-Guided Breast Biopsy page. diagnose a variety of heart conditions, including valve problems and congestive heart failure, and to assess damage after a heart attack. Ultrasound of the heart is commonly called an echocardiogram or echo for short. Doppler ultrasound images can help the physician to see and evaluate: blockages to blood flow (such as clots) narrowing of vessels tumors and congenital vascular malformations reduced or absent blood flow to various organs greater than normal blood flow to different areas, which is sometimes seen in infections With knowledge about the speed and volume of blood flow gained from a Doppler ultrasound image, the physician can often determine whether a patient is a good candidate for a procedure like angioplasty. How should I prepare? You should wear comfortable, loose-fitting clothing for your ultrasound exam. You may need to remove all clothing and jewelry in the area to be examined. You may be asked to wear a gown during the procedure. Preparation for the procedure will depend on the type of examination you will have. For some scans your doctor may instruct you not to eat or drink for as many as 12 hours before your appointment. For others you may be asked to drink up to six glasses of water two hours prior to your exam and avoid urinating so that your bladder is full when the scan begins. What does the equipment look like? Ultrasound scanners consist of a console containing a computer and electronics, a video display screen and a transducer that is used to do the scanning. The transducer is a small hand-held device that resembles a microphone, attached to the scanner by a cord. Some exams may use different transducers (with different capabilities) during a single exam. The transducer sends out high-frequency sound waves (that the human ear cannot hear) into the body and then listens for the returning echoes from the tissues in the body. The principles are similar to sonar used by boats and submarines. The ultrasound image is immediately visible on a video display screen that looks like a computer or television monitor. The image is created based on the amplitude (loudness), frequency (pitch) and time it takes for the ultrasound signal to return from the area within the patient that is being examined to the transducer (the device placed on the patient's skin to send and receive the returning sound waves), as well as the type of body structure and composition of body tissue through which the sound travels. A small General Ultrasound Page 3 of 7

amount of gel is put on the skin to allow the sound waves to travel from the transducer to the examined area within the body and then back again. Ultrasound is an excellent modality for some areas of the body while other areas, especially air-filled lungs, are poorly suited for ultrasound. How does the procedure work? Ultrasound imaging is based on the same principles involved in the sonar used by bats, ships and fishermen. When a sound wave strikes an object, it bounces back, or echoes. By measuring these echo waves, it is possible to determine how far away the object is as well as the object's size, shape and consistency (whether the object is solid or filled with fluid). In medicine, ultrasound is used to detect changes in appearance, size or contour of organs, tissues, and vessels or to detect abnormal masses, such as tumors. In an ultrasound examination, a transducer both sends the sound waves into the body and receives the echoing waves. When the transducer is pressed against the skin, it directs small pulses of inaudible, high-frequency sound waves into the body. As the sound waves bounce off internal organs, fluids and tissues, the sensitive receiver in the transducer records tiny changes in the sound's pitch and direction. These signature waves are instantly measured and displayed by a computer, which in turn creates a real-time picture on the monitor. One or more frames of the moving pictures are typically captured as still images. Short video loops of the images may also be saved. Doppler ultrasound, a special application of ultrasound, measures the direction and speed of blood cells as they move through vessels. The movement of blood cells causes a change in pitch of the reflected sound waves (called the Doppler effect). A computer collects and processes the sounds and creates graphs or color pictures that represent the flow of blood through the blood vessels. How is the procedure performed? For most ultrasound exams, you will be positioned lying face-up on an examination table that can be tilted or moved. Patients may be turned to either side to improve the quality of the images. After you are positioned on the examination table, the radiologist (a physician specifically trained to supervise and interpret radiology examinations) or sonographer will apply a warm water-based gel to the area of the body being studied. The gel will help the transducer make secure contact with the body and eliminate air pockets between the transducer and the skin that can block the sound waves from passing into your body. The transducer is placed on the body and moved back and forth over the area of interest until the desired images are captured. There is usually no discomfort from pressure as the transducer is pressed against the area being examined. However, if scanning is performed over an area of tenderness, you may feel pressure or minor pain from the transducer. Doppler sonography is performed using the same transducer. General Ultrasound Page 4 of 7

Rarely, young children may need to be sedated in order to hold still for the procedure. Parents should ask about this beforehand and be made aware of food and drink restrictions that may be needed prior to sedation. Once the imaging is complete, the clear ultrasound gel will be wiped off your skin. Any portions that are not wiped off will dry quickly. The ultrasound gel does not usually stain or discolor clothing. In some ultrasound studies, the transducer is attached to a probe and inserted into a natural opening in the body. These exams include: Transesophageal echocardiogram. The transducer is inserted into the esophagus to obtain images of the heart. Transrectal ultrasound. The transducer is inserted into a man's rectum to view the prostate. Transvaginal ultrasound. The transducer is inserted into a woman's vagina to view the uterus and ovaries. What will I experience during and after the procedure? Ultrasound examinations are painless and easily tolerated by most patients. Ultrasound exams in which the transducer is inserted into an opening of the body may produce minimal discomfort. If a Doppler ultrasound study is performed, you may actually hear pulse-like sounds that change in pitch as the blood flow is monitored and measured. Most ultrasound examinations are completed within 30 minutes, although more extensive exams may take up to an hour. When the examination is complete, you may be asked to dress and wait while the ultrasound images are reviewed. After an ultrasound examination, you should be able to resume your normal activities immediately. Who interprets the results and how do I get them? A radiologist, a physician specifically trained to supervise and interpret radiology examinations, will analyze the images and send a signed report to your primary care physician, or to the physician or other healthcare provider who requested the exam. Usually, the referring physician or health care provider will share the results with you. In some cases, the radiologist may discuss results with you at the conclusion of your examination. Follow-up examinations may be necessary. Your doctor will explain the exact reason why another exam is requested. Sometimes a follow-up exam is done because a potential abnormality needs further evaluation with additional views or a special imaging technique. A follow-up examination may also be necessary so that any change in a known abnormality can be monitored over time. Follow-up General Ultrasound Page 5 of 7

examinations are sometimes the best way to see if treatment is working or if a finding is stable or changed over time. What are the benefits vs. risks? Benefits Risks Most ultrasound scanning is noninvasive (no needles or injections). Occasionally, an ultrasound exam may be temporarily uncomfortable, but it should not be painful. Ultrasound is widely available, easy-to-use and less expensive than other imaging methods. Ultrasound imaging is extremely safe and does not use any ionizing radiation. Ultrasound scanning gives a clear picture of soft tissues that do not show up well on x-ray images. Ultrasound is the preferred imaging modality for the diagnosis and monitoring of pregnant women and their unborn babies. Ultrasound provides real-time imaging, making it a good tool for guiding minimally invasive procedures such as needle biopsies and fluid aspiration. For standard diagnostic ultrasound, there are no known harmful effects on humans. What are the limitations of General Ultrasound Imaging? Ultrasound waves are disrupted by air or gas; therefore ultrasound is not an ideal imaging technique for air-filled bowel or organs obscured by the bowel. In most cases, barium exams, CT scanning, and MRI are the methods of choice in such a setting. Large patients are more difficult to image by ultrasound because greater amounts of tissue attenuate (weaken) the sound waves as they pass deeper into the body and need to be returned to the transducer for analysis. Ultrasound has difficulty penetrating bone and, therefore, can only see the outer surface of bony structures and not what lies within (except in infants who have more cartilage in their skeletons than older children or adults). For visualizing internal structure of bones or certain joints, other imaging modalities such as MRI are typically used. Disclaimer This information is copied from the RadiologyInfo Web site (http://www.radiologyinfo.org) which is dedicated to providing the highest quality information. To ensure that, each section is reviewed by a physician with expertise in the area presented. All information contained in the Web site is further reviewed by an ACR (American College of Radiology) - RSNA (Radiological Society of North America) committee, comprising physicians with expertise in several radiologic areas. General Ultrasound Page 6 of 7

However, it is not possible to assure that this Web site contains complete, up-to-date information on any particular subject. Therefore, ACR and RSNA make no representations or warranties about the suitability of this information for use for any particular purpose. All information is provided "as is" without express or implied warranty. Please visit the RadiologyInfo Web site at http://www.radiologyinfo.org to view or download the latest information. Note: Images may be shown for illustrative purposes. Do not attempt to draw conclusions or make diagnoses by comparing these images to other medical images, particularly your own. Only qualified physicians should interpret images; the radiologist is the physician expert trained in medical imaging. Copyright This material is copyrighted by either the Radiological Society of North America (RSNA), 820 Jorie Boulevard, Oak Brook, IL 60523-2251 or the American College of Radiology (ACR), 1891 Preston White Drive, Reston, VA 20191-4397. Commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is prohibited. Copyright 2017 Radiological Society of North America, Inc. General Ultrasound Page 7 of 7