Got Lactase? The Co-evolution of Genes and Culture

Similar documents
PEDIGREES AND THE INHERITANCE OF LACTOSE INTOLERANCE

High School Participant Guide

Part 1: Understanding Lactose Intolerance What is it?

LACTASE PERSISTENCE: EVIDENCE FOR SELECTION

The Making of the Fittest: Natural Selection and Adaptation

DIET AND THE EVOLUTION OF SALIVARY AMYLASE

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

TEACHER S GUIDE. Case Study. Lactose tolerance. Steve Cross, Bronwyn Terrill and colleagues. Wellcome Trust Sanger Institute Hinxton. Version 1.

Human Chromosomes. Lesson Overview. Lesson Overview Human Chromosomes

The Making of the Fittest: LESSON STUDENT MATERIALS GOT LACTASE? BLOOD GLUCOSE DATA ANALYSIS

Chapter 7: Pedigree Analysis B I O L O G Y

Mendel: Understanding Inheritance. 7 th Grade Science Unit 4 NCFE Review

Family Trees for all grades. Learning Objectives. Materials, Resources, and Preparation

Lactase Investigation

The Making of the Fittest: Natural Selection in Humans

Semester 2- Unit 2: Inheritance

4. A homozygous tall plant and a heterozygous tall plant are crossed. What is the percent probability of short offspring?

Mendelian Genetics. Activity. Part I: Introduction. Instructions

The Making of the Fittest: Natural Selection in Humans

Pedigree Analysis. A = the trait (a genetic disease or abnormality, dominant) a = normal (recessive)

Genetics and Diversity Punnett Squares

Genetics. by their offspring. The study of the inheritance of traits is called.

Two copies of each autosomal gene affect phenotype.

See pedigree info on extra sheet 1. ( 6 pts)

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Mendelian Genetics. 7.3 Gene Linkage and Mapping Genes can be mapped to specific locations on chromosomes.

Double The Muscle: Genotype and Probability

MILK HOW SWEET IS IT?

InGen: Dino Genetics Lab Lab Related Activity: DNA and Genetics

Chapter 1 Heredity. Prepared by: GOAD s Team

Pedigree Construction Notes

Bio 312, Spring 2017 Exam 3 ( 1 ) Name:

Lesson Overview. Human Chromosomes. Lesson Overview. Human Chromosomes

14.1 Human Chromosomes pg

He called these new plants hybrids because they received different genetic information, or different alleles, for a trait from each parent.

Activities to Accompany the Genetics and Evolution App for ipad and iphone

Genetics. *** Reading Packet

Guided Notes: Simple Genetics

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

MENDEL S LAWS AND MONOHYBRID CROSSES. Day 1 UNIT 6 : GENETICS

2. A normal human germ cell before meiosis has how many nuclear chromosomes?

UNIT 3 GENETICS LESSON #30: TRAITS, GENES, & ALLELES. Many things come in many forms. Give me an example of something that comes in many forms.

Normal enzyme makes melanin (dark pigment in skin and hair) Defective enzyme does not make melanin

Extra Review Practice Biology Test Genetics

Genetics. the of an organism. The traits of that organism can then be passed on to, on

Monday, February 8. Please copy into your agenda:

I. Classical Genetics. 1. What makes these parakeets so varied in color?

Semester 2- Unit 2: Inheritance

LABORATORY #8 -- BIOL 111 Genetics and Inheritance

(b) What is the allele frequency of the b allele in the new merged population on the island?

Inheritance. Children inherit traits from both parents.

Genetic Variation Junior Science

The Making of the Fittest: Natural Selection in Humans

Running head: HEREDITY AND MALARIA 1

Understanding Inheritance. 3. All inherited traits follow Mendel s patterns of inheritance.

The laws of Heredity. Allele: is the copy (or a version) of the gene that control the same characteristics.

Genetics Project. Using the same traits from our Jane and John activity, we will determine how an offspring of yours could look.

Genetics All somatic cells contain 23 pairs of chromosomes 22 pairs of autosomes 1 pair of sex chromosomes Genes contained in each pair of chromosomes

Take a look at the three adult bears shown in these photographs:

Please copy into your agenda:

UNIT 2: GENETICS Chapter 7: Extending Medelian Genetics

Lab 5: Testing Hypotheses about Patterns of Inheritance

3 The Cell and Inheritance

Diploma in Equine Science

Hands-on Activity Viral DNA Integration. Educator Materials

Name: Date: Period: Human Traits Genetics Activity

9/25/ Some traits are controlled by a single gene. Selective Breeding: Observing Heredity

BIOL 109L Laboratory five Fall 2018

Genetics 1 by Drs. Scott Poethig, Ingrid Waldron, and. Jennifer Doherty, Department of Biology, University of Pennsylvania, Copyright, 2011

Chapter 6 Heredity The Big Idea Heredity is the passing of the instructions for traits from one generation to the next.

What we mean more precisely is that this gene controls the difference in seed form between the round and wrinkled strains that Mendel worked with

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS

Potato Head Genetics Gina Ford & Jennifer Hladun Twelve Bridges Middle School Lincoln California

3.0 DNA is the Inherited Material Responsible for Variation

Mendelian Genetics and Beyond Chapter 4 Study Prompts

How do genes influence our characteristics?

2. Circle the genotypes in the table that are homozygous. Explain how the two different homozygous genotypes result in different phenotypes.

Pre-AP Biology Unit 7 Genetics Review Outline

DIET AND THE EVOLUTION OF SALIVARY AMYLASE

Fundamentals of Genetics

2. By breeding the pea plants he was growing in the monastery s garden, he discovered the

Genetic basis of inheritance and variation. Dr. Amjad Mahasneh. Jordan University of Science and Technology

Life #4 Genetics Notebook

Agro/ANSC/Biol/Gene/Hort 305 Fall, 2017 MENDELIAN INHERITANCE Chapter 2, Genetics by Brooker (Lecture outline) #2

Gene Combo SUMMARY KEY CONCEPTS AND PROCESS SKILLS KEY VOCABULARY ACTIVITY OVERVIEW. Teacher s Guide I O N I G AT I N V E S T D-65

Biology 321 QUIZ#3 W2010 Total points: 20 NAME

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

Genetics Unit Outcomes

Mendelian Genetics. Gregor Mendel. Father of modern genetics

Single Gene Disorders - Student Edition (Human Biology)

Monday, September 12

Fundamentals of Genetics

Natural Selection & People. Descendents of colonizers. Natural selection. Jeanne Sept 9/8/04. P200 Lecture 1

Hot Sync. Materials Needed Today. Pencil Pass forward your Genetics Packet

UNIT 6 GENETICS 12/30/16

A. Incorrect! Cells contain the units of genetic they are not the unit of heredity.

VOCABULARY somatic cell autosome fertilization gamete sex chromosome diploid homologous chromosome sexual reproduction meiosis

Lesson 1. Assessment 1.1 (Preassessment) Name: Per: Date:

Led him to formulate 3 principles of heredity based on his pea plant experimentation...

Transcription:

The Making of the Fittest: Natural The Making Selection of the and Fittest: Adaptation Natural Selection and Adaptation OVERVIEW PEDIGREES AND THE INHERITANCE OF LACTOSE INTOLERANCE This activity serves as a supplement to the film Got Lactase? (http://www.hhmi.org/biointeractive/making-fittest-got-lactase-co-evolution-genes-and-culture). Students analyze the same Finnish family pedigrees that researchers studied to understand the genetic basis of lactose tolerance/intolerance. Students also analyze portions of actual DNA sequences to identify the specific mutations associated with the trait. KEY CONCEPTS AND LEARNING OBJECTIVES Mutations associated with a particular trait can be identified by comparing the DNA sequences of individuals with the trait to those of individuals without the trait. Mutations occur everywhere in the genome. Mutations that have an effect on traits can occur not only in coding regions of genes but also in the regulatory regions that determine when and where genes are turned on. Using both pedigree analysis and genetic analysis, scientists have discovered that the lactose-tolerance trait (lactase persistence) is autosomal dominant; individuals need to inherit only one copy of the lactose-tolerance allele to continue producing lactase as adults. After completing this activity, students should be able to study a pedigree to make a claim based on evidence about the mode of inheritance for a trait; determine the most likely inheritance pattern of a trait tracked in a pedigree and the genotypes of individuals included in the pedigree; analyze variations in DNA to make claims about which variants are associated with specific traits. CURRICULUM CONNECTIONS Curriculum NGSS (April 2013) Common Core (2010) Standards HS.LS3-1, HS.LS2.A, HS.LS1.A, HS.LS3.A CCSS.ELA-Literacy.RST.9-10.3, CCSS.ELA-Literacy.RST.9-10.5, CCSS.ELA-Literacy.RST.9-10.7, CCSS.ELA-Literacy.RST.9-10.4, CCSS.ELA-Literacy.RST.11-12.4, CCSS.ELA-Literacy.RST.11-12.3,CCSS.ELA-Literacy.RH.9-10.4, CCSS.ELA-Literacy.RH.9-10.7, CCSS.ELA-Literacy.RH.11-12.4 AP Biology (2012-13) 3.A.3, 3.B.1, 3.C.1, 4.A.1, LO 3.14, LO 3.18, LO 3.19 IB Biology (2016) 2.6, 3.1, 3.4 TIME REQUIREMENT This lesson is designed to be completed in two 50-minute classroom periods with perhaps a small amount of homework. Viewing the film prior to the activity requires an additional 15 minutes. SUGGESTED AUDIENCE This lesson is intended for regular and honors high school biology. PRIOR KNOWLEDGE Students should have prior knowledge of the relationships between genes, proteins, and traits and know that the letters A, T, C, and G represent the nucleotides of DNA. Students should know how changes in DNA sequences, or mutations, can lead to changes in traits. Students should also have general knowledge of www.biointeractive.org Updated August 2015 Page 1 of 9

autosomal, X-linked, recessive, and dominant patterns of trait inheritance and basic genetics vocabulary that includes the terms homozygous, heterozygous, allele, genotype, and phenotype. MATERIALS Student worksheet TEACHING TIPS Students should watch the short film Got Lactase? at http://www.hhmi.org/biointeractive/making-fittest-got-lactase-co-evolution-genes-and-culture before doing this activity. Before students see the movie, consider asking how many of them know someone who is lactose tolerant. Then ask what data they would collect to answer the question, What is the mode of inheritance for lactose tolerance/intolerance? The question should lead to a classroom discussion that engages students to pay more attention to the film. This activity lends itself to a flipped classroom approach. Students can watch the film as homework and then perform this activity in class the following day. Another option for integrating film and activity is for students to watch the film until about time 5:15 when they see the Finnish pedigrees. Have students examine the pedigree shown in the film and ask them about the inheritance pattern of lactose tolerance/intolerance. (The pedigree shown in the film is Family I in the original paper, which is not included in this activity.) Have students complete this activity and then watch the rest of the film. You may wish to have students work in pairs or small groups to perform this activity. Part 2 of the activity involves examining short DNA sequence to find the mutation associated with turning of the switch. If students have limited background knowledge about genes at the time this activity is used, you may need to provide more information or omit part 2. To learn more about how the expression of the lactase gene is regulated, proceed through the Click and Learn titled Regulation of the Lactase Gene at http://www.hhmi.org/biointeractive/regulation-lactase-gene. ADDITIONAL BACKGROUND The inability of humans to digest lactose was first described by researchers at the University of Manchester in England in the journal The Lancet on May 30, 1959. The team studied two siblings, a brother and a sister, both of whom were diagnosed with failure to thrive in infancy and had chronic flatulence, diarrhea, and abdominal pain. They determined that neither could digest the sugar lactose, but both could absorb glucose and galactose when consumed together. They provided two hypotheses to explain their observation: 1) neither child was producing the lactase enzyme, or 2) the lactase enzyme was being inhibited by another substance the children were producing. The team further postulated that because both children had the trait, it was likely hereditary, and because the parents of the two children could digest lactose, the trait did not follow a dominant inheritance pattern. This single report quickly led to other studies, and by the mid-1960s scientists were reporting variations in the distribution of lactose intolerance among people from different ethnic backgrounds. In 1970, Frederick Simoons, a professor of geography at the University of California at Davis, proposed that the addition of goat and sheep milk to human diets starting 10,000 to 6,000 years ago could explain the geographic distribution of lactose intolerance. By the mid-1970s, it had become clear to Western scientists and medical doctors that lactose intolerance was the more prevalent condition and the ability to digest lactose, or lactose tolerance, www.biointeractive.org Page 2 of 9

was more rare. By this time, scientists had also concluded that the lactose-intolerance trait was inherited in an autosomal recessive pattern. You may want to discuss this information with your students. Why did the researchers from the University of Manchester conclude that there was something wrong with the lactase enzyme based on their observations with the two siblings? At first researchers thought lactose intolerance was an abnormal or disease condition. Ask your students why that was. Think of the countries that many of these researchers were living in. Students may have questions about the difference between the terms lactase persistence and lactose tolerance. These terms are used interchangeably in the film and this activity, but they don t mean exactly the same thing. Lactase persistence refers to the persistent production of the lactase enzyme into adulthood. Except for some human adults, most adult mammals stop producing the lactase enzyme as adults in other words they are lactase nonpersistent. Lactose tolerance refers to the ability to digest lactose, the sugar in milk, without any problems, such as bloating, flatulence, or diarrhea. Most lactase persistent adults can digest milk without any symptoms, which means they are lactose tolerant. However some lactase nonpersistent adults may also be able to tolerate small amounts of milk or milk products. In other words, not everyone who is lactase nonpersistent is lactose intolerant or at least not to the same degree. ANSWER KEY Part 1: Determining the Pattern of Inheritance of Lactose Intolerance 1. Based on the pedigree above, which of the following terms are appropriate for describing the inheritance of the lactose-intolerance trait (filled-in symbols)? Check all that apply. X Recessive X Inherited Dominant X-linked www.biointeractive.org Page 3 of 9

2. Which of the following terms are appropriate for describing the inheritance of the lactose-tolerance trait (empty symbols)? Check all that apply. Recessive X Inherited X Dominant X-linked 3. Use the data in the pedigree and the terms listed in questions 1 and 2 to make a claim about how lactose intolerance is inherited. Provide at least two pieces of evidence in support of your claim. The inheritance pattern of lactose intolerance is autosomal recessive. Evidence may include: The pedigree shows that two parents who are lactose tolerant can have a child (male or female) who is lactose intolerant, which is evidence that the trait is recessive. The fact that the trait occurs in males and females suggests it is not X-linked. 4. How comfortable are you with drawing a firm claim about the inheritance of lactose intolerance? What might you do next to increase your confidence in making this claim? Answers will vary. Some students may indicate that they are uncomfortable making a claim about the inheritance pattern of a trait based on a single pedigree and that they would want to analyze more families. 5. Study Individuals 5 and 6 of Generation III in Family A and their child. The two parents are lactose tolerant, yet their son is lactose intolerant. Are these data consistent or inconsistent with the claim you made in question 3? Explain your answer. The two parents are lactose tolerant, meaning they can be homozygous or heterozygous for the dominant allele. The only way to explain how their son could be lactose intolerant is if both parents are heterozygous and each passed the recessive allele to their son. www.biointeractive.org Page 4 of 9

6. Do the data presented in these additional pedigrees support your claim in question 3 above? Explain your answer. Students should point out that the data from the additional pedigrees are consistent with lactose intolerance being inherited as an autosomal recessive trait. There are a few examples of lactosetolerant parents with lactose-intolerant offspring. www.biointeractive.org Page 5 of 9

7. Based on your claim, which symbols would you use to represent the genotype of an individual who is lactose tolerant? LL or Ll Lactose intolerant? ll Students answers will vary depending on how they choose to designate the allele. In the example above, we used uppercase L for lactose tolerance and lowercase l for lactose intolerance. 8. Based on your claim, what is the genotype of Individual 3, Generation IV in Family C? Explain your answer. Individual 3, Generation IV in Family C is lactose tolerant; she must be either heterozygous (Ll) or homozygous (LL) for the lactose-tolerance allele. Her father is lactose intolerant, which means that he has two recessive alleles for lactose intolerance (ll). Thus Individual 3 must have inherited one of those two alleles. That means that she is heterozygous, having one lactose-tolerance allele and one lactoseintolerance allele. 9. Based on the same claim, what is the genotype of the father of Individual 4, Generation IV in Family D? Explain your answer. The father of Individual 4 in Family D is heterozygous; the genotype is Ll. We know this because Individual 4 is lactose intolerant and must therefore be homozygous recessive (ll). Individual 4 received one recessive allele from each parent, who must both be heterozygous because neither of them is lactose intolerant. 10. Individuals 8 and 9, Generation IV in Family B are sisters. Based on your inheritance claims, what is/are the possible genotype(s) of: Individual 9? Homozygous recessive (ll) Individual 8? Could be heterozygous (Ll) or homozygous dominant (LL) The parents of Individuals 8 and 9? Both are heterozygous (Ll) 11. Individual 4, Generation IV in Family B is the sister of Individuals 8 and 9 in the question above. What is the probability that Individual 4 is homozygous? 1/3 Heterozygous? 2/3 Given that both parents are heterozygous (Ll), their children have a 1/4 chance of being LL, 1/2 chance of being Ll and a 1/4 chance of being ll. However, in this individual's case, we know she isn't homozygous recessive (ll) because she is lactose tolerant. Given the 3 remaining states, she has a 1/3 probability of being homozygous (Ll), and a 2/3 probability of being heterozygous (LL). Part 2. Finding the Responsible Mutation 1. Study the two tables below. Fill in the phenotype (e.g., lactose tolerant or lactose intolerant) of each individual in the second column of the table. (You will need to look at the pedigrees in Part 1 to complete this step.) 2. Identify and circle all the nucleotides that differ between at least two sequences in each table. www.biointeractive.org Page 6 of 9

*Sequence 1 is a nucleotide sequence corresponding to nucleotides 19923-13902 upstream from the start of the lactase gene. *Sequence 2 is a nucleotide sequence corresponding to nucleotides 30192-30173 upstream of the start of the lactase gene. 3. Pretend that you are the researcher who discovered the variations and you are writing to a colleague describing what you found. a. How would you describe the variation(s) you found in Sequence 1? An example of a student answer is: I found that nucleotide 14 in Sequence 1 can be either a thymine or a cytosine. b. How would you describe the variation(s) you found in Sequence 2? An example of a student answer is: I found that nucleotide 10 in Sequence 2 can be either an adenine or a guanine. www.biointeractive.org Page 7 of 9

4. Based on the sequence data you analyzed, which variation is associated with lactose tolerance (lactase persistence)? Support your claim by providing at least three pieces of evidence. The presence of a thymine in place of a cytosine at position 14 in Sequence 1 is associated with lactose tolerance. Evidence includes: All lactose-tolerant individuals have at least one copy of the sequence with the T instead of a C at position 14. None of the lactose-intolerant individuals have a T at position 14 of Sequence 1. Individuals only need one copy of the T variant to be lactose tolerant, which is consistent with an autosomal dominant trait. Neither version of the variation identified in Sequence 2 is consistently found in lactosetolerant or -intolerant individuals. 5. Is the variation associated with lactose tolerance (lactase persistence) found on one chromosome or both chromosomes in individuals with the trait? Explain your answer. One chromosome, which is consistent with lactose tolerance being a dominant trait. 6. From the pedigrees and the DNA sequencing data, what do you know about how the variation associated with lactose tolerance was inherited for Individuals B IV-4 and B IV-9? We know that Individual B IV-4 must have inherited two alleles associated with lactose tolerance in other words, she is homozygous for the lactose-tolerance alleles. Another way of saying this is that she inherited one chromosome with a T at position 14 of Sequence 1 from her mom and one from her dad. On the other hand, Individual B IV-9 inherited two chromosomes with a C at position 14 of Sequence 1, which is the allele associated with lactose intolerance. Individual B IV-9 is homozygous for the recessive lactose-intolerance alleles. 7. The mutation associated with lactose tolerance keeps the lactase gene turned on in adults. Based on the sequence and pedigree data, what can you infer about the regulation of the lactase gene in Individual A IV-3? Explain. Individual A IV-3 is lactose tolerant, according to the pedigree. This individual has two copies of the T variant at position 14 of Sequence 1, which is associated with lactose tolerance. We can infer that in this individual the lactase gene continues to be active into adulthood. REFERENCES Enattah, N. S., et al. 2002. Identification of a variant associated with adult-type hypolactasia. Nature Genetics 30:233-237. Sahi, T. 2001. Genetics and epidemiology of adult-type hypolactasia with emphasis on the situation in Europe. Scandinavian Journal of Nutrition 45:161-162. Ingram C.J.E., et al. 2009. Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics 124: 579. AUTHORS Written by Paul Strode, PhD, Fairview High School, and Laura Bonetta, PhD, HHMI Edited by Susan Dodge Reviewed by Paul Beardsley, PhD Field Tested by Donald R. Kirkpatrick, Marion High School; Ellen Perry, Connetquot High School; Jack Saffer, Central Islip High School; Jen Stites, John Hancock College Prep High School; Jennifer Walters, Corona del Mar High School; Karin Marcotullio, Ballston Spa High School; Linda Ciota, St. John the Baptist; Mary Wuerth, Tamalpais High School; Sarah Freilich, Kehillah Jewish High School; Valerie May, Woodstock Academy www.biointeractive.org Page 8 of 9

www.biointeractive.org Page 9 of 9