Biomechanics of Skeletal Muscle and the Musculoskeletal System

Similar documents
Biomechanics of Skeletal Muscle and the Musculoskeletal System

The Biomechanics of Human Skeletal Muscle

CHAPTER 1: 1.1 Muscular skeletal system. Question - text book page 16. Question - text book page 20 QUESTIONS AND ANSWERS. Answers

Skeletal Muscles and Functions

When a muscle contracts, it knows no direction it simply shortens. Lippert

When a muscle contracts, it knows no direction; it simply shortens. Lippert

*Agonists are the main muscles responsible for the action. *Antagonists oppose the agonists and can help neutralize actions. Since many muscles have

Certified Personal Trainer Re-Certification Manual

Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems

Musculoskeletal System. Terms. Origin (Proximal Attachment) Insertion (Distal Attachment)

When a muscle contracts, it knows no direction; it simply shortens. Lippert

Neuromuscular Mechanics

BLUE SKY SCHOOL OF PROFESSIONAL MASSAGE AND THERAPEUTIC BODYWORK. Musculoskeletal Anatomy & Kinesiology MUSCLES, MOVEMENTS & BIOMECHANICS

VCE PHYSICAL EDUCATION WORKBOOK UNIT 1 BODIES IN MOTION NAME:

VCE PHYSICAL EDUCATION WORKBOOK UNIT 1 BODIES IN MOTION NAME:

Lever system. Rigid bar. Fulcrum. Force (effort) Resistance (load)

INTRODUCTION. Objectives

differentiate between the various types of muscle contractions; describe the factors that influence strength development;

Provide movement Maintain posture/stability Generate heat

Muscular System. IB Sports, exercise and health science 1.2

Muscular Considerations for Movement. Kinesiology RHS 341 Lecture 4 Dr. Einas Al-Eisa

Muscle-Tendon Mechanics Dr. Ted Milner (KIN 416)

PRELIMINARY HSC PDHPE. CQ1 How do the musculoskeletal and cardiorespiratory systems of the body influence and respond to movement?

Lifting your toes up towards your tibia would be an example of what movement around the ankle joint?

CSEP-Certified Certified Personal Trainer (CSEP-CPT) CPT) Musculoskeletal Prescription

Bell Work. How does the muscular system relate to the following organ systems, Respiratory Circulatory Digestive

Multi-joint Mechanics Dr. Ted Milner (KIN 416)

D: there are no strength gains typically at this early stage in training

Maximal isokinetic and isometric muscle strength of major muscle groups related to age, body weight, height, and sex in 178 healthy subjects

GFM Platform Exercise Manual

Performance Enhancement. Strength Training

Biomechanics of Resistance Training. Tutor: Phil Watkins

Upper Limb Biomechanics SCHOOL OF HUMAN MOVEMENT STUDIES

CSEP-Certified Certified Personal Trainer (CSEP-CPT) CPT) Musculoskeletal Fitness Theory

Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems

CHAPTER 4: The musculo-skeletal system. Practice questions - text book pages QUESTIONS AND ANSWERS. Answers

Chapter 13. Development of Muscular, Strength, Endurance, and Flexibility

What is Kinesiology? Basic Biomechanics. Mechanics

Muscle Lecture Test Questions Set 1

EVALUATION AND MEASUREMENTS. I. Devreux

Biomechanics of Skeletal Muscle

Figure 11-1: The lever-fulcrum principle is illustrated by flexion of the forearm.

Chapter 3: Applied Kinesiology. ACE Personal Trainer Manual Third Edition

KNEE AND LEG EXERCISE PROGRAM

Chapter 20: Muscular Fitness and Assessment

HOW MUSCLES WORK Readings: H (Ch. 3,13), T (Ch 2,3)*

How does training affect performance?

OBJECTIVES. Unit 7:5 PROPERTIES OR CHARACTERISTICS OF MUSCLES. Introduction. 3 Kinds of Muscles. 3 Kinds of Muscles 4/17/2018 MUSCULAR SYSTEM

VO2MAX TEST.

Muscle stations Answers

Fitness Intro. Freshmen PE

KS4 Physical Education

Muscular Analysis of Upper Extremity Exercises McGraw-Hill Higher Education. All rights reserved. 8-1

Contraindicated and High-Risk Exercises

Lectures Muscular System 10-1

In which arm muscle are intramuscular injections most often given? (not in text)

The Human Machine: Biomechanics in Daily Life.

CONTROL OF THE BOUNDARY CONDITIONS OF A DYNAMIC KNEE SIMULATOR

IFA Trainer Certification Test Answer Form

SUMMER WORK MRS KANSARA

THE MUSCULOSKELETAL SYSTEM Thompson Educational Publishing, Inc. 1

The Muscular System PART C. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

Chapter 14 Training Muscles to Become Stronger

REVISION BOOKLET. The Body Systems

Benefits of Muscular Fitness. What is the definition of muscular strength? The Law of Use. Muscular Strength Muscular Endurance Flexibility

Muscle Energy Technique

Skeletal Muscle. Smooth Muscle. Cardiac Muscle. I. 3 Types of Muscle Tissue. 1. Smooth 2. Cardiac 3. Skeletal

Basics of kinetics. Kinesiology RHS 341 Lecture 7 Dr. Einas Al-Eisa

Energy for Muscle Contractions: Direct phosphorylation. Creatine phosphate loses a phosphate to ADP to create ATP

Skeletal Muscle. Cardiac Muscle. Smooth Muscle. II. Muscular System. The Muscular System

APF PowerPoint: Unit 1

CHAPTER 15: KINESIOLOGY OF FITNESS AND EXERCISE

Chapter 7 The Muscular System - Part 2. Mosby items and derived items 2012 by Mosby, Inc., an affiliate of Elsevier Inc. 1

CHAPTER 2: Muscular skeletal system - Biomechanics. Exam style questions - pages QUESTIONS AND ANSWERS. Answers

Chapter 6 part 2. Skeletal Muscles of the Body

Stretching Exercises for the Lower Body

2º ESO - PE Workbook - IES Joan Miró Physical Education Department THE MUSCULAR SYSTEM

WTC I Term 2 Notes/Assessments

Chapter 8: Muscular Strength & Endurance. ACE Personal Trainer Manual Third Edition

DEVELOPING PHYSICAL CAPACITIES IV - STRENGTH MUSCLE TYPES

NOTES MUSCULAR SYSTEM

30 Minute Home Workout DAYS 1, 3. AND 5

Static Flexibility/Stretching

RN(EC) ENC(C) GNC(C) MN ACNP *** MECHANISM OF INJURY.. MOST IMPORTANT *** - Useful in determining mechanism of injury / overuse

OPTION 4 Improving Performance How do athletes train for improved performance? Strength Training

10/4/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Anatomy. Physiology. Skeletal Muscle Anatomy

The Biomechanics of the Human Upper Extremity-The Elbow Joint C. Mirzanli Istanbul Gelisim University

MENTOR METHOD OF TRAINING

THE STRUCTURE OF OUR BODY

EXERCISE PHOTOS, TIPS AND INSTRUCTIONS

Comparison of N-K Table Offset Angles with the Human Knee Flexor Torque Curve

Manual Muscle Testing. Yasser Moh. Aneis, PhD, MSc., PT. Lecturer of Physical Therapy Basic Sciences Department

The Science of GLUTEUS MAXIMUS Training

Muscle Function: Understanding the Unique Characteristics of Muscle. Three types of muscle. Muscle Structure. Cardiac muscle.

Lifting your toes up towards your tibia would be an example of what movement around the ankle joint?

The effects of exercise and sports performance on the muscular system

Quiz Bowl Day is here! Tonight Anatomy Lab 7 pm. Next Tuesday, Olympic Lifting technique!!

Lesson #3. Muscular Strength and Endurance

APONEUROSIS LENGTH AND FASCICLE INSERTION ANGLES OF THE BICEPS BRACHII

LIFETIME FITNESS HEALTHY NUTRITION. UNIT 1 - Lesson 6 FLEXIBILITY LEAN BODY COMPOSITION

Transcription:

Biomechanics of Skeletal Muscle and the Musculoskeletal System Hamill & Knutzen (Ch 3) Nordin & Frankel (Ch 5), or Hall (Ch. 6) Muscle Properties Ø Irritability Ø Muscle has the capability of receiving and responding to various stimuli. Ø Contractility (unique) Ø When a stimulus is received, the muscle has the capability of shortening (by as much as 50-70% [average 57%]). 1

Muscle Properties (cont.) Ø Extensibility Ø Muscle has the characteristic of being able to lengthen, either when it is in a passive (partner aided stretches) or active state (eccentric contractions). Ø Elasticity Ø Whenever a muscle has been shortened or lengthened, it has the ability to return to its normal or resting length and shape. Functions of Muscle Ø Produce Movement Ø Maintain Postures and Positions Ø Stabilize Joints Ø Other Functions (not related to movement) Ø Support and protect visceral organs Ø Alter and control pressures within cavities Ø Help in maintenance of body temperature Ø Control entrances and exits to the body Factors Influencing the Production of Muscular Tension Ø Muscle Size (cross-sectional area) Ø Electro-mechanical delay Ø Recruitment, Frequency, Synchronization (activation level) Ø Length-Tension Relationship Ø Velocity-Tension Relationship (Muscular Power) Factors Influencing the Production of Muscular Tension Ø Prior Contraction History Ø Elastic Elastic Energy (storage and recoil) Ø Muscle Temperature Ø Muscle Fibre Type Ø Angle of pennation 2

Muscle Cross Sectional Area Hypertrophy - an increase in the size of a tissue such as muscle. Hyperplasia - an increase in number of muscle fibers" Strength vs Cross-Sectional Area Arm Flexor Strength (kg) 25 20 15 10 5 0 0 5 10 15 20 25 Cross Sectional Area (cm 2 ) Males Females Electromechanical Delay Stimulus Response of Muscle Tension Threshold Stimulus Strength 3

Muscle Force-Time Profile Force Time Force (Tension) Length Relationship for Human Skeletal Muscle Ø We can look at two length-tension relationships Ø The next few slides show this relationship for isolated muscle preparations. This is where the muscle has been taken from some poor unsuspecting frog (or other animal model) and then stimulated at a FULL range of lengths. In these experiments as much of the passive structures (tendon, perimysium, etc.) as possible is cut away. Ø We can also look at the relationship for intact muscle that include the tendon and connective tissue. Experiment that includes tendon and connective tissue (responsible for passive tension) Redrawn from Lieber et al., 1994. Redrawn from Ralston et al., 1947. 4

Total Length-Tension Curve Qualitative graph of previous slide showing experimental data Contractile Length Brachialis Biceps Brachioradialis Data from Edman, 1988. Concentric CC Force- Velocity Curve All of the previous graphs have shown force-length Text Fig.3-20 and force velocity at maximum activation levels Eccentric 5

3-D Plot Force Length - Velocity Power Power = Force x Velocity Maximum power occurs at about 30-33% of maximal velocity of shortening and about the same percentage of maximum concentric force. Negative Power???? Velocity Force Power Optimal Power Athletes must find as high a level of power output as possible that can be sustained for the duration of their event. 6

Muscular Torque Production Forearm Flexion Torque vs. Forearm Flexion Angle Torque (Nm) Redrawn from Edgerton et al., 1986. Ø We have looked at several biomechanical factors that affect muscular FORCE production. Ø We now need to review additional factors that affect the muscle TORQUE produced at a joint. 80 60 40 20 0 0 20 40 60 80 100 Angle (degrees) 7

Force-Length Curve of Muscle Approximate Physiological Range Tension Lo Length of Contractile element Torque Force Force is equal but moment arms are very different 8

100 75 Moment Arm (mm) 50 25 0 Forearm Flexors Moment Arm vs. Elbow Angle 50 100 150 Elbow Angle (degrees) Brachialis Biceps Brachioradialis Factors Affecting Muscle Torque FORCE Ø force-length curve Ø force - velocity curve Ø activation profile Ø prior contraction history Ø angle of pennation Ø freq., temp., etc. FORCE ARM Ø insertion point Ø line of action of muscle and joint angle (i.e. force x force arm) Isometric Exercise (static contraction) Isotonic Exercise (constant resistance) Concentric Contraction Eccentric Contraction 9

Constant weight constant resistance Ø In a free weight exercise once you have got the weight moving you will require less force to continue it. Ø Furthermore to control the weight at the later stages of the lift you will have to all the weight to decelerate, hence your limbs will decelerate. Ø How can we use the knowledge of muscle mechanics to better train muscles? Ø Muscle strength at various angles Ø Inertial resistance of free weights? Variable Resistance (leverage {force x distance}) Max torque Barbell Nautilus Redrawn from Smith, 1982. 10

Adding Resistance with Chains This system allows a gradual increase in resistance which will reduce the amount of deceleration that occurs later in the lift. Ø This system combines the benefits of free weights with the benefits of variable resistance. Pulleys Ø Simple pulleys are designed to change the direction of force. Ø In this case the weight stack moves up when the subject pushes out horizontally. Type 1 Pulley (no increased mechanical advantage) 11

Barbell Bent-Over Row Type 1 Round Pulley Changing direction of force application, it does not change the mechanical advantage MA = 1 Dumbbell Row Seated Row Moveable Pulley Moveable pulleys are not that relevant to Kin201 material except possibly in an ergonomic design of a workplace Type 2 or compound pulley 12

Strength Tests Ø Any muscular strength or endurance test that is carried out on a machine should always be repeated on the same machine (or same make) so that any leverage differences between weight machines do not influence the results. Ø Similarly, if comparing to a database so as to classify your client s results you MUST be aware of what equipment was used when compiling the database results. Pulleys in the Human Body Ø There are no true pulleys in the human body. Ø However, there are many examples of groves in bones, tendinous straps and cartilaginous/bone tunnels that allow for change in direction of the muscle pull. Change of Direction of Muscle Force (Muscle Pull) Extreme wrist extension Kin 380 & Kin 481 Prolonged wrist extension is believed to be a significant risk factor for carpal tunnel syndrome (Rempel 1991). 13

Isokinetic Concentric Cybex Isokinetic machines are designed so that the resistance is due to fluid viscosity Additional Factors in Muscular Force Production Twitch Response Muscle Temperature Normal body temperature Elevated body temperature Fast Twitch (FT) Fibre Tension Slow Twitch (ST) Fibre Force Velocity 14

Warm Up more than biomechanical Ø Decreased viscosity of blood Ø Enables oxygen in the blood to be delivered at greater peed and volume Ø Increase of temperature in the muscles Ø Facilitates enzyme activity Ø Encourages the dissociation of oxygen from haemoglobin Ø Decreased viscosity within the muscle Ø Greater extensibility and elasticity of muscle fibres and associated connective tissue Ø Increased force and speed of contraction Muscle Architecture and Angle of Pennation Physiological Cross- Section Area (PCSA) 15

F fibres F tendon 30 o F tendon = F fibres x cos 30 Other Mechanical Factors Ø Tendon Length Ø Joint Stability Ø The role of two joint muscles Maximum Contraction Resting Length Resting Length 16

Joint Stability Dislocating Component Rotary Component Non-Rotary Component Brachioradialis Origin: Humerous - Lateral Condyle Insertion: Radius (Lateral Distal) - Styloid Process Stabilizing Component Two-Joint Muscles Ø Disadvantages Ø Cannot shorten enough to produce full range of motion at both joints. Ø Cannot stretch enough to produce full range of motion in opposite direction at both joints. Ø Advantages Ø length and velocity optimization Ø reduction of work required from one-joint muscles (save energy) Antagonist Muscle Action Ø Which muscles are active during a squat exercise (which requires hip and knee extension)? Ø Gluteus maximus, quadriceps and hamstrings. Ø Is this a contradiction as the hamstrings flex the knee? Ø No due to difference in moment arms. Ø Lombard s Paradox Ø At the hip, the moment arm of rectus femoris is much smaller than hamstring moment arm so hip extension is not reduced. Ø Similarly at the knee the quadriceps moment are is greater than the hamstrings, so the knee extends. 17

To Squat or Not to Squat? Biomechanics of the Knee Patellofemoral joint reaction force (P) is formed by the vector sum of the force vector of the quadriceps tendon (F Q ) and the force vector of the patellar tendon (F P ). There is a question regarding patello-femoral compressive force in the Simple Biomechanical Models question set. 18

Full Squat Crease at hip (a) is below knee. So thighs tend to just break below parallel Seated Knee Extension Force on Tibial Tuberosity shearing component Pelvis tends to rotate back furthering the relaxation of the hamstrings Relaxed Hamstring If the hamstrings do not forcefully contract, the dominant quadriceps force acting on the knee will create considerable shear (red vector component). Definitions Ø Prime Movers or Target Muscle Ø Muscle(s) primarily responsible for the movement Ø Synergists or Assistors Ø Muscles that assist the prime mover Ø Dynamic Stabilizers Ø Muscles stabilizing the limbs moving (typically these are two joint muscles that would be lengthening across one joint and shortening across the other (therefore the net result is little change in length) Ø Stabilizers Ø Muscles that stabilise adjacent body segments or contract with no appreciable movement 19

So in the full squat, the hamstrings and gastrocnemius act as dynamic stabilizers as the predominant torques from the gluteus maximus, quadriceps and soleus produce the movement. 20

Knee Ligament Function Anterior Cruciate Ligament Injury Posterior Cruciate Ligament Injury 21