Association of a 7-year percent change in fat mass and muscle mass with subsequent cognitive dysfunction: the EPIDOS-Toulouse cohort

Similar documents
Sarcopenia and cognitive impairment in elderly women: results from the EPIDOS cohort

ALZHEIMER S disease (AD) is the most prevalent form

Yves Rolland, Valérie Lauwers-Cances, Christelle Cristini, Gabor Abellan van Kan, Ian Janssen, John E Morley, and Bruno Vellas

HABITUAL gait speed (GS; assessed over a short distance) Gait Speed, Body Composition, and Dementia. The EPIDOS-Toulouse Cohort

Low appendicular skeletal muscle mass (ASM) with limited mobility and poor health outcomes in middle-aged African Americans

Centre de Recherche de l Institut, Universitaire de Gériatrie de Montréal, Montréal, Canada. 4

Predicting Survival in Oldest Old People

Cognitive impairment and composition of drinking water in women: findings of the EPIDOS Study 1 3

Muscle strength in obese elderly women: effect of recreational physical activity in a cross-sectional study 1 3

Body Composition in Healthy Aging

PREVALENCE AND RISK FACTORS OF SARCOPENIA IN NURSING HOME ELDERLY EVALUATED BY BIA: A COHORT STUDY

Searching for a relevant definition of sarcopenia: results from the cross-sectional EPIDOS study

inserm , version 1-3 May 2011 Corresponding author:

Assessing Muscle Function and Balance Problems at Home, in the Clinic, and in Research 25 th IOA Colloquium on Aging September 17, 2013

The Korean version of the FRAIL scale: clinical feasibility and validity of assessing the frailty status of Korean elderly

Documentation, Codebook, and Frequencies

SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes

Incidence, reversibility, risk factors and the protective effect of high body mass index against sarcopenia in community-dwelling older Chinese adults

Effect of Precision Error on T-scores and the Diagnostic Classification of Bone Status

Clinical Densitometry

Fall-related risk factors and osteoporosis in older women referred to an open access bone densitometry service

Prevalence of Sarcopenia Adjusted Body Mass Index in the Korean Woman Based on the Korean National Health and Nutritional Examination Surveys

FRAGILITÀ, DISABILITÀ E MALATTIE NELLO STUDIO PRO.V.A. Enzo Manzato (Padova)

Biological theory for the construct of intrinsic capacity to be used in clinical settings Matteo Cesari, MD, PhD

Nutritional Assessment in frail elderly. M. Secher, G.Abellan Van Kan, B.Vellas 1st December 2010 Firenze

Association between Depressive Symptoms and Vitamin D Deficiency. among Recently Admitted Nursing Home Patients

JNHA: CLINICAL NEUROSCIENCES

Cover Page. The handle holds various files of this Leiden University dissertation

Muscle. Sarcopenia. Muscle mass. Muscle matters! sarx flesh. penia deminished. low skeletal muscle mass. 640 muscles. contraction = movement

Geriatr Gerontol Int 2016; 16: ORIGINAL ARTICLE: EPIDEMIOLOGY, CLINICAL PRACTICE AND HEALTH

THE IMPACT OF FRAILTY IN THE OUTCOMES OF HIP FRACTURE SURGERY IN THE ELDERLY PATIENTS. Health Sciences, Lagankhel, Laitpur, Nepal

SINGLE PHYSICAL PERFORMANCE MEASURES CANNOT IDENTIFY GERIATRIC OUTPATIENTS WITH SARCOPENIA

COMPARISON OF THE PERFORMANCE OF SCREENING METHODS FOR SARCOPENIA

Implementing frailty into clinical practice:

Endpoints And Indications For The Older Population

Change in Self-Rated Health and Mortality Among Community-Dwelling Disabled Older Women

Baseline Characteristics of Patients Attending the Memory Clinic Serving the South Shore of Boston

Sarcopenia una definicion en evolucion. Hélène Payette, PhD Centre de recherche sur le vieillissement

A prospective evaluation of bone mineral density measurement in females who have fallen

Prevalence of Sarcopenia in Healthy Korean Elderly Women

Gait abnormalities as early signs of MCI

Loss of lean mass with aging, and the associated declines

SUPPLEMENTAL MATERIAL

The predictors of skeletal muscle mass among young Thai adults: a study in the rural area of Thailand.

Introduction ORIGINAL ARTICLE

NUTRITIONAL RISK FACTORS FOR INSTITUTIONAL PLACEMENT IN ALZHEIMER S DISEASE AFTER ONE YEAR FOLLOW-UP

Supplementary Online Content

HOW TO PREVENT COGNITIVE DECLINE.AT MCI STAGE?

9 Quality Assurance in Bone Densitometry section

Geriatric screening tools in older patients with cancer

Unconventional Views of Frailty. Frailty and Risk of Falls, Fracture, and Mortality in Older Women: The Study of Osteoporotic Fractures

Estimating the Validity of the Korean Version of Expanded Clinical Dementia Rating (CDR) Scale

Sensitivity and Specificity of the Minimal Chair Height Standing Ability Test: A Simple and Affordable Fall-Risk Screening Instrument

PhenX Measure: Body Composition (#020300) PhenX Protocol: Body Composition - Body Composition by Dual-Energy X-Ray Absorptiometry (#020302)

The Reliability and Validity of the Korean Instrumental Activities of Daily Living (K-IADL)

A Longitudinal Study of the Association Between Visual Impairment and Mobility Performance in Older Adults: The Salisbury Eye Evaluation Study

BMJ Open. Performance-based assessments and demand for personal care in older Japanese people

Does moderate to vigorous physical activity reduce falls?

Clinical Treatment of Obesity in Older Women. Barbara Nicklas J. Paul Sticht Center on Aging

The Association Between Cystatin C and Frailty Status in Older Men

The Assessment of Frailty in Older Adults

The Long-term Prognosis of Delirium

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

Sarcopenia Assessment

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

General Conditioning for an Active Life. B. Jon Ellingworth P.T.

Mini Nutritional Assessment and Alzheimer Patients

36-Item Short Form Survey (SF-36) Versus Gait Speed as a Predictor of Preclinical Mobility Disability in Older Women

Alzheimer s Disease (AD) and Dietary Supplementation George C. SPATHARAKIS

Evaluation of Preventive Care Program for Cognitive Function Decline among Community-dwelling Frail Elderly People A Pilot Study

Body composition analysis by dual energy X-ray absorptiometry in female diabetics differ between manufacturers

Research Article Prevalence and Trends of Adult Obesity in the US,

RESEARCH AND PRACTICE IN ALZHEIMER S DISEASE VOL 10 EADC OVERVIEW B. VELLAS & E. REYNISH

Non-Randomized Trials

Abert Borchette Conference Centre European Commission- Room 1C Bruxelles 5th April 2017

Epidemiology of Sarcopenia among the Elderly in New Mexico

Adverse Outcomes After Hospitalization and Delirium in Persons With Alzheimer Disease

Fundamental motion outcomes - Steps / Strides

Factors Associated with Treatment Initiation after Osteoporosis Screening

Norland Densitometry A Tradition of Excellence

PROGRAM BOOK. Best Practice Sharing: Tested nutritional solutions to support mobility and recovery. The 36th ESPEN Congress Geneva, Switzerland

Bone Mineral and Body Composition Measurements: Cross-Calibration of Pencil-Beam and Fan-Beam Dual- Energy X-Ray Absorptiometers*

Stefano Volpato. Diagnosi e Trattamento della Sarcopenia nell Anziano

Standard Operating Procedure TCRC Dual-Energy X-ray Absorptiometry (DXA)

Gender differences in body composition, motor performance and blood biomarkers in older adults OUTLINE

THE INTEGRATION OF FRAILTY INTO CLINICAL PRACTICE: PRELIMINARY RESULTS FROM THE GÉRONTOPÔLE

ESPEN Congress Leipzig Prognostic impact of body composition

Healthy Body, Healthy Mind

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

Exploring muscle mass measurements that predict functional outcomes

Pain Assessment in Elderly Patients with Severe Dementia

The Bone Wellness Centre - Specialists in Dexa Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

Changes in body composition, including a decrease in

Weight Loss and Regain and Effects on Body Composition: The Health, Aging, and Body Composition Study

EPC Review of Cognitive Training Findings: Reactions, Current Evidence, Future Directions. Sherry L. Willis, PhD

Orthopaedic Related Conditions Literature Review

ORIGINAL CONTRIBUTION. Five-Year Follow-up of Cognitive Impairment

Association between Sarcopenia, Bone Density, and Health-Related Quality of Life in Korean Men

Toward a sex-specific relationship between muscle strength and appendicular lean body mass index?

Studiedag Geriatrie, Leuven Bewegen als geneesmiddel. Sarcopenie

Transcription:

J Cachexia Sarcopenia Muscle (2013) 4:225 229 DOI 10.1007/s13539-013-0112-z ORIGINAL ARTICLE Association of a 7-year percent change in fat mass and muscle mass with subsequent cognitive dysfunction: the EPIDOS-Toulouse cohort Gabor Abellan van Kan & Matteo Cesari & Sophie Gillette-Guyonnet & Charlotte Dupuy & Bruno Vellas & Yves Rolland Received: 27 June 2012 /Accepted: 23 June 2013 /Published online: 26 July 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Background Cognitive dysfunction and changes in body composition share common pathophysiological pathways. The aim of the present paper was to evaluate whether changes in appendicular muscle mass (AMM) and fat mass (FM) are associated factors with an increased risk of cognitive dysfunction in community-dwelling older women. Methods A nested case control study was performed in 181 women aged 75 years and older from a subsample of the Epidemiologie de l'osteoporose participants from Toulouse. Body composition parameters at inclusion and 7 years later (assessed by dual energy X-ray absorptiometry), and the presence of cognitive dysfunction (dementia and mild cognitive impairment) at 7 years of follow-up, assured by two memory experts based on best clinical practice and validated criteria, were obtained. Multivariate logistic regression models assessed the association of percent change in AMM and FM with risk of cognitive dysfunction. Results At 7 years of follow-up, 15 participants suffered from dementia, 6 suffered from mild cognitive impairment, and 160 were cognitively normal. Neither body composition changes nor gait speed was found to be statistically associated with G. Abellan van Kan (*): M. Cesari : S. Gillette-Guyonnet : C. Dupuy: B. Vellas : Y. Rolland Gérontopôle de Toulouse, Department of Geriatric Medicine, Toulouse University Hospital, 170, Avenue de Casselardit, 31059 Toulouse, France e-mail: abellan.g@chu-toulouse.fr G. Abellan van Kan : M. Cesari : S. Gillette-Guyonnet : C. Dupuy : B. Vellas : Y. Rolland INSERM Unit 1027, University Toulouse III, 31059 Toulouse, France cognitive dysfunction after controlling for potential confounders. Only age, over 85 years, was associated with an increased risk of subsequent cognitive impairment (odds ratio 3.10; 95 % confidence interval 1.07 8.87). Conclusions No significant association could be evidenced between changes in body composition and cognitive dysfunction. Due to the small sample size, statistical power could be an issue. The study could also suggest the possibility that the risk of cognitive dysfunction is not mediated by changes in body composition. Keywords Body composition. Fat mass. Muscle mass. Cognitive decline. Old age 1 Introduction Although recent surveys evidenced a relationship between changes over time in age-related body composition parameters (i.e., fat mass or muscle mass), cognitive decline, and brain atrophy, suggesting common underlying pathophysiological mechanisms, supporting data to confirm this hypothesis are still scarce and controversial [1 5]. Up to date, all surveys have presented data based on a single body composition assessment, so that the dynamic nature of muscle mass (MM) or fat mass (FM) has not been taken into account. This single-assessment approach could dampen the association between body composition and cognitive dysfunction [6]. Indeed, changes in MM over time, rather than a single-point assessment, could be associated with cognitive decline as shown for other adverse clinical events like onset of mobility disability [7]. In the line with this hypothesis, changes in body mass index (BMI) over time

226 J Cachexia Sarcopenia Muscle (2013) 4:225 229 are associated with cognitive decline, and the presence of cognitive decline or dementia has reciprocally been associated with involuntary weight loss [8]. The hypothesis, of the present paper, is that the dynamic nature of body composition (assessed by percentage change in MM and FM over time) rather than a single assessment might be related to subsequent risk of cognitive dysfunction in community-dwelling older women. To this end, a nested case control study was performed in the Epidemiologie de l'osteoporose (EPIDOS) study. 2 Methods 2.1 EPIDOS cohort Data are from the EPIDOS cohort, a French observational prospective multicenter cohort study designed to evaluate risk factors for hip fractures in community-dwelling women aged 75 years and older. Details about the study have previously been published [9]. Briefly, between January 1992 and January 1994, 7,598 women from five French cities volunteered to participate in EPIDOS. Women unable to walk independently (aids were allowed), with history of femoral neck fracture or hip replacement, or were institutionalized were excluded. Local ethics committee of the participating centers approved the study, and each participant provided informed consent. An additional study on dementia risk factors in 1999 2000 was proposed to all the volunteers from Toulouse. In this new investigation, data on cognitive performances were collected during a standardized interview by trained memory experts, and some of the participants also volunteered for a new body composition assessment by dual energy X-ray absorptiometry (DXA) [10, 11]. 2.2 Study sample From the participants of the EPIDOS Toulouse center (n=1,492), a subsample with full cognitive assessment at 7 years of follow-up (n=714), also with a new DXA assessment (n=181) were considered for the present analyses (Fig. 1). 2.3 Assessment of baseline covariates Participants underwent standardized visits, including administration of structured questionnaires, clinical examination, and assessment of physical performance. Visits were conducted by trained nurses. Education was defined by a dichotomous variable (i.e., graduate versus not). Selfreported recreational activities (such as walking, gymnastics, cycling, swimming, or gardening), their type, frequency, and duration were also recorded. The variable physically active was defined to approximately identify the fittest 20 % of the study sample, which is equivalent at having practiced at least a 1-h activity or more per week over the past month [4, 6]. A standardized assessment of gait speed was performed at baseline. Participants were asked to perform a 6-m walk at their usual pace. Walking aids were allowed. Testing began when the command start was given by the assessor, and time (in seconds) required to complete the task was recorded. The faster of two walks was retained for the present analysis. 2.4 Assessment of body composition parameters (baseline and at 7 years) Body composition parameters were assessed at baseline (1992 1994) using a DXA scanner (Lunar DPX-Plus, GE Lunar Corp., Madison, WI) and a different scan at 7 years (1999 2000) of follow-up (QDR 4500 W Hologic, Waltham, MA). DXA measurements were performed by a trained technician, and the DXA machines were regularly calibrated. The muscle mass index (MMI; appendicular lean mass, in kilograms, relative to height squared) and the fat mass index (FMI; total fat mass, relative to height squared) were obtained for each participant during the two assessments [12]. As height changes over time, square height was derived from the height (in meters) measured at each assessments. The change in the MMI and the FMI was obtained by a simple subtraction, expressing the difference of each of the indexes as a percent change of the baseline value. Although different DXA machines were used, no adjustment of body composition values was performed as all participants underwent the same study procedure and due to the fact that the magnitude of linear calibration would identically affect the delta of body composition of all participants. Cross-calibration of the two DXA machines was performed in the year 2000 using the body composition assessment (bone, muscle, and fat mass) of seven healthy female volunteers. There were no statistical differences in between the measurements when comparing fat mass and lean mass, so that the data obtained of the two DXA machines could be comparable [13]. 2.5 Assessment of cognitive performances at 7 years of follow-up At the seventh year of follow-up, all cases of dementia were recorded during a single structured and standardized homebased interview. During this visit, cognitive performances were assessed with the Mini-Mental State Examination [14], the Grober and Buschke test [15], and the IADL test [16]. In a double-blind manner, two memory specialists established the diagnosis of dementia or mild cognitive impairment. Clinical suspicion of dementia was diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, 4th ed. criteria [17]. Mild cognitive impairment (MCI) was based on the Peterson criteria [18].

J Cachexia Sarcopenia Muscle (2013) 4:225 229 227 Fig. 1 Flow chart of study population. MCI stands for mild cognitive impairment; dementia stands for all subtypes of dementia (Alzheimer's disease, vascular or mixed dementia, Lewy corps dementia, frontotemporal dementia, Parkinson dementia). The asterisk indicates that the diagnosis of dementia at 7 years was established after a standardized home-based assessment with cognitive performances evaluated by the Mini-Mental State Examination, Grober and Buschke test, and instrumental activities of daily living tests. The dollar sign indicates that the baseline cognitive impairment was assessed using the Short Portable Mental Status Questionnaire with a score of 8 or above as the validated cutoff value for normal cognitive functioning n = 7575 EPIDOS n = 1462 EPIDOS-Toulouse n = 714 (48.8%) Full data on cognitive evaluation after 7 years of follow-up* $ n = 181 (25.4%) Accepted DXA assessment Dementia: 15 (8.3%) MCI: 6 (3.3%) Normal: 160 (88.4%) n = 6113 EPIDOS Amiens, Lyon, Montpellier, and Paris. n = 748 (51.2%) Not reassessed Death: 193 (13.2%) Withdrew: 141 (9.6%) Lost to Follow-up: 414 (28.3%) n = 533 (74.6%) Refused DXA assessment Dementia: 191 (35.8%) MCI: 52 (9.8%) Normal: 290 (54.4%) 2.6 Statistical analyses Data were analyzed with STATA v11.0 (Stata Corp., College Station, TX). Variables were compared according to the presence/absence of dementia using Student's t test or chisquare statistics as appropriate. Multivariate logistic regression analyses assessed the association of change in the MMI and the FMI with subsequent dementia risk. The models were adjusted for age and gait speed, known risk factors for dementia onset [4]. 3 Results The main baseline and follow-up characteristics of the study participants according to their dementia status are presented in Table 1. Of 181 women, 21 (11.6 %) suffered from cognitive dysfunction (6 presented MCI and 15, dementia). A nonsignificant difference was found for most of the studied variables (i.e., education, physical activity, percent change in MMI and FM) across cognitive dysfunction groups. Only age, gait speed, and difference in BMI over time were found statistically significant. Participants with cognitive dysfunction at 7 years presented a significant lower MMSE score. All participants had a score over 15, so that all cases of dementia were at the mild and moderate stages of the disease. Results of the adjusted regression models are presented in Table 2. No statistical association could be evidenced between cognitive dysfunction and percent change in body composition (expressed in tertiles, p for trend 0.18). Neither gait speed nor change in BMI was associated with an increased risk of cognitive dysfunction, suggesting that the results for percent changes in body composition in the present study may be underpowered. Only age, over 85 years, was associated with an increased risk of cognitive dysfunction (odds ratio (OR) 3.10; 95 % confidence interval (CI) 1.07 8.87). 4 Discussion In the present analyses, no association could be found between 7-year changes in body composition and cognitive dysfunction. These results are consistent with previous cross-sectional analysis based on sarcopenia definitions related to cognitive dysfunction [6]. And although common underlying pathophysiological mechanisms have been hypothesized, current data do not support the existence of a link between changes in body composition and increased risk of dementia. Another hypothesis suggested by the results of a recent survey (and needing further inquiry) is that body composition could be a prognostic factor for cognitive decline at the dementia stage, with the possibility that changes in body composition occur at later and more severe stages of cognitive decline [5]. It is also possible, like for other critical health outcomes, that performance but not changes in MM or FM are associated with dementia [19, 20]. Finally, the main limit is that the study could be underpowered as evidenced by a nonstatistical association between gait speed and cognitive dysfunction (contradictory with the results performed in a larger EPIDOS population)

228 J Cachexia Sarcopenia Muscle (2013) 4:225 229 Table 1 Characteristics according to the presence of cognitive dysfunction (n=181) Variables a No cognitive dysfunction b (n=160) Cognitive dysfunction b (n=21) p value c MMI muscle mass index (in kilograms/squared height), FMI fat mass index (in kilograms/ squared height), MMSE Mini- Mental State Examination (score over 30). Italics represent a statistical significant difference a Age, body mass index (in kilograms/squared height), certificate of graduation, physically active, and gait speed are baseline characteristics b Results are presented as number (percentage) or mean ± standard deviation c Based on Student's or chisquare statistics or nonparametric tests as appropriate Age 77.8±2.2 79.1±2.2 0.01 Age (year) <80 126 (78.7) 11 (52.4) <0.01 80 34 (21.3) 10 (47.6) Body mass index 24.2±3.3 24.2±2.9 0.99 Body mass index at 7 years 24.3±3.6 22.8±3.6 0.07 MMSE scores at 7 years 28.4±1.4 22.5±3.3 <0.01 Certificate of graduation Graduate 146 (91.2) 18 (85.7) 0.41 Less than 14 (8.8) 3 (14.3) graduate Physically active Yes 57 (35.8) 6 (28.6) 0.51 No 102 (64.2) 15 (71.4) Gait speed (m s 1 ) >0.8 121 (75.6) 11 (52.4) 0.02 0.8 39 (24.4) 10 (47.6) Tertiles of percent change in the MMI (%) 37.3 to 9.1 51 (83.6) 10 (16.4) 0.34 9.2 to 3.9 54 (90.0) 6 (10.0) 3.8 to 19.4 55 (91.7) 5 (8.3) Tertiles of percent change in the FMI (%) 71.5 to 9.8 51 (83.6) 10 (16.4) 0.34 9.5 to 3.6 54 (90.0) 6 (10.0) 3.8 to 144.5 55 (91.7) 5 (8.3) Difference in body mass index 0.2±1.7 1.0±2.2 <0.01 and by the large CI found for the variables [4]. Due to the small study sample, dementia and MCI both were categorized in cognitive dysfunction. This could dampen the association as a minority of MCI participants will eventually not evolve to a dementia stage. The generalizability of the results is also challenged by the restriction of the EPIDOS study to only relatively healthy older women; therefore, our findings might not be applicable to men, different settings, and other health profiles. Even more, as shown in the flow chart, participants suffering from dementia at 7 years of follow-up were more likely to refuse a new DXA assessment than cognitively intact participants. This issue could affect the possible association in the EPIDOS study. Although the DXA assessments were comparable during the cross-calibration performed during the follow-up study at 7 years, the results need to be interpreted with caution. The main limit is that no crosscalibration could be performed at baseline. Software upgrades, calibrations, and tube changes over the 7-year period could render the baseline assessment not comparable. Although not true for fat mass, and lean mass, the significant bone measurement differences found in the cross-calibration could be explained by these factors. Table 2 Association of percent change in muscle mass and fat mass with cognitive dysfunction Variables Adjusted model OR (95 % CI) p value For OR For trend OR odds ratio, CI confidence interval, MMI muscle mass index (in kilograms/squared height), FMI fat mass index (in kilograms/squared height), BMI body mass index (in kilograms/ squared height) Age (year) <80 Ref 80 3.10 (1.07 8.87) 0.04 Gait speed (m s 1 ) >0.8 Ref 0.8 2.21 (0.79 6.18) 0.13 7-year difference in BMI 0.80 (0.59 1.08) 0.14 Tertiles of percentage change in MMI (%) 37.3 to 9.1 2.08 (0.56 7.71) 0.27 0.18 9.2 to 3.9 1.07 (0.27 4.20) 0.93 3.8 to 19.4 Ref Tertiles of percentage change in FMI (%) 71.5 to 9.8 1.66 (0.34 8.23) 0.54 0.18 9.5 to 3.6 2.72 (0.64 11.67) 0.18 3.8 to 144.5 Ref

J Cachexia Sarcopenia Muscle (2013) 4:225 229 229 5 Conclusions In this cohort of community-dwelling independent older women, percent change in body composition parameters was not found to be associated with cognitive dysfunction. Differently, age was confirmed to be associated with cognitive decline. The analyses suggest that the study might be underpowered, or that no association exists between changes in body composition and cognitive dysfunction. Further studies on the topic are needed to confirm these findings, including larger samples including more DXA assessments over time or participants with cognitive dysfunction at a later dementia stage. Acknowledgments The authors thank the investigators of the EPIDOS study; the coordinators (Breart, Dargent-Molina, Meunier, Schott, Hans, Delmas); and principal investigators (center: Baudouin, Sebert (Amiens); Chapuy, Schott (Lyon); Favier, Marcelli (Montpellier); Haussherr, Menkes, Cormier (Paris); and Grandjean, Ribot (Toulouse)). The authors of this manuscript certify that they comply with the ethical guidelines for authorship and publishing in the Journal of Cachexia, Sarcopenia, and Muscle, 2010;1:7 8 (von Haehling S, Morley JE, Coats AJ and Anker SD). Conflict of interest Gabor Abellan van Kan, Matteo Cesari, Sophie Gillette-Guyonnet, and Bruno Vellas declare that they have no conflict of interest. Charlotte Dupuy is supported by CIFRE PhD studentship (no. 2010/1072) which was jointly funded by the Nutrition Clinique and the French National Association of Technical Research (ANRT). Yves Rolland is board member from Nutritia. References 1. Burns JM, Johnson DK, Watts A, et al. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol. 2010;67:428 33. 2. Nourhashémi F, Andrieu S, Gillette-Guyonnet S, et al. Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc. 2002;50:1796 801. 3. Auyeung TW, Kwok T, Lee J, Leung PC, Leung J, Woo J. Functional decline in cognitive impairment the relationship between physical and cognitive function. Neuroepidemiology. 2008;31:167 73. 4. Abellan van Kan G, Rolland Y, Gillette-Guyonnet S. Gait speed, body composition, and dementia. The EPIDOS-Toulouse cohort. J Gerontol A Biol Sci Med Sci. 2012;67:425 32. 5. Wirth R, Smoliner C, Sieber CC, Volkert D. Cognitive function is associated with body composition and nutritional risk of geriatric patients. J Nutr Health Aging. 2011;15:706 10. 6. Abellan van Kan G, Cesari M, Dupuy C. Sarcopenia and cognitive impairment in elderly women: results from the EPIDOS cohort. Age Ageing. 2013;42:196 202. 7. Schaap LA, Pluijm SM, Deeg DJ, Visser M. Inflammatory markers and loss of muscle mass (sarcopenia) and strength. Am J Med. 2006;119:526 e9 17. 8. Gillette Guyonet S, Abellan van Kan G, Alix E. IANA (International Academy on Nutrition and Aging) expert group: weight loss and Alzheimer's disease. J Nutr Health Aging. 2007;11:38 48. 9. Dargent-Molina P, Favier F, Grandjean H, et al. Fall-related factors and risk of hip fracture: the EPIDOS prospective study. Lancet. 1996;348:145 9. 10. Andrieu S, Gillette S, Amouyal K, et al. Association of Alzheimer's disease onset with ginkgo biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. J Gerontol A Biol Sci Med Sci. 2003;58:372 7. 11. Gillette-Guyonnet S, Nourhashemi F, Andrieu S, et al. Body composition in French women 75+ years of age: the EPIDOS study. Mech Ageing Dev. 2003;124:311 6. 12. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE (2009) 4:e7038. 13. Gillette-Guyonnet S, Andrieu S, Nourhashemi F, Cantet C, Grandjean H, Vellas B. Comparison of bone mineral density and body composition measurements in women obtained from two DXA instruments. Mech Ageing Dev. 2003;124:317 21. 14. Folstein M, Folstein S, McHugh P. Mini Mental State. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189 98. 15. Grober E, Buschke H, Crystal H, et al. Screening for dementia by memory testing. Neurology. 1988;38:900 3. 16. Lawton MP, Brody EM. Assessment of older people: selfmaintaining and instrumental activities of daily living. Gerontologist. 1969;9:179 86. 17. American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 4th ed. Washington, DC: American Psychiatric Association; 1994. 18. Petersen RC, Smith GE, Waring SC, et al. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303 8. 19. Abellan van Kan G. Epidemiology and consequences of sarcopenia. J Nutr Health Aging. 2009; 13:708 712. 20. Cesari M, Pahor M, Lauretani F, et al. Skeletal muscle and mortality results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2009;64:377 84.