Effect of tear deficiency on the course of endotoxin-induced keratitis

Similar documents
Differential diagnosis of the red eye. Carol Slight Nurse Practitioner Ophthalmology

H erpes simplex virus infection of the

Condition: Herpes Simplex Keratitis

Breaking the Cycle. Yijie (Brittany) Lin, MD, MBA, Reena Garg, MD New York Eye and Ear Infirmary of Mount Sinai

Blockade of Prolymphangiogenic VEGF-C suppresses Dry Eye Disease. Sunali Goyal MD

Prednisolone Sodium Phosphate Ophthalmic Solution USP, 1% (Sterile) Rx only

Author's response to reviews

Trifluridine Ophthalmic Solution, 1% Sterile

Clinical and OCT features of different types and stages of diabetic optic neuropathy

VIROPTIC Ophthalmic Solution, 1% Sterile (trifluridine ophthalmic solution)

BARRY A. SCHECHTER ABSTRACT

Koppolu Sreedhar Reddy 1* and Venkata Prasanna DP 2

Dr Jo-Anne Pon. Dr Sean Every. 8:30-9:25 WS #70: Eye Essentials for GPs 9:35-10:30 WS #80: Eye Essentials for GPs (Repeated)

Dry Eye Assessment and Management Study ELIGIBILITY OCULAR EVALUATION FORM

INVELTYS (loteprednol etabonate ophthalmic suspension) 1%, for topical ophthalmic use Initial U.S. Approval: 1998

Ophthalmology Times Case Study Yasmin Mali, MD. Case Study

Ocular Studies of EMF Exposure at the MMW M. Kojima 1,2,3), Y. Suzuki 4)

INDICATIONS ACULAR 0,4% ophthalmic solution is indicated for the reduction of ocular pain and burning/stinging following corneal refractive surgery.

Childhood corneal neovascularization

Eye Care for Animals Micki Armour VMD DACVO THE CORNEA

JMSCR Vol 05 Issue 02 Page February 2017

SCHEDULING STATUS Schedule 4 PROPRIETARY NAME AND DOSAGE FORM

Yukihisa Takada, Yuka Okada, Norihito Fujita, and Shizuya Saika. 1. Introduction. 2. Case Presentation

MINIMS AMETHOCAINE EYE DROPS

Dr.Sushil Kumar Tripathi

MEDICAL POLICY SUBJECT: CORNEAL ULTRASOUND PACHYMETRY. POLICY NUMBER: CATEGORY: Technology Assessment

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

1998 DESCRIPTION Evaluation of Subjective and Objective tests for diagnosing tear-film disorders known to cause ocular irritation.

Dry eye disease (DED) is one of the most common reasons. Decreased Corneal Sensitivity in Patients with Dry Eye

Ophthalmic Immunomodulators Prior Authorization with Quantity Limit Program Summary

NEW ZEALAND DATA SHEET 1. PRODUCT NAME

INDOLENT ULCER IN BOXER. Dr n. wet. Przemysław K. Bryla Przychodnia weterynaryjna w Warszawie INTRODUCTION

TOBAFLAM Eye Drops (Loteprednol etabonate 0.5% + Tobramycin 0.3%)

Sheldon Herzig MD, FRCSC Herzig Eye Institute Toronto, Ontario

ABSTRACT ORIGINAL RESEARCH

Financial Disclosures. Corneal Problems for the Cataract Surgeon. Four Common Problems. Dry Eye syndrome. Rose-Bengal 3/27/16

VARIABILITY IS A HALLMARK OF DRY EYE DISEASE

2007 M.D. Clinical Medicine Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, P. R. China

Strategies for Anterior Segment Disease Management Mile Brujic, OD, FAAO 1409 Kensington Blvd Bowling Green, OH

INDICATIONS ACULAR 0,5 % is indicated for the relief of inflammation following ocular surgery.

Current Practice Pattern for Dry Eye Patients in South Korea: A Multicenter Study

Clinical Profile of Herpes Simplex Keratitis

Work Sheet And Course Hand Out

Medical Affairs Policy

D90 (27/10/2005) Final SmPC NL/H/653/01

Oral azithromycin combined with topical anti-inflammatory agents in the treatment of blepharokeratoconjunctivitis in children

Supplementary Online Content

Anti-inflammatory effectiveness in the cornea of topically administered prednisolone

SUMMARY OF PRODUCT CHARACTERISTICS 1 NAME OF THE MEDICINAL PRODUCT 2 QUALITATIVE AND QUANTITATIVE COMPOSITION

Science & Technologies. UNWANTED SIDE EFFECTS OF TRAVOPROST Gazepov Strahil 1, Iljaz Ismaili 2, Goshevska Dashtevska Emilija 2

T a variety of ocular disorders with

No financial disclosures or conflicts of interest as it pertains to this presentation.

Dry eye prevalence and attributable risk factors in the eastern Madhya Pradesh

Product Insert ProKera is approved by the US FDA (510K Approval) as a class II medical device.

WARNING LETTER. According to the Indications and Usage section of the FDA approved product labeling (PI):

Overview & pathophysiology of Dry Eye and the use of cyclosporine eye drops in dry eye...

The infection of the rabbit cornea with Staphylococcus

PRODUCT MONOGRAPH. (Fluorometholone 0.1% Ophthalmic Suspension), USP. Corticosteroid

Ulcerative Keratitis (Type of Inflammation of the Cornea) Basics

T.O. Romanova, a Post Graduate student

Clinical Ophthalmology

JKAU: Med. Sci., Vol. 17 No. 1, pp: 3-9 (2010 A.D. / 1431 A.H.) DOI: /Med Chronic Blepharitis

Diabetes and the ocular surface

David Clark, MD Chief Medical Officer Aldeyra Therapeutics, Lexington, MA. ARVO: April 30th, 2018

[TRAVOPROST] 40 MICROGRAMS/ML, EYE DROPS, SOLUTION RISK MANAGEMENT PLAN. TRAVOPR-v

Assessment of Keratitis Damage in an Age Dependent Mouse Model Using Analytical Software

ML-00043B FULL PRESCRIBING INFORMATION: CONTENTS*

Two Cases of Corneal Ulcer Caused by Ocular Rosacea: Late Versus Prompt Diagnosis and Treatment

SCHEDULING STATUS Schedule 4 PROPRIETARY NAME AND DOSAGE FORM

Update 1. Red Eye. Adenovirus Numbers 3/4/14. For Your Eyes Only 2014 Ophthalmology Update. TKorn, MD, FACS San Diego, California

Update 1. Red Eye. Adenovirus Numbers 7/29/14. Adenovirus Conjunctivitis Outbreaks. Adenovirus Conjunctivitis Management

REAL-WORLD UTILIZATION PATTERNS OF CYCLOSPORINE OPHTHALMIC EMULSION 0.05% WITHIN MANAGED CARE

To Evaluate the Sociodemographic Factors And Etiology of Corneal Neovascularisation at out Patient Department of M.L.B Medical College, Jhansi.(U.

Long-term Evaluation of Endothelial Cell Changes in Fuchs Corneal Dystrophy: The Influence of Phacoemulsification and Penetrating Keratoplasty

3 DOSAGE FORMS AND STRENGTHS

High incidence of corneal epithelium antibodies in

Shizuka Koh, M.D. Ph. D.

INDICATIONS For steroid responsive inflammation of the palpebral and bulbar conjunctiva, cornea, and anterior segment of the eye globe.

INFLUENCE OF SILICAGEL CONTAINING GOLD AND SILVER NANOPARTICLES ON THE BIOCHEMICAL INDICES OF EXPERIMENTALLY-INDUCED INFLAMMATION OF ORAL MUCOSA

Clinical Ophthalmology

Acridine Orange Staining for Rapid Diagnosis of Acanthamoeba Keratitis

Photodynamic therapy for IMMK in horses

Amniotic membrane transplantation (AMT) without the use of sutures/fibrin glue

How I Met Your Cornea

Management of specific eye problems in the ED

BY N. N. SOODt AND V. J. MARMION- St. Paul's Eye Hospital, Liverpool

Effect of Dexomethasone on Corneol Endotheliol Function in Fuchs' Dystrophy

CONTRAINDICATIONS None.

QUALITATIVE INTERPRETATION OF VISUAL ACUITY IN DRY EYE PATIENTS

Therapeutic Effects of 0.1% Tacrolimus Eye Drops for Refractory Vernal Keratoconjunctivitis

Acute Hydrops following Penetrating Keratoplasty in a Keratoconic Patient

PAINFUL PAINLESS Contact lens user BOV

Do You Want Steroids with THAT?! Bruce Onofrey, OD, RPh, FAAO

Evidence for Technology in the Treatment of Advanced Dry Eye

CORNEAL DENDRITE. What else do you want to know about this patient? What would be your initial treatment?

AUSTRALIAN PRODUCT INFORMATION FLAREX (FLUOROMETHOLONE ACETATE) EYE DROPS SUSPENSION

Case no.4. Subjective. Subjective (2) Caucasian female, 62 Y.O., consulting for a XXX opinion on her condition.

arthritis "Contact lens" cornea in rheumatoid (opposite). Brit. J. Ophthal. (I970) 54, 410 Peterborough District Hospital

Post-LASIK infections

Alert signs of ocular diseases in pets

Transcription:

UDC 617.713-002.-092.9:617.764.1-008.811.4 Effect of tear deficiency on the course of endotoxin-induced keratitis T.B. Gaydamaka, 1 S.Ya. Rafalyuk 2 1 Filatov Eye Disease and Tissue Therapy Institute 2 Danylo Halytsky Lviv National edical University Odessa, Lviv (Ukraine) E-mail: drgaydamaka@list.ru Key words: endotoxin-induced keratitis, dry eye syndrome, animal models, tear deficiency, corneal inflammation, Draize criteria Background: In recent years, the problem of tear production disorders and dry eye syndrome (DES) has become increasingly important because of significant worldwide prevalence of DES. Purpose: To investigate the effect of decreased tear production on the course of endotoxin-induced keratitis in rabbits. aterials and ethods: Animals were divided into three groups: group 1 (controls; 7 rabbits), group 2 (keratitis-only group; 9 rabbits, 18 eyes), and group 3 (keratitis + dry eye model group; 10 rabbits; 20 eyes). The state of the cornea was scored by Draize criteria (the degree of corneal opacity, degree of corneal edema, degree of corneal infiltration and corneal fluorescein staining area) at preselected intervals (24, 48 and 72 hours) postinfection. Results: It should be noted that the analysis of clinical scores of corneal inflammation in the models of intrastromal endotoxin-induced keratitis in intact animals and in those with experimental dry eye showed that the clinical manifestations in the latter were more pronounced. Conclusion: Tear deficiency significantly contributes to corneal inflammation in animal models of keratitis. Within the observation period, mean corneal edema, inflammatory infiltration and fluorescein staining scores in the (dry eye + keratitis) rabbit model were 21, 21 and 17, respectively higher than those in endotoxin-induced keratitis in animals without dry eye. Introduction In recent years, the problem of tear production disorders and dry eye syndrome (DES) has become increasingly important because of significant worldwide prevalence of DES [1, 2]. The disease is found in 9-18 of the developed world s population, with a 4.5-fold increase in the detection rate over the last three decades. oreover, DES has been found in almost every second first-time patient visiting the ophthalmologist for ocular disease or correction of vision. The syndrome incidence increases from 12 in the under-50s to 67 in the over-50s [3-6]. A number of pathochemical corneal alterations have been found in animal models of dry eye [7-9]. These alterations in particular involve elevated tear levels of lactate dehydrogenase and albumin, which are known to be the markers of corneal damage [10]. T.B. Gaydamaka,S.Ya. Rafalyuk, 2015 The increased incidence of dry eye in severe corneal inflammation and infections like keratitis is another reason for the special attention paid to the problem by ophthalmologists [11-16]. Previously, we have shown the greatly reduced reduction potential of corneal and tear fluid thiols in an animal model of dry eye [3]. In animals with dry eye, the development of keratitis results in a more abrupt and statistically significant decrease in reduced glutathione when compared with those exhibiting keratitis without dry eye. The presence of DES in the development of corneal inflammatory process results in increased oxidative stress evidenced by a statistically significant increase in oxidized glutathione both in the cornea and tear film [2, 17]. In this connection, investigation of the influence of tear deficiency on the corneal protective mechanisms in the presence of corneal inflammation is of significant interest. 44 Journal of Ophthalmology (Ukraine) 4, 2015

The purpose of the study was to investigate the effect of decreased tear production on the course of endotoxin-induced keratitis in rabbits. aterials and ethods A total of 36 Chinchilla rabbits (weight, 2.2 2.9 kg) were used in the study. All care and use of animals followed guidelines stipulated by the 2012 International Guiding Principles for Biomedical Research Involving Animals issued by the Council for the International Organizations of edical Sciences. Experimental keratitis was induced by intrastromal injection of 50 μl of 0.2 lipopolysaccharide (endotoxine) from Escherichia coli K235 in phosphate buffer saline (PBS) [18, 19]. 0.1 benzalkonium chloride (BAC) in isotonic PBS (ph 7.3-7.4) was used to develop DES in the rabbit eye. Instillations were performed twice a day for 14 days [20, 21]. Animals were divided into three groups: group 1 (controls; 7 rabbits), group 2 (keratitis-only group; 9 rabbits, 18 eyes), and group 3 (keratitis + dry eye model group; 10 rabbits; 20 eyes). The state of the cornea was scored by Draize criteria (the degree of corneal opacity, degree of corneal edema, degree of corneal infiltration and corneal fluorescein staining area) at preselected intervals (24, 48 and 72 hours) postinfection. The signs of keratitis were scored based on the following scale: corneal edema (0 = no corneal edema and the whole cornea is transparent; 1 = local corneal epithelial edema at inflammation site; 2 = local epithelial edema with involvement of superficial stromal layers; 3 = local edema involving both superficial and deep stromal layers); inflammatory infiltration (0 = no infiltration; 1 = one to three punctate subepithelial infiltrates; 2 = multiple punctate subepithelial infiltrates (n > 3); 3 = multiple subepithelial infiltrates of 1 mm at least; 4 = local infiltration involving both superficial and deep stromal layers); corneal fluorescein staining (0 = no local staining; 1 = punctate corneal staining; 2 = less than 3 mm2 area; 3 = more than 3 mm2 area); corneal opacity (0 = no opacity; 1 = presence of opacity); and location of inflammation in the cornea (1 = central; 2 = paracentral). Clinical data were analyzed with a non-parametric ann-whitney test using SPSS 11.0 software [22]. Results and Discussion It should be noted that the mean Schirmer test values were 25 lower in eyes of dry eye model rabbits, which corresponded to the data reported by the authors of experimental dry eye model [20, 21]. Tables 1 to 3 summarize the results of the comparative analysis of the scores of the clinical signs of corneal pathology in eyes of dry eye model and keratitis model rabbits at different time points of the study. Table 1 shows that, at the first time point, the corneal edema score and mean rank in rabbits affected with keratitis only were (1.78±) and 17.97, respectively, vs. (1.95±0.51) and 20.88, respectively, in those affected with keratitis and dry eye. At the next time point, the corneal edema score and mean rank in rabbits affected with keratitis only were (2.44±0.51) and 14.44, respectively, vs. (2.95±0.22) and 24.05 (P < 0.001), respectively, in those affected with keratitis and dry eye. At the third time point, the corneal edema score and mean rank in rabbits affected with keratitis only were (1.56±0.62) and 16.94, respectively, vs. (1.80±0.41) and 21.80, respectively, in those affected with keratitis and dry eye. Table 1. Corneal edema scores in the keratitis-only rabbit model and (dry eye + keratitis) rabbit model at different postinfection time points (points scored) 1.78 1.95 0.51 109.6 2.44 0.51 2.95 0.22 120.9 1.56 0.62 1.80 0.41 115.4 Note:, the corneal edema score in the (dry eye + keratitis) group expressed as a percentage of that in the keratitis-only group; n, number of eyes 45 Journal of Ophthalmology (Ukraine) 4, 2015

Table 2 demonstrates that, at 24h after exposure, the inflammatory infiltration score and mean rank in rabbits affected with keratitis only were (2.33±0.59) and 16.89, respectively, vs. (2.70±0.80) and 21.85, respectively, in those affected with keratitis and dry eye. At 48h after exposure, the inflammatory infiltration score and mean rank in rabbits affected with keratitis only were (3.06±0.38) and 13.81, respectively, vs. (3.70±0.57) and 24.63, respectively (P < 0.001), in those affected with keratitis and dry eye. At the last time point, the inflammatory infiltration score and mean rank in rabbits affected with keratitis only were (1.61±0.50) and 17.61, respectively, vs. (1.80±0.41) and 21.20, respectively, in those affected with keratitis and dry eye. Table 3 shows that, at the first time point, the corneal fluorescein staining score and mean rank in rabbits affected with keratitis only were (1.78±) and 18.44, respectively, vs. (1.90±) and 20.45, respectively, in those affected with keratitis and dry eye. At the second time point, the corneal fluorescein staining score and mean rank in rabbits affected with keratitis only were (2.28±0.46) and 15.78, respectively, vs. (2.65±0.49) and 22.85 (P < 0.05), respectively, in those affected with keratitis and dry eye. At the last time pont, the corneal fluorescein staining score and mean rank in rabbits affected with keratitis only were (1.39±0.50) and 18.19, respectively, vs. (1.55±0.60) and 20.67 (P < 0.05), respectively, in (dry eye model + keratitis) rabbits. Table 2. Inflammatory infiltration scores in the keratitis-only rabbit model and (dry eye + keratitis) rabbit model at different postinfection time points (points scored) 2.33 0.59 2.70 0.80 115.9 3.06 0.38 3.70 0.57 120.9 1.61 0.50 1.80 0.41 111.8 Note:, the inflammatory infiltration score in the (dry eye + keratitis) group expressed as a percentage of that in the keratitis-only group; n, number of eyes Table 3. Inflammatory infiltration scores in the keratitis-only rabbit model and (dry eye + keratitis) rabbit model at different postinfection time points (points scored) 1.78 1.90 106.7 2.28 0.46 2.65 0.49 116.9 1.39 0.50 1.55 0.60 111.5 Note:, the inflammatory infiltration score in the (dry eye + keratitis) group expressed as a percentage of that in the keratitis-only group; n, number of eyes 46 Journal of Ophthalmology (Ukraine) 4, 2015

It should be noted that the analysis of clinical scores of corneal inflammation in the models of intrastromal endotoxin-induced keratitis intact animals and in those with experimental dry eye showed that the clinical manifestations in the latter were more pronounced. Therefore, one can believe that tear deficiency results in significantly impaired corneal protection if the inflammatory process develops. It is of no doubt that the metabolic abnormalities that we have detected within the cornea of rabbits with experimental dry eye [2, 17] play an important role in the mechanism of such a pathogenic effect of tear deficiency. Conclusion Tear deficiency significantly contributes to corneal inflammation in animal models of keratitis. Within the observation period, mean corneal edema, inflammatory infiltration and fluorescein staining scores in the (dry eye + keratitis) rabbit model were 21, 21 and 17, respectively higher than those in endotoxin-induced keratitis in animals without dry eye. References 1. Anina EI. [Prevalence of corneal disorders in Ukrainian population]. In: [Proceedings of the 2nd International Conference of the Black Sea Ophthalmological Society]; 2004 Sep 8-10; Odessa. p.14. Russian. 2. Albietz J. Prevalence of dry eye subtypes in clinical optometry practice. Optom Vis Sci. 2000 Jul;77(7):357-63. 3. Gaydamaka TB, Rafalyuk SYa. [Effect of endotoxininduced keratitis on the reduction potential of glutathione in the cornea of animals with experimental dry eye syndrome]. Oftalmol Zh. 2014;(6):54-7. Russian. 4. Zhaboedov GD, Kireev VV. [Dry eye syndrome: Clinical picture, diagnosis and treatment. Guidelines for medical students and practitioners]. Kyiv, 2006. 24 p. Russian. 5. Somov EE. [Tear dysfunction syndrome: anatomic and physiological basis, clinical picture and treatment]. St. Petersburg: Chelovek; 2011. 160 p. Russian. 6. Trinkaus-Randall V, Leibowitz H, Ryan WJ, Kupferman A. Quantification of stromal destruction in the inflamed cornea. Invest Ophthalmol Vis Sci. 1991 ar;32(3):603-9. 7. Brzheskiĭ VV, Astakhov IuS, Kuznetsova NIu. [Tear system disorders: A manual for ophthalmic practitioners]. 2nd rev. ed. St. Petersburg: N-L; 2009. 108 p. Russian. 8. Barabino S, Chen W, Dana R. Tear film and ocular surface tests in animal models of dry eye: uses and limitations. Exp Eye Res. 2004;79:613-21. 9. Brewitt H, Sistani F. Dry eye disease: The scale of the problem. Surv Ophthalmol. 2001;45(Suppl. 2):S199-202. 10. Kim JR, Oh TH, Kim HS. Effects of benzalkonium chloride on the ocular surface of the rabbit. Jpn J Ophthalmol. 2011 ay;55(3):283-93. 11. Trocme S, Hwang LJ, Bean GW, Sultan B. The role of benzalkonium chloride in the occurrence of punctate keratitis: a meta-analysis of randomized, controlled clinical trials. Ann Pharmacother. 2010 Dec;44(12):1914-21. 12. Petrunia A. [Pathogenetic features of keratitis in acute conjunctivitis]. [Cand. Sc. (ed) Thesis Abstract]. Odessa: Filatov Eye Disease and Tissue Therapy Institute;2013. 19 p. Russian. 13. Baudouin C. The pathology of dry eye. Surv Ophthalmol. 2001;45(Suppl. 2):S211 20. 14. Bourcier T, Thomas F, Borderie V et al. Bacterial keratitis: predisposing factors, clinical and microbiological review of 300 cases. BrJ Ophthalmol. 2003;87(7):834 8. 15. Carlson E C, Drazba J, Yang X, Perez V L. Invest Ophthalmol Vis Sci. 2006; 47: 241-8. 16. Yuan X, Wilhelmus KR, atoba AY et al. Pathogenesis and outcome of Paecilomyces keratitis. Am J Ophthalmol. 2009 Apr;147(4):691-696. 17. Senyshyn VI, Rafalyuk SYa. [Effect of ophthalmic preservative, benzalkonium chloride, on the mitochondrial enzymes of anterior eye tissues]. Oftalmol Zh. 2014;(4):37-40. Russian. 18. Schultz CL, orck DW, ckay SG et al. Lipopolysaccharide induced acute red eye and corneal ulcers. Exp Eye Res. 1997 Jan;64(1):3-9. 19. Schultz CL, Buret AG, Olson E et al. Lipopolysaccharide entry in the damaged cornea and specific uptake by polymorphonuclear neutrophils. Infect Immun. 2000 ar;68(3):1731-4. 20. Lin Z, Liu X, Zhou T et al. A mouse dry eye model induced by topical administration of benzalkonium chloride. ol Vis. 2011; Jan 25;17:257-64. 21. Xiong C, Chen D, Liu J et al. A rabbit dry eye model induced by topical medication of a preservative benzalkonium chloride. Invest Ophthalmol Vis Sci. 2008 ay;49(5):1850-6. 22. Nasledov AD. [SPSS. Computer data analysis in psychology and social science]. St. Petersburg: Piter; 2005. 416 p. Russian. Received 28.04.2015 47 Journal of Ophthalmology (Ukraine) 4, 2015

48 Journal of Ophthalmology (Ukraine) 4, 2015