Current Ultrasound Quality Control Recommendations and Techniques

Similar documents
Routine Quality Assurance Cookbook

Ultrasound Accreditation and Regulatory Compliance from A to Z

Outline. QA/QC of Ultrasound Imagers: Basic Physics, Procedures and Experiences. Frame Rate Limitation. US Imaging Range Equation.

Debbie Childs RDMS, RVT Sonographer Murphy Medical Center Murphy, NC

8/3/2016. Diagnostic Ultrasound Imaging Quality Assurance. Purpose. Information on US QA. James A. Zagzebski 1, Ph.D. Zheng Feng Lu 2, Ph.D.

ULTRASOUND QA SOLUTIONS. Ensure Accurate Screening, Diagnosis & Monitoring DOPPLER FLOW PHANTOMS MULTI-PURPOSE PHANTOMS TRANSDUCER TEST PHANTOMS

BICOE Breast Imaging Center of Excellence. What is it? - Requirements. National Mammography Database. What do you get? ACR Accreditation in:

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives

Ultrasound Accreditation Program Requirements

BICOE Stereotactic Breast Biopsy and Breast Ultrasound Accreditation. Introduction. Educational Objectives

TG-128: Quality Assurance for Prostate Brachytherapy Ultrasound

Hands-On Ultrasound Physics and Quality Control Workshop. Outline

ULTRASOUND QA SOLUTIONS. Ensure Accurate Screening, Diagnosis and Monitoring DOPPLER FLOW PHANTOMS MULTI-PURPOSE PHANTOMS TRAINING PHANTOMS

ULTRASOUND QA SOLUTIONS. Ensure Accurate Screening, Diagnosis & Monitoring DOPPLER FLOW PHANTOMS MULTI-PURPOSE PHANTOMS TRANSDUCER TEST PHANTOMS

Introduction. The goal of TRUS QA is to ensure your system can do all of this accurately.

ULTRASOUND IMAGING EE 472 F2018. Prof. Yasser Mostafa Kadah

ACR MRI Accreditation: Medical Physicist Role in the Application Process

Diploma of Medical Ultrasonography (DMU) Physical Principles of Ultrasound and Instrumentation Syllabus

Dr Emma Chung. Safety first - Physical principles for excellent imaging

Underwater Acoustic Measurements in Megahertz Frequency Range.

The American College of Radiology Breast Ultrasound Accreditation Program: Frequently Asked Questions (Revised: July 31, 2017)

ACR MRI Accreditation Program. ACR MRI Accreditation Program Update. Educational Objectives. ACR accreditation. History. New Modular Program

Example 1: How would you evaluate this transducer? What is the most common problem found in ultrasound QC testing? Uniformity is Subjective

Ultrasound Applied Physics

A new method of sonograph lateral resolution measurement using PSF analysis of received signal

Descriptions of NDT Projects Fall 2004 October 31, 2004

Implementation of the 2012 ACR CT QC Manual in a Community Hospital Setting BRUCE E. HASSELQUIST, PH.D., DABR, DABSNM ASPIRUS WAUSAU HOSPITAL

AUStrian Test kit. Type : Basic. developed by

Application of Phased Array Radar Theory to Ultrasonic Linear Array Medical Imaging System

Automatic quality control processing for detection of element/channel dropout in ultrasound transducers

Performance Evaluation of Ultrasound Systems: Advanced Methods and Applications

Principles of Ultrasound. Cara C. Prideaux, M.D. University of Utah PM&R Sports Medicine Fellow March 14, 2012

The Physics of Ultrasound. The Physics of Ultrasound. Claus G. Roehrborn. Professor and Chairman. Ultrasound Physics

MR QA/QC for MRgRT. Rick Layman, PhD, DABR Department of Radiology July 13, 2015

Ultrasound in Medicine

Quality Assurance of Ultrasound Imaging in Radiation Therapy. Zuofeng Li, D.Sc. Murty S. Goddu, Ph.D. Washington University St.

Ultrasound Physics & Terminology

1 Fundamentals. Basic Definitions and Physics Principles. Fundamentals

Basic Physics of Ultrasound and Knobology

Quality Assurance of Ultrasound Imagers: Procedures, Expectations, and Philosophies

Preamble (disclaimer)

Mammography Quality Control: A Refresher

Quality Control Program Of Real Time Medical Ultrasound Machines In Sudan

Kish chakrabarti, Ph.D. Senior Physicist CDRH/FDA

Features and Benefits

Ultrasound. Principles of Medical Imaging. Contents. Prof. Dr. Philippe Cattin. MIAC, University of Basel. Oct 17th, 2016

ACR Accreditation Update in MRI

APPLICATION AND DEPLOYMENT OF ADVANCED NDE TECHNIQUES IN HIGH PRESSURE VESSELS

CT Quality Control Manual FAQs

w. D. Jolly, F. A. Bruton, and C. Fedor

Lesson 07: Ultrasound Transducers. This lesson contains 73 slides plus 16 multiple-choice questions.

InTouch Center Local Customer Teams InTouch Agreements Parts Support

Medical Physics 2.0. Ultrasound 2.0. N. J. Hangiandreou, Ph.D. 1 P. L. Carson, Ph.D. 2 Z. F. Lu, Ph.D. 3. Mayo Clinic 2. University of Michigan 3

Performance of phased array and conventional ultrasonic probes on the new ISO reference block

DELGADO COMMUNITY COLLEGE DIAGNOSTIC MEDICAL SONOGRAPHY PROGRAM TECHNICAL STANDARDS

Digital film dosimetry in radiotherapy and the development of analytical applications software

Ultrasound Physics and Knobology Alan Macfarlane. Consultant Anaesthetist Glasgow Royal Infirmary

ULTRASONIC ARRAY APPROACH FOR THE EVALUATION OF ELECTROFUSION JOINTS OF POLYETHYLENE GAS PIPING

Performance in style. Ultrasound system H60 SAMSUNG MEDISON CO., LTD. Scan code or visit to learn more

Physical Principles of Ultrasound

Real Time 2D Ultrasound Camera Imaging: A Higher Resolution Option to Phased Array Bob Lasser Randy Scheib Imperium, Inc.

ULTRASOUND. OB/Gyn (Core) Ultrasound PIEZOELECTRIC EFFECT. Principles of Ultrasound Physics and Instrumentation. Nathan Pinkney, BS, CDOS

Confident and Conclusive Diagnosis with Flexible Solutions

Linear Ultrasonic Wave Propagation in Biological Tissues

Highmark Privileging Application. 1. Complete this application if you provide any diagnostic

Manual Ultrasonic Inspection of Thin Metal Welds

Hands-on. Physics Workshop. 2-day Workshop June 1-2, 2018 Ann Arbor, MI. Program Director: Brian Fowlkes, PhD

DIGITAL IMAGE PROCESSING IN ULTRASOUND IMAGES

AAPM Annual Meeting. ACR Accreditation Update in CT

Ultrasound Knobology

Derivation of Sonograph Quality Parameters by the Use of Point Spread Function Analysis

Nuts and Bolts of MRI Physics Tests or Selling Preparation H. Robert A. Bell, PhD. Learning Objectives

Precise defect detection with sensor data fusion

Ultrasound Principles cycle Frequency Wavelength Period Velocity

2. The properties of near-surface defects in rails

The Essentials Tissue Characterization and Knobology

Evaluation of the Quality of Thick Fibre Composites Using Immersion and Air- Coupled Ultrasonic Techniques

How do you use the AiM Vascular Mapping Kit?

3/20/2017. Disclosures. Ultrasound Fundamentals. Ultrasound Fundamentals. Bone Anatomy. Tissue Characteristics

Flaw Assessment Using Shear wave Phased array Ultrasonic Transducer

Pushing the boundaries

Full ultrasound breast volumes. Faster scans. Streamlined workflow. ACUSON S2000 Automated Breast Volume Scanner. Answers for life.

Developments in Ultrasonic Inspection II

Daily inspiration. Ultrasound system HS70A SAMSUNG MEDISON CO., LTD. Scan code or visit to learn more

Terminology Tissue Appearance

Augmentation of the In Vivo Elastic Properties Measurement System to include Bulk Properties

Agenda: Dental Cone Beam Imaging

DEVELOPMENT OF ULTRASONIC TESTING TECHNIQUE TO INSPECT CONTAINMENT LINERS EMBEDDED IN CONCRETE ON NUCLEAR POWER PLANTS

Available online at ScienceDirect. Physics Procedia 70 (2015 )

Dental Radiography Core Subject. Digital Radiography

Update on MQSA and Mammography Accreditation

Ultrasonic arrays are now widely used in underwater sonar

Computed tomography Acceptance testing and dose measurements

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

Concepts of Imaging and Knobology

A new geometric and mechanical verification device for medical LINACs

High resolution ultrasound scanner for skin imaging

A. DeWerd. Michael Kissick. Larry. Editors. The Phantoms of Medical. and Health Physics. Devices for Research and Development.

Scope of Practice for the Diagnostic Ultrasound Professional

Transcription:

Current Ultrasound Quality Control Recommendations and Techniques Evan J. Boote, Ph.D. University of Missouri-Columbia Thank you for your interest - today I hope to provide some basic recommendations for beginning a program for ultrasound quality control in a hospital setting 1

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC These are the learning objectives I have for the presentation today 2

Why do US QC? From AAPM Website - Clinical Service and Consultation Many medical physicists are heavily involved with responsibilities in areas of diagnosis and treatment, often with specific patients. These activities take the form of consultations with physician colleagues. In radiation oncology departments, one important example is the planning of radiation treatments for cancer patients, using either external radiation beams or internal radioactive sources. An indispensable service is the accurate measurement of the radiation output from radiation sources employed in cancer therapy. In the specialty of nuclear medicine, physicists collaborate with physicians in procedures utilizing radionuclides for delineating internal organs and determining important physiological variables, such as metabolic rates and blood flow. Other important services are rendered through investigation of equipment perfor-mance, organization of quality control in imaging systems, design of radiation installations, and control of radiation hazards. The medical physicist is called upon to contribute clinical and scientific advice and resources to solve the numerous and diverse physical problems that arise continually in many specialized medical areas. 3

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC Before charging in to test ultrasound equipment, it is good to understand and know the extent of ultrasound equipment present. Ultrasound is a very ubiquitous imaging modality - due to it s low cost and relative ease of use. For this reason, it is not always easy to locate every ultrasound instrument that exists! 4

First Steps Inventory of US equipment and probes Radiology, Cardiology, Vascular Surgery, Ob/Gyn Pediatrics, Interventional labs, Emergency Room, Radiotherapy OR suites, Orthopedics (lots of different types of systems - many different probes!) Prioritize service contracts? knowledgable users? First, you need to know where ultrasound is being done in your institution and how open the users are to establishing a QC program. From a quality control standpoint, the most cooperative users of ultrasound will likely be in general radiology imaging. This has to do more with prior experience in dealing with Medical Physics and a more general understanding of quality improvement requiremets. In some institutions, radiology may handle many other specialities. However, as ultrasound has become cheaper and easier, other specialties have incorporated ultrasound into their practice. Accreditation bodies have also recognized this (for example, American Institute of Ultrasound in Medicine). There is perhaps as wide of a variation in types of ultrasound equipment as uses for it. You will need to determine if there are service contracts in place on each piece of equipment. If you have clinical engineering support, determine if there is regular preventive maintenance. Often there are service programs available on high end equipment that are useful. You will also need to contact each site and determine who the knowledgable users are (e.g. sonographers). These individuals are of great help when working on the scanners and can provide instruction on which settings are appropriate and most often used. 5

First Steps General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

First Steps General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

What kind of equipment? First Steps General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

What kind of equipment? First Steps General purpose Ultrasound units (Radiology) General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

What kind of equipment? First Steps General purpose Ultrasound units (Radiology) Echocardiography (Cardiology) General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

What kind of equipment? First Steps General purpose Ultrasound units (Radiology) Echocardiography (Cardiology) Small or special purpose units (Ob/Gyn, vascular) General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

What kind of equipment? First Steps General purpose Ultrasound units (Radiology) Echocardiography (Cardiology) Small or special purpose units (Ob/Gyn, vascular) General purpose ultrasound units come in a variety of shapes and sizes. You will likely first be able to locate the US systems in Radiology; others will most likely be found in Cardiology, Ob/Gyn and vascular services. US units are becoming smaller and more ubiquitous and might be found in non-traditional places. 6

Transducer Types Linear arrays Phased arrays curvlinear arrays 1-D, 1.5-D, 2-D arrays Ultrasound units are usually equipped with two or more transducers. These vary in shape (and imaging method) as well as frequency. Higher frequency transducers are used to shallow imaging applications that demand higher resolution. Lower frequency transducers are typically used to image deeper structures in the body. Access to acoustic windows in the body is another reason for a variety of shapes and sizes. More recently, transducers are evolving from a single row of elements to having multiple rows of elements. 7

2-D Array Transducers 2,500 elements 2D imaging live bi-plane imaging full volume and 3D These transducers are becoming increasingly complex, but have more and more capability. These are becoming more difficult to evaluate using standard QC phantoms. Because of the number and complexity of transducers, care must be taken to keep ultrasound QC testing simple and effective. 8

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC 9

Basic Imaging Performance Tests System Sensitivity Uniformity Spatial accuracy Contrast and Spatial Resolution These are four basic ultrasound tests, in order of importance - As I will mention later, the first two are required for ACR accreditation. 10

System Sensitivity How deep into the phantom can the instrument image? Affected by: Signal to Noise ratio Electronic interference and/or bad cables improper instrument calibration/setup Transducer acoustic coupling piezo-element - matching layer(s) - body Failure of components or boards of internal scanner components System sensitivity is a measure of the ability of the instrument to detect a small signal (backscattered sound) against a noisy background. It can be affected by a number of issues that might increase noise or decrease the signal. Higher attenuation at high frequencies means that the depth of imaging for these transducers will be less. 11

Speckle vs. E-noise Movie illustrating the concept of speckle (with Tx still) and noise. 12

Maximum Depth of Penetration Max Depth of penetration is the point in the image where the signal drops off to the point where it is not visualized against the noise in the image. Remember that in ultrasound the signal is contained within speckle. This is better appreciated in a real-time image with the transducer held still. The speckle motion correlates with the movement of the transducer - the electronic noise continues to be seen. 13

All the way to the bottom! 14

Uniformity Horizontal Uniformity Individual element viability decoupling of matching layers and elements a non-uniformity noticeable on phantom may not be noticeable by clinical users seek to replicate with a clinical case and consult image interpreters to ascertain seriousness of the non-uniformity Vertical Uniformity Time gain compensation Combining multiple focus depth if it exists, it usually can be resolved by adjustment - if it cannot be resolved, seek service immediately. Uniformity is judged based on the appearance of the brightness of a plain image. The image can be describe as being uniform across the horizon (parallel to the transducer face). Horizontal uniformity may be affected by a number of issues concerning the ultrasound system. Vertical uniformity is not natural in ultrasound due to attenuation. Time-Gain compensation is used to create a uniform image over a range of depths. A system should be able to create a uniform image vertically using TGC. Most systems use some range of focus depths or multiple focus depths and then stitch images together. A nominally operating system should be able to generate a uniform image with depth. 15

16

Example of horizontal non-uniformity 16

Example of horizontal non-uniformity 16

Example of horizontal non-uniformity 16

Example of horizontal non-uniformity Example of vertical non-uniformity 16

Example of horizontal non-uniformity Example of vertical non-uniformity 16

Sometimes, the physics of beamforming cause some drop off at the edges of an array. Example of horizontal non-uniformity Example of vertical non-uniformity 16

Probe testing device results If transducer problems are uncovered, it is possible to investigate each element of the probe. This is the sensitivity test for the probe in the previous slide. It looks as if the sensitivity is uniform. 17

18 However, looking at the center frequency of the response from the transducer, we see that there are two groups of elements that are not working properly - center frequency < 1 MHz for elements 15-18 and 33-36.

Signal dropout corresponds to lost elements (image reversed to show correlation to element dropout) 18 However, looking at the center frequency of the response from the transducer, we see that there are two groups of elements that are not working properly - center frequency < 1 MHz for elements 15-18 and 33-36.

Signal dropout corresponds to lost elements (image reversed to show correlation to element dropout) 18 However, looking at the center frequency of the response from the transducer, we see that there are two groups of elements that are not working properly - center frequency < 1 MHz for elements 15-18 and 33-36.

Signal dropout corresponds to lost elements (image reversed to show correlation to element dropout) 18 However, looking at the center frequency of the response from the transducer, we see that there are two groups of elements that are not working properly - center frequency < 1 MHz for elements 15-18 and 33-36.

Spatial Accuracy Distance Measurements against known objects Vertical Less prone to drift with digital equipment Horizontal Distortion may cause errors Area and volume measurements Treatment planning Spatial accuracy has long been a part of QC tests. The distance calipers are used to generate quantitative (size) data from clinical studies and should be evaluated to assure that this accuracy is within ±2 mm of expected distance. 19

Distance Measurements Distance measurements can be taken across the phantom horizontally and with depth vertically. Both should be confirmed. One can avoid errors resulting from problems at the skin surface by doing vertical measurements between objects embedded within the phantom. 20

Contrast/Spatial Resolution Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Resolution Contrast resolution very dependent upon background noise Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Resolution Contrast resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Resolution Contrast resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Spatial resolution Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Spatial resolution Transducer (Frequency) dependent! Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Spatial resolution Transducer (Frequency) dependent! Depth dependent! Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Spatial resolution Transducer (Frequency) dependent! Depth dependent! specify at a frequency and depth in a phantom Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast/Spatial Contrast resolution Resolution very dependent upon background noise care must be taken with image processing algorithms on scanners Display dynamic range and gray scale settings Spatial resolution Transducer (Frequency) dependent! Depth dependent! specify at a frequency and depth in a phantom US resolution is really a 3D problem Contrast and spatial resolution are important, but can be difficult to evaluate with ultrasound. Speckle noise makes contrast resolution difficult to define, hence it becomes a subjective ( can I see it? ) evaluation. Spatial resolution in US is a 3D problem. 21

Contrast Resolution Movie example showing 3 resolution rods in an phantom with decreasing scatter. 22

Contrast Resolution Movie example showing 3 resolution rods in an phantom with decreasing scatter. 22

Contrast Resolution -6 db Movie example showing 3 resolution rods in an phantom with decreasing scatter. 22

Contrast Resolution -6 db -4 db Movie example showing 3 resolution rods in an phantom with decreasing scatter. 22

Contrast Resolution -2 db -6 db -4 db Movie example showing 3 resolution rods in an phantom with decreasing scatter. 22

Spatial Resolution 120 1 mm 100 80 3 mm 2 mm 1 mm Pixel Intensity (arb. units) 60 40 20 0 FWHM @ 4 cm FWHM @10 cm 0.5 mm 20 40 0 5 10 15 20 25 30 35 40 Lateral Distance (pixels) Qualitative semi -Quantitative Methods of spatial resolution measurement. Targets arranged together. Minimum spatial resolution is the smallest separation that can be seen on the image. Evaluation of spatial resolution might also be performed by using pixel data across a bright target, then plotting to determine FWHM. Both are affected by the gain and gray scale processing settings. 23

Spatial Resolution in ultrasound varies in three dimensions Axial Lateral Elevational (slice thick) Evaluation with a spherical void phantom Ultrasound has resolution properties in 3 dimensions and the resolution properties change with depth. Methods of evaluating elevational thickness include a screen mesh phantom (center) or a spherical void phantom. For the latter, the range in which voids are most visible correspond to an elevational slice thickness that is less than the diameter of the void. 24

System effects on tests Be careful doing QC tests - make sure the settings are the same each time. 25

System effects on tests Rely upon experienced users to teach how various settings affect the image - or - use a fixed, programmed and standard setting (e.g. Carotid in the upper right corner of this image Be careful doing QC tests - make sure the settings are the same each time. 25

Imaging Settings Same phantom - same transducer - one switch change Standard B-mode Sono-CT XRES 26 These are three separate settings for one type of scanner. The transducer was not moved nor changed. Only the imaging mode.

Normal B-mode versus Harmonic signal imaging Harmonic imaging is another possible mode. Again, the same transducer has not been moved. 27

Gray Scale M1 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Gray Scale M1 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Gray Scale M1 M2 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Gray Scale M1 M2 M3 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Gray Scale M1 M2 M3 M4 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Gray Scale M1 M2 M3 M4 M5 Post-processing of the gray scale - five possible settings on this particular scanner. 28

Shallow focus vs. Deep focus Depth of the transmit focus.. 29

Gain Adjustment Movie showing adjustment of overall gain and its affect on the image. 30

Moral of the Story 31

Moral of the Story US equipment has many different settings that affect the appearance of the image 31

Moral of the Story US equipment has many different settings that affect the appearance of the image Work with someone who users the ultrasound equipment on a regular basis - better still, coordinate with an applications person from the vendor 31

Moral of the Story US equipment has many different settings that affect the appearance of the image Work with someone who users the ultrasound equipment on a regular basis - better still, coordinate with an applications person from the vendor Use identical settings each time the unit is evaluated - failure to do this will produce little confidence in your results 31

Other Tests Mechanical and Electrical Safety assess condition of probes and connections assess condition of air filters damage to US unit body? Gray Scale and Hard Copy Display on unit corresponds to interpreter s display!!! (B & C) AAPM TG-18 Hard copy provisions - follow laser printer manufacturer guidance 32

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC 33

US Phantoms Ultrasound properties speed of sound propagation = 1540 m/s acoustic attenuation - 0.5 to 0.7 db / MHz cm acoustic backscatter approximately similar to liver tissue small fibers as distance targets near field ringdown resolution some have voids - regions with no scatter some have varying backscatter in small rods or spherical objects for contrast evaluation 34

US Phantoms agarose gel or urethane http://www.aium.org/publications/technicalstandards/phantomspecs.aspx Phantoms come from a number of vendors. The AIUM has done a service by posting specifications for phantoms on its website. 35

Here is the page that comes up when the prior link is selected. 36

Attenuation! 0.5 db/cm MHz 0.7 db/cm MHz Make sure you know what attenuation your phantom is using. In the case of the phantom I used, there are two different attenuation coefficients - these would give different results, depending on which section was being used. 37

Take Care of your Phantoms! Gel-based phantoms will dessicate over time storage in controlled temperature and humidity Preferably in sealed container to retain water content surface of the phantom is susceptible to damage - may affect uniformity measurements Don t drop your phantom on your computer! 38

Take Care of your Phantoms! Gel-based phantoms will dessicate over time storage in controlled temperature and humidity Preferably in sealed container to retain water content surface of the phantom is susceptible to damage - may affect uniformity measurements Don t drop your phantom on your computer! 38

Take Care of your Phantoms! Gel-based phantoms will dessicate over time storage in controlled temperature and humidity Preferably in sealed container to retain water content surface of the phantom is susceptible to damage - may affect uniformity measurements Don t drop your phantom on your computer! 38

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC 39

Objective Measures? Pass - Fail Criteria? Maximum Depth of Penetration (Sensitivity) Account for Frequency Not all units will have similar performance! Baseline performance (as early as possible) a decrease (or increase) by more than 2 cm should be investigated Sensitivity banding (narrow or wide) across the transducer face must be evaluated further with respect to clinical impact 40

Computer Analysis? Programs are out there Thijssen, Weijers and de Korte (UMB Vol 33(3) p. 460-471 http://www.umcn.nl/research/departments/clinicalphysicslaboratory see Quality Assurance of Ultrasound Equipment section Not well supported - $$ Research groups at work Some limitedautomated tests on board units Stay tuned... MATLAB based ImageJ based 41

Learning Objectives Learners should: Understand what the beginning steps are to implement a Quality Control program for ultrasound equipment Know which tests are appropriate to assess clinical image quality Know how to select test objects appropriate for these tests Know how to establish objective criteria have a basic introduction to accreditation bodies and standards for ultrasound QC 42

Accreditation 43 ACR is the only accreditation that requires US QC. The others suggest it. Even the BUAP of the ACR says that US QC should be performed.

Accreditation Originated by professional societies American College of Radiology American Institute of Ultrasound in Medicine Intersocietal Commission for the Accrediation of Vascular Laboratories (ICAVL) 43 ACR is the only accreditation that requires US QC. The others suggest it. Even the BUAP of the ACR says that US QC should be performed.

Accreditation Originated by professional societies American College of Radiology American Institute of Ultrasound in Medicine Intersocietal Commission for the Accrediation of Vascular Laboratories (ICAVL) Focus on ACR UAP (1995) Breast Ultrasound - BUAP (1998) 43 ACR is the only accreditation that requires US QC. The others suggest it. Even the BUAP of the ACR says that US QC should be performed.

Accreditation Originated by professional societies American College of Radiology QC Program recommended American Institute of Ultrasound in Medicine Intersocietal Commission for the Accrediation of Vascular Laboratories (ICAVL) Focus on ACR UAP (1995) Breast Ultrasound - BUAP (1998) 43 ACR is the only accreditation that requires US QC. The others suggest it. Even the BUAP of the ACR says that US QC should be performed.

ACR UAP 44

ACR UAP Required Tests (Semi-annual) 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness Photography and hard-copy image recording 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness Photography and hard-copy image recording Testing can be performed/supervised by 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness Photography and hard-copy image recording Testing can be performed/supervised by a) medical physicist 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness Photography and hard-copy image recording Testing can be performed/supervised by a) medical physicist b) ultrasound service engineer 44

ACR UAP Required Tests (Semi-annual) System Sensitivity / Maximum Depth of Penetration Image Uniformity Electrical/Mechanical Safety and Cleanliness Photography and hard-copy image recording Testing can be performed/supervised by a) medical physicist b) ultrasound service engineer No qualifications specified - anyone can do it! 44

ACR US Test Form!"#$!%&!'()*************! QUALITY CONTROL WORKSHEET UNIT#: Performed By: Date: PENETRATION (Required) With system sensitivity set up for visualizing echogenicity as deeply as possible, what is the maximum depth you can visualize the background echographic pattern? Mark the appropriate box. Transducer #1 Transducer #2 Less than 3 cm 6 cm 9.5 cm 13 cm Less than 3 cm 6 cm 9.5 cm 13 cm 3 cm 6.5 cm 10 cm 13.5 cm 3 cm 6.5 cm 10 cm 13.5 cm 3.5 cm 7 cm 10.5 cm 14 cm 3.5 cm 7 cm 10.5 cm!!!14 cm 4 cm 7.5 cm 11 cm 15 cm 4 cm 7.5 cm 11 cm 15 cm 4.5 cm 8 cm 11.5 cm 16 cm 4.5 cm 8 cm 11.5 cm 16 cm 5 cm 8.5 cm 12 cm 5 cm 8.5 cm 12 cm 5.5 cm 9 cm 12.5 cm 5.5 cm 9 cm 12.5 cm UNIFORMITY (Required) With gains set to obtain a uniform image, freeze the image. Complete the questions regarding the uniformity of the image by marking the appropriate box using this key: 1) Agree 2) Disagree, slight non uniformities present 3) Disagree, major non uniformities present Transducer #1 Transducer #2 1) The average brightness at edge of the scan is the same as the average brightness in the middle. 1 2 3 2) There are no vertically or radially oriented shadows from array element dropout. 1 2 3 3) There are no brightness transitions between focal zones. 1 2 3 1) The average brightness at edge of the scan is the same as the average brightness in the middle. 1 2 3 2) There are no vertically or radially oriented shadows from array element dropout. 1 2 3 3) There are no brightness transitions between focal zones. 1 2 3 ELECTRICAL AND MECHANICAL SAFETY AND CLEANLINESS (Required) Are all cords and cables intact (no frays)? YES NO Are all transducers intact without crack or delamination? YES NO Are the transducers cleaned after each use? YES NO Are the image monitors clean? YES NO Are the air filters clean? YES NO Are the wheel locks in working condition? YES NO Are the wheels fastened securely to the US unit and do the wheels rotate easily? YES NO Are all accessories (VCR, cameras, etc.) fastened securely to the US unit? YES NO 06/04/09 45

Summary 46

Summary US QC is a worthwhile endeavor 46

Summary US QC is a worthwhile endeavor Learning how to do it and doing it develops experience and expertise for the physicist 46

Summary US QC is a worthwhile endeavor Learning how to do it and doing it develops experience and expertise for the physicist Greater communication with technical staff in the Radiology department as well as other departments 46

Summary US QC is a worthwhile endeavor Learning how to do it and doing it develops experience and expertise for the physicist Greater communication with technical staff in the Radiology department as well as other departments Not difficult nor expensive (relatively speaking) nor time consuming 46

Summary US QC is a worthwhile endeavor Learning how to do it and doing it develops experience and expertise for the physicist Greater communication with technical staff in the Radiology department as well as other departments Not difficult nor expensive (relatively speaking) nor time consuming Increased interaction with biomedical/clinical engineers 46

Summary US QC is a worthwhile endeavor Learning how to do it and doing it develops experience and expertise for the physicist Greater communication with technical staff in the Radiology department as well as other departments Not difficult nor expensive (relatively speaking) nor time consuming Increased interaction with biomedical/clinical engineers Accreditation push is on! General scrutiny of imaging QC from radiation incidents and US is getting swept in with other modalities 46

Thanks for your attention Questions? 47