Optimal Management of Canine Seizures

Similar documents
Proceedings of the World Small Animal Veterinary Association Mexico City, Mexico 2005

In fits and starts managing canine epilepsy: part one

Animal Disease States

AUSTRALIAN COLLEGE OF VETERINARY SCIENTISTS CHAPTER OF VETERINARY PHARMACOLOGY

2015 Fall CE for the Upstate 9/20/2015. Seizure Management in the Dog: Options Beyond Phenobarbital

SUMMARY OF PRODUCT CHARACTERISTICS

CANINE EPILEPSY. Types of epilepsy: Types of seizures:

International Veterinary Epilepsy Task Force consensus proposal

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

MANAGEMENT OF REFRACTORY CANINE EPILEPSY PART TWO

Antiepileptic drugs tolerability and safety a systematic review and meta-analysis of adverse effects in dogs

PRINCIPLE #1: THE BRAIN IS SIMILAR TO OTHER ORGANS IN THE BODY. ISVMA 2017 November 2017 DR. MICHAEL PODELL 1 PURPOSE

SUMMARY OF PRODUCT CHARACTERISTICS

Critical appraisal Randomised controlled trial questions. Tipold et al J Vet Pharm Therap Introduction

ANTI-EPILETIC DRUGS. Status epileptics

From Gold Beads to Keppra: Update on Anticonvulsant Therapy

Seizures Emergency Treatment

Beyond Phenobarbital: New Ways to Stop Seizures Diagnostic Approach

Drug choice and therapeutic drug monitoring in the management of canine primary epilepsy

Epilepsy 101. Overview of Treatment Kathryn A. O Hara RN. American Epilepsy Society

SUMMARY OF PRODUCT CHARACTERISTICS

TREATING LEAD POISONING IN DOGS

NORLAND AVENUE PHARMACY PRESCRIPTION COMPOUNDING FOR VETERINARY MEDICINE

1.B.1 SUMMARY OF PRODUCT CHARACTERISTICS

I. Introduction Epilepsy is the tendency to have recurrent seizures unprovoked by systemic or acute neurologic insults. Antiepileptic drugs (AEDs)

Epilepsy. Inspire to Innovate, Innovate to Inspire

What s in Your Anticonvulsant Arsenal? Case Examples in Seizure Management. Overview

Chris Rundfeldt 1,4*, Andrea Tipold 2,3 and Wolfgang Löscher 3,4

TRANSPARENCY COMMITTEE OPINION. 19 July 2006

New antiepileptic drugs

Managing Seizures: Etiology & Current Therapy

improving the patient s quality of life.

Glucosuria osmotic diuresis Compensatory polydipsia If can t drink enough to compensate dehydration

When choosing an antiepileptic ... PRESENTATION... Pharmacokinetics of the New Antiepileptic Drugs. Based on a presentation by Barry E.

SUMMARY OF PRODUCT CHARACTERISTICS FOR BENZODIAZEPINES AS ANXIOLYTICS OR HYPNOTICS

Ipilimumab in Melanoma

GABAPENTIN BNF Gabapentin is a chemical analogue of γ-aminobutyric acid (GABA) but does not act

Lamotrigine 2 mg, 5 mg, 25 mg, 50 mg, 100 mg, 200 mg dispersible/chewable tablets

Federal (USA) law restricts this drug to use by or on the order of a licensed veterinarian.

Efficacy of Levetiracetam: A Review of Three Pivotal Clinical Trials

European PSUR Work Sharing Project CORE SAFETY PROFILE. Lendormin, 0.25mg, tablets Brotizolam

Epilepsy / Seizures EPI

Neurological Manifestations of Thyroid disease. Dr. Andrea Finnen Mississauga Oakville Veterinary Emergency Hospital Neurology Service

Spironolactone has not been demonstrated to elevate serum uric acid, to precipitate gout or to alter carbohydrate metabolism.

International veterinary epilepsy task force consensus proposal: outcome of therapeutic interventions in canine and feline epilepsy

Mandy presented to the Purdue University Veterinary Teaching Hospital for progressive

Diagnosis and management of feline iatrogenic hypothyroidism

Lieven Lagae Department of Paediatric Neurology Leuven University Leuven, Belgium. Management of acute seizure settings from infancy to adolescence

ZONISAMIDE THERAPEUTICS. Brands * Zonegran. Generic? Not in US. If It Doesn t Work * Class Antiepileptic drug (AED), structurally a sulfonamide

Hypothyroidism. Definition:

Unit VIII Problem 7 Pharmacology: Principles of Management of Seizure Disorders

Epilepsy Medications: The Basics

Effects of Chloride in the Diet on Serum Bromide Concentrations in Dogs

Addison s Disease. How it affects your dog. ZYCORTAL SUSPENSION (desoxycorticosterone pivalate injectable suspension)

Hypothyroidism part two diagnosis, treatment and nursing

Corticosteroids. Veterinary Pharmacology Endocrine System. University of Tehran Faculty of Veterinary Medicine Academic Year

Modified release drug delivery system for antiepileptic drug (Formulation development and evaluation).

Introduction. 1 person in 20 will have an epileptic seizure at some time in their life

CLINICAL PROTOCOL THE PREVENTION OF FATALITIES FROM MEDICATION LOADING DOSES

Types of epilepsy. 1)Generalized type: seizure activity involve the whole brain, it is divided into:

Hyperthyroidism in Cats (icatcare) What is hyperthyroidism?

LAMICTAL GlaxoSmithKline

New drugs necessity for therapeutic drug monitoring

NORLAND AVENUE PHARMACY PRESCRIPTION COMPOUNDING FOR VETERINARY MEDICINE

Hyperthyroidism treatment and long-term management options

Feline iatrogenic hypothyroidism: its recognition and management

EPILEPSY: SPECTRUM OF CHANGE WITH AGE. Gail D. Anderson, Ph.D.

FELINE THYROID DISEASE: FOCUS ON NEW APPROACHES AND TREATMENTS

Clinical Study Synopsis for Public Disclosure

On completion of this chapter you should be able to: list the most common types of childhood epilepsies and their symptoms

CLINICAL PROTOCOL THE PREVENTION OF FATALITIES FROM MEDICATION LOADING DOSES

KELFER Capsules (Deferiprone)

FACT SHEET. Disorder:

SUMMARY OF PRODUCT CHARACTERISTICS

Nivolumab and Ipilimumab

Slide 1. Slide 2. Slide 3. Objectives. Why should we care about the elderly? Antiseizure Drugs in Elderly Patients

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

Onfi (clobazam) Labeled Uses: Clobazam is used as adjuvant treatment of seizures from Lennox-Gastaut Syndrome. 1,2

PEMBROLIZUMAB (KEYTRUDA ) for the treatment of advanced melanoma or previously treated NSCLC

Feline Hyperthyroid Clinic, frequently asked questions for vets:

Ideal Sedative Agent. Pharmacokinetics. Benzodiazepines. Pharmacodynamics 11/11/2013

Ideal Sedative Agent. Benzodiazepines 11/12/2013. Pharmacology of Benzodiazepines Used for Conscious Sedation in Dentistry.

NORLAND AVENUE PHARMACY PRESCRIPTION COMPOUNDING FOR VETERINARY MEDICINE

Disclosure. Learning Objectives

KELFER Deferiprone. COMPOSITION KELFER-250 Capsules Each capsule contains Deferiprone 250 mg

Review of Anticonvulsant Medications: Traditional and Alternative Uses. Andrea Michel, PharmD, CACP

Section 5.2: Pharmacokinetic properties

Trazodone is a tetracyclic antidepressant used to treat depression and anxiety disorders. Includes trazodone side effects, interactions and

Disclosure. Learning Objectives. Case. Diabetes Update: Incretin Agents in Diabetes-When to Use Them? I have no disclosures to declare

Methadone Maintenance

Causes and management of hyperthyroidism in cats

Hyponatraemia- Principles, Investigation and Management. Sirazum Choudhury Biochemistry

Composition: Each tablet contain. Levocetirizine. Each 5ml contains. Montelukast. Pharmacokinetic properties:

VETERINARY BULLETIN. FAQs about HYPERTHYROIDISM IN CATS. Veterinary Bulletin: Hyperthyroidism in Cats 09_2016. Dr Sarah Caney

PACKAGE LEAFLET: INFORMATION FOR THE USER

Epilepsy management What, when and how?

Proceedings of the World Small Animal Veterinary Association Sydney, Australia 2007

SEIZURES PHARMACOLOGY. University of Hawai i Hilo Pre-Nursing Program NURS 203 General Pharmacology Danita Narciso Pharm D

ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS

Transcription:

Optimal Management of Canine Seizures Extracts from the 2015 ACVIM Consensus Statement on Seizure Management in Dogs By: Dr LL van der Merwe BVSc MMed Vet (Med) Seizures are common in dogs and are characterised by a wide variety of clinical signs/presentations. Epilepsy is a syndrome and not a diagnosis as such, a specific diagnosis as to the cause of the seizure is not made in the majority of cases due to a variety of reason. In epilepsy, survivability depends more on the quality of life and financial constraints than the disease itself. The definition of successful treatment is a decrease in seizure episodes by at least 50%. The majority of patients are easily managed if a few basic guidelines are adhered to. PHENOBARBITONE Phenobarbitone (PB) is considered an effective monotherapy in 60 80% of dogs. When it fails it is more often due to inappropriate use of the drug than resistance to the medication. The control of seizures and minimisation of side effects using PB are correlated more closely with serum concentrations than with the dose administered. Typically, consistent administration of a medication for a period of four to five half-lives is required to reach a steady state. The relatively long elimination half- life of PB (50 96 hrs) limits fluctuations in blood levels however, once on treatment, the elimination half-life becomes more variable, ranging from 20 140 hours. Phenobarbitone induces drug metabolising pathways in the liver, including its own p450 cytochrome enzyme and thus elimination becomes more rapid with long term administration. There is no predictability to this pattern, so we need to monitor serum drug levels to determine if the dosage of PB is sufficient to reach therapeutic drug levels. The aim should be to reach mid therapeutic doses which could be classified as about 26 35ug/ml (range 15 45ug/ml) - this generally seems to require a higher starting dose than the traditional 2-5mg/kg/day. I, however prefer to titrate upwards from about 5mg/ kg per day (2-3 mg per kg BID) CONSENSUS RECOMMENDATIONS When should treatment be started? This decision to start treatment is based on aetiology, seizure type, risk of recurrence and tolerability and adverse effects of medication. In people, current or previously diagnosed cerebral lesions or trauma predisposes to recurrence. In people there is also overwhelming evidence that treatment should not be instituted after one (unprovoked) seizure event. There is also evidence that the earlier treatment is started, the better the potential of seizure control. So a balance must be created. ACVIM panel recommendations to initiate treatment are: i. Identifiable structural brain lesion or prior history of brain disease or trauma ii. Acute repetitive seizures ( 3 generalised seizures within 24hrs) or status epilepticus ( 5 min of seizuring) iii. 2 seizure events in a 6 month period iv. Prolonged, severe or unusual post-ictal periods Which treatment should be used first? As Monotherapy: 1. Phenobarbitone - Highly recommended, based on level 1 data (designed and controlled trials). In 5 studies evaluating a total of 289 dogs for 5-32 months, the cumulative success (> 50% reduction in seizure events) was 82% with a cumulative seizure free rate of 31% and a failure rate of 15%. 2. Imepitoin (Pexion ) - Highly recommended-based on level 1 data (designed and controlled trials). In a multicentre study imepitoin was shown to be as effective as phenobarbitone in 226 epileptic dogs in a randomised blinded parallel group design with a lower frequency of side effects (ataxia, sleepiness, increased appetite and polydipsia) compared to the phenobarbitone group. 3. Potassium Bromide - Moderately recommended and likely to be effective - based on level 2 data (case controlled series). A single study evaluating monotherapy showed an efficacy of 73.9% patients showing > 50% seizure reduction and 53% seizure free in a 6 month period. vet360 Issue 06 FEBRUARY 2017 6

Timing of sampling: Trough levels are defined as sampling 2 0 hrs before the dose of medication. Levitski showed using 33 animals that there was no real difference in testing at 0, 3 or 6 hrs post treatment in 91% of dogs- which remained in the same serum concentration category. In the 9% which showed a significant difference in drug concentrations between samples - the mean dose of PB was 8.6mg/kg/day (6.3 10.9mg/kg/d) vs 5.6mg/kg/day in the consistent group. So in the majority of cases on <8mg/kg/day - sampling can occur at any time of the day. However in some cases with higher/kg dosages - induction of hepatic metabolism may result in a significant decrease in serum levels and a shortening of elimination half-life. In these cases it may be preferable to collect a trough level. Although the literature recommends trough samples for determining therapeutic ranges,the above studies show that it is only in a few cases, determined mainly by high daily dosage of PB, where trough sampling may be considered. However statistical significance is not always translated into clinical significance and the article concluded that consistency when collecting is in the end more important to allow proper comparison in the same patient with serial samples Side effects: Polyuria, polydipsia, polyphagia, sedation and ataxia These signs are generally noted in the first month of therapy - but have generally decreased by 6 months. This is definitely true of the sedation and ataxia which generally resolves within the first week of therapy. Mean bodyweights increased significantly over time many of the trials. Induction of hepatic p450 cytochrome pathways: - Cytochrome-p450, glucuronosyltransferases, glutathione-s-transferases. Idiosyncratic liver disease - no morphological or histological damage - Infrequent side effects - resulting in clinical liver disease and increased liver enzymes. Pancytopaenia - Infrequent Induction of liver enzyme ALP A reversible increase in liver enzymes occurs. Increases above pre-treatment values are seen from week 5 and were above the reference range by 2-3 months. Increases were up to 10 x baseline values. ALP is found in bone, liver, intestine and kidney. The very short t 1/2 of intestinal and renal iso-enzymes makes them undetectable. In the dog there is practically only the bone, liver and the unique corticosteroid induced ALP present in the blood. No single iso-enzyme is responsible for the increase in ALP, thus iso-enzyme analysis cannot help differentiate PB induced elevations. Aitken showed that a high dose of PB and a long treatment period rather than a high serum concentration, were associated with increases in liver enzymes - a result consistent with enzyme induction rather than hepatotoxicity....consensus recommendation continued 4. Levetiracetum and zonisamide were graded as low recommendation and may not be effective. This was based on level 3 and 4 data (case series type studies) only as not much is published. 5. Primidone was contraindicated Monitoring Optimal comparison of successive drug concentrations is best achieved by evaluating samples collected at the same time after dosing. Trough concentrations are indicated when the patient has shown a predilection to seizure just before the next dose is due. It is important to determine if treatment failure is due to pharmacological (short half-life), metabolic (tolerance) or poor client compliance before removing a drug from a regimen Consensus recommendations regarding monitoring: Phenobarbitone: 2 and 6 weeks after initiating the drug and thereafter every 6 months or 2 weeks after a dose change Range 15 35 ug/ml (65 150 umol/l) Bromide: Measure 1 and 3 months after initiation of treatment and thereafter yearly or if > 3 seizures occur or if toxicity is suspected. Bromide concentrations between 810 2500 ug/ml with PB combination treatment are effective. Efficacy with monotherapy is seen in higher concentrations, up to 3000 ug/ml. Imepitoin Imepitoin has a short half-life in dogs so no drug accumulation occurs during prolonged treatment. Inter-individual differences are also low and the therapeutic index is high - meaning toxicity is minimal and rapid dose adjustments are unlikely to cause side effects. Therapeutic monitoring is thus not needed. Risk of Treatment Adverse effects can be divided into transient, persistent and life-threatening. Most transient effects are avoidable with dose titration and resolve within weeks. Persistent effects are generally CNS related (sedation, ataxia, imbalance, cognitive impairment). Life-threatening side effects are mainly associated with idiosyncratic bone marrow toxicity or predictable organ damage over time (hepatotoxicity). Imepitoin scores the best in this category with only transient adverse effects listed. Safety studies showed a dose up to 3X the maximum dose for 26 weeks showed no observed adverse events/changes. In clinical studies mild adverse effects such as sleepiness, ataxia and transient polyphagia, polyuria, polydipsia, vomiting and diarrhoea were observed - all were less freqeunt than in the PB group. The hyperactivity scores were higher in the PB group. Issue 06 FEBRUARY 2017 7

vet360 Issue 06 FEBRUARY 2017 8

Hyperlipidaemia and pancreatitis 53% of epileptic dogs had serum fasting serum triglyceride levels above the reference range and a significant relationship was shown with BCS, but not with PB dose or serum concentration, increased canine specific lipase or seizure activity score. Increased polyphagia and scavenging has been put forward as a risk factor for pancreatitis in dogs receiving PB. Serum TG>11.3 can directly affect serum PB readings depending on test methodology Thyroid Function Short-term (3 weeks) administration of PB will not affect TT4, ft4 or TSH serum concentrations. The long-term use of PB can decrease TT4 and ft4 into the range seen with hypothyroid dogs, while ctsh generally remains unchanged. This decline starts at about 3 weeks and continues all the way through to 6 months after which it seems to stabilise....consensus recommendation continued Phenobarbitone shows dose related transient effects such as sedation and these resolve within a few weeks. Chronic adverse effects are polyphagia and polydipsia. The most common serum change is increased ALP which can occur from 2 weeks after treatment inititation. A less common life-threatening complication is drug induced hepatotoxicity (rapid increase ALT and bile acids), which is correlated with the higher serum levels (>35ug/ml). Important idiosyncratic reaction is immune mediated bone marrow disorders and possible toxic epidermal necrolysis (TEN). Bromide is generally well tolerated by the dog - common transient side effects being sedation, ataxia polydipsia and polyphagia. Bromide can cause contact irritation to the stomach mucousa causing vomiting. This is minimised by splitting the doses. Bromism may occur at levels >3000mg/L and is more likely in animals with renal impairment. ( T0 )TT4 = 24.5nmol/L, (T3w) TT4 = 19nmol/L, (T6months) TT4 = 17.6nmol/L TT3 concentrations are not affected by PB - which would explain the normal ctsh as T3 is the major regulator of TSH secretion. Epilepsy per se is not a cause of euthyroid sick syndrome however recent seizure activity (within 24hrs prior to blood collection) caused a significant decrease in T4. Clinical signs of hypothyroidism and some of the side effects of PB are similar: lethargy, weight gain, hypercholesterolaemia and lipidaemia. Interpret with great caution any low TT4 result you get when testing a patient on PB treatment. The ctsh is likely to be normal with PB induced euthyroid sick syndrome - so requesting a ctsh may assist in making a diagnosis, as 60% of hypothyroid dogs have an elevated ctsh. However if you do decide to supplement thyroxine - it will induce drug metabolising enzymes and may cause increased PB metabolism and reduced steady state concentrations requiring dosage increases. Thyroid function will normalise at 4 weeks after cessation of PB treatment. Adrenal function: Phenobarbitone has no significant effect on ACTH stim test or LDDST test. POTASSIUM BROMIDE Potassium (PB) bromide is an attractive alternative to pheno-babritone as a sole therapy as it is freely available, is not expensive, has a very long elimination half-life and has less side effects than PB. The t ½ of bromide is 15 46 days. The dose is 30mg/ kg/day with food (a liquid formulation causes less vomiting). Levetiracetum side effects are predictable and dose dependent. They include sedation, ataxia, restlessness and vomiting Zonisamide causes sedation ataxia, inappetance and vomiting - in some dogs these were transient and in other dogs dosage reductions were required. Suspected life-threatening idiosyncratic events include acute toxic hepatopathy. Zonisamide may affect thyroid testing. When should a second AED be started? Risk factors associated with poorer seizure control include male dogs and prior clustering seizure activity. Strict criteria for add-on therapy are lacking in veterinary science. Phenobarbitone has important drug-drug interactions with other drugs metabolised by the liver due to its microsomal enzyme induction effect and this can influence the concentrations of other drugs used. Concomitant bromide and PB therapy has been reported to decrease the number of seizure events. This allows for a decrease in the dose of PB, which also reduces the long term risk of hepatotoxicity. Imepitoin, when added to PB therapy in a prospective trial of 17 dogs showed a decrease in seizure frequency in most dogs. Levetiracetum is classically used as a third add-on drug to phenobarbitone and bromide. TID treatment is required. In most reports approximately 50% of animals responded (>50% decrease seizure frequency) however in one trial a relapse was seen after 4-8 month of continuing treatment. Zonisamide as an add-on is effective in about 80% of cases in the initial 4 months but is did appear that there may also be a delayed relapse during long term follow up in some cases. Issue 06 FEBRUARY 2017 9

Bromide is water soluble and absorbed along entire GI. Prandial state doesn t affect absorption - if given with food you may get less gastric irritation. Serum bromide levels should be between 1 3 mg/ml as a sole treatment. Because of the long t 1/2 it will take months to attain therapeutic levels unless a loading dose is given. A loading protocol tested was 600mg/kg bromide together with the 30mg/kg/day maintenance dose given over 48 hrs. The full dose was divided into 10 smaller doses to avoid vomiting. Using this protocol 84.2% patients were in therapeutic range of 1 3mg/mL after 48 hrs, 13 % were not (0.74 0.95mg/L). The drug is renally excreted. Bromide competes with chloride for reabsorption by the kidneys. Increase in dietary salt from 0.2% to 1.3% decreased the elimination half-life from 69 days to 24 days - so diet changes may profoundly affect serum levels and increase the risk of seizures. Common side effects are polyuria, polydipsia and polyphagia, mild transient sedation as well as irritability and restlessness. Depression, ataxia, behavioural changes, mydriasis and stupor occur with more severe bromism. Adverse neurological effects are reversible and resolve within several days if bromide dose is reduced and within hours when patients are treated with IV saline due to increased renal excretion of the bromide. Effective and toxic levels overlap and individual monitoring, using clinical signs, is probably the most practical. Pancreatitis has been suggested as a side effect of KBr and has been associated with dogs with epilepsy. This association was made using amylase and lipse as indicators of pancreatitis which are not really specific. When cpli was used no risk was detected. Some reports indicate that dogs show increased pruritis. KBR doesn t affect serum thyroxine levels(tt4), ft4or ctsh. Bromide in cats causes coughing and dyspnoea and an influx of eosinophils into the bronchi - allergic bronchial disease causing a severe bronchial lung pattern on radiographs. Primidone Is rapidly metabolised to PB - which is responsible for more than 85% of its antiepileptic activity. It is however less effective or as effective then PB alone and is less well tolerated in dogs. Not recommended Imepitoin Imepitoin was originally developed for the treatment of anxiety and epilepsy in people. Development of the drug for humans was terminated due to an effect smoking had on the drug, thus development continued only in the canine field. Imepitoin potentiates GABA-nergic inhibition. The drug is administered BID in incremental doses of 10, 20 or 30mg/kg. Levetiracetam Levetiracetam (LEV) has been used in pharmaco-resistant dogs and resulted in a decreased seizure frequency in 54% of patients. The drug has limited hepatic metabolism and the plasma t ½ in dogs is 3.6 ± 0.8 hrs, which will require TID administration. The drug is well tolerated in dogs and has no side effects apart from mild sedation. A recent study sought to evaluate the long-term effects of this drug and it was administered at 10mg/kg tid for 2 months and in patients which showed a poor response (<50% decrease in seizure activity) the dose was increased to 20mg/kg TID. Eight of 14 dogs responded to the initial dose and a further 6 patients to the higher dose. However most of the dogs experienced an increase in seizure frequency again (relapse) about 4-8 months after treatment was initiated. The pharmacokinetics of LEV are significantly altered by the concurrent administration of PB, this despite hepatic metabolism playing such a small role: in dogs 89% is excreted by the kidneys and of this approximately 50% is unchanged. There is no canine recommended range for levetiracetum - the human reference range for plasma concentrations of LEV is 5 40μg/ml. If using this drug as an add-on - monitoring of serum drug levels is recommended. The mean plasma concentrations of LEV (at a mean dose of 24mg/kg tid) in the PB treated group was 5.52μg/ml, in the PB KBR group was 3.06μg/ml and in the KBR group was 33.5μg/ml. However there was no difference in the reported seizure frequency between the 3 groups - although comparisons pre and post treatment in individual animals were not made in this study. Zonisamide Has shown efficacy (60% showed >50% decrease in seizures) as a monotherapy in a single trial of 10 dogs followed for 12 36 months using it BID at 5-15mg/kg to attain serum levels of 10 40ug/ml Zonisamide has a t ½ of about 15 hrs in dogs. Dosage is 10mg/kg po BID as an add-on therapy. The dosages of the previous anti-epileptics were gradually reduced in individual patients (n=7) if the patients usual seizure interval was exceeded. There was a significant decrease in seizure episodes in the 11 dogs evaluated. Eight of 10 dogs responded with a reduction of 82% (58 100%), Side effects reported were ataxia and sedation. These resolved in some patients when the PB was removed. SELECTED REFERENCES (REMAINDER ONLINE - WWW.VET360.VETLINK.CO.ZA) 1. Levitski RE et al. 2000 Effect of timing of blood collection on serum phenobarbital concentrations in dogs with epilepsy. Journal of the American Veterinary Medical Association. (217) p: 200 204 2. Podell M, Volk HA et al. 2016. 2015 ACVIM Small Animal Consensus Statement on Seizure Management in Dogs. Journal of Veterinary Internal Medicine (30) p: 477-490 3. Tipold A, Keefe TJ et al 2014 Clinical Efficacy and safety of Imepitoin in comparison with Phenobarbital for the control of Idiopathic Epilepsy in Dogs.Veterinary Pharmacology and Therapeutics (38) p:160-168 vet360 Issue 06 FEBRUARY 2017 10

CPD Questions AC/1623/17 1. Which one of the following is NOT an ACVIM panel recommendation to initiate treatment with antiepileptic drugs (AEDs)? a) Identifiable structural brain lesion or prior history of brain disease or trauma b) Acute repetitive seizures ( 3 generalised seizures within 24hrs) c) status epilepticus ( 5 min of seizuring) d) 2 seizure events in a 6-month period e) Cluster seizures 2. Which one of the AEDs listed has been shown to be as effective as phenobarbitone but with less side effects? a) Imepitoin b) Zonisamide c) Levetiracetum d) Potassium Bromide e) Diazepam 3. Which one of the AEDs listed does not require any drug monitoring? a) Imepitoin b) Potassium Bromide c) Phenobarbitone d) Diazepam e) Zonisamide 4. Which of the AEDs listed below will cause euthyroid sick syndrome if use for extended periods? a) Phenobarbitone b) Zonisamide c) Bromide d) Levetiracetum e) Imepitoin 5. Which one of the following statements regarding loading of potassium bromide is INCORRECT? a) High doses can cause vomiting due to irritation of the gastric mucousa b) The loading dose is 600 mg/kg plus the daily maintenance dose in 24 hours c) The loading dose is 600 mg/kg plus the daily maintenance dose in 48 hours d) The loading dose can cause drowsiness and ataxia e) The loading dose will reach therapeutic levels in most cases within 48 hours 6. Which one of the statements regarding bromide listed below is CORRECT? a) Bromide is excreted renally and via the bile b) Bromide can cause bronchial disease in dogs c) The rate of renal excretion dramatically increases with a high salt diet d) Serum bromide levels should be between 1-2mg/ml as a sole treatment. e) Prandial state affects absorption - if given with food you may get less absorption 7. Which one of the reasons listed below is NOT a factor in decision making with add-on therapy? a) Decreasing dosages of medications to reduce long term side effects? b) Phenobarbitone may result in drug interactions due to altered hepatic excretion of add-on medications c) Improved seizure management in cases with <50% seizure reduction on monotherapy d) Unacceptable side effects at effective doses e) To reduce dosage frequency 8. Which of the statements below regarding the induction of ALP by phenobarbitone is INCORRECT? a) A reversible increase in liver enzymes occurs. b) Increases above pre-treatment values are seen from week 5 c) Increases were above the reference range by 2-3 months and could be up to 10 x baseline values. d) The increase was related to high serum concentrations e) The increase was related to high dose of phenobarbitone and a long treatment period 9. Which one of the statements regarding the elimination halflife of the AEDs is CORRECT? a) The relatively long elimination half- life of phenobarbitone (50 96 hrs) causes fluctuations in blood levels b) Once the dog is on long-term treatment the elimination half-life of phenobarbitone becomes more variable, ranging from 20 140 hours. c) The elimination half-life of bromide is 120 days. d) Levetiracetum has a moderate plasma t ½ in dogs which will require only BID administration. e) Zonisamide has a t ½ of about 15 hrs in dogs requiring TID treatment as an add-on therapy. 10. Which one of the following statements regarding AEDs and the thyroid gland is INCORRECT? a) KBR doesn t affect serum thyroxine levels (TT4), ft4 or ctsh. b) Recent seizure activity (within 24hrs prior to blood collection) causes a significant decrease in T4. c) Epilepsy is a cause of euthyroid sick syndrome (nonthyroidal illness) d) The long-term use of phenobarbitone can decrease TT4 and ft4 into the range seen with hypothyroid dogs. e) The ctsh is likely to be normal with phenobarbitone induced euthyroid sick syndrome ANSWER the questions on the Vet360 App. Available from the Itunes/Play store! Use your App to answer the questions. Your certificate can be found on www.vet360.vetlink.co.za if you log in with your App username and password. Or for a web based system visit: http://www.cpdsolutions.co.za/?re=onlinevets Issue 06 FEBRUARY 2017 11