A New Bliss Independence Model to Analyze Drug Combination Data

Similar documents
Lec 02: Estimation & Hypothesis Testing in Animal Ecology

Biostatistics II

MEA DISCUSSION PAPERS

Running head: NESTED FACTOR ANALYTIC MODEL COMPARISON 1. John M. Clark III. Pearson. Author Note

A novel approach to estimation of the time to biomarker threshold: Applications to HIV

Chapter 11: Advanced Remedial Measures. Weighted Least Squares (WLS)

A Brief Introduction to Bayesian Statistics

Section on Survey Research Methods JSM 2009

Biomarkers in oncology drug development

Analysis of Vaccine Effects on Post-Infection Endpoints Biostat 578A Lecture 3

Chapter 1. Introduction

An Introduction to Bayesian Statistics

NEW METHODS FOR SENSITIVITY TESTS OF EXPLOSIVE DEVICES

Mark J. Anderson, Patrick J. Whitcomb Stat-Ease, Inc., Minneapolis, MN USA

Quantitative Evaluation of Edge Detectors Using the Minimum Kernel Variance Criterion

Introduction. We can make a prediction about Y i based on X i by setting a threshold value T, and predicting Y i = 1 when X i > T.

Challenges in Developing Learning Algorithms to Personalize mhealth Treatments

Bayesian Dose Escalation Study Design with Consideration of Late Onset Toxicity. Li Liu, Glen Laird, Lei Gao Biostatistics Sanofi

Assessing drug synergy in combination therapies. Adam Palmer, Ph.D. Laboratory of Systems Pharmacology Harvard Medical School

1 Introduction. st0020. The Stata Journal (2002) 2, Number 3, pp

Supplementary Appendix

Clinical trial design issues and options for the study of rare diseases

Addendum: Multiple Regression Analysis (DRAFT 8/2/07)

Certificate Courses in Biostatistics

COMPARING SEVERAL DIAGNOSTIC PROCEDURES USING THE INTRINSIC MEASURES OF ROC CURVE

Confidence Intervals On Subsets May Be Misleading

Two-stage Methods to Implement and Analyze the Biomarker-guided Clinical Trail Designs in the Presence of Biomarker Misclassification

Clinical Trials A Practical Guide to Design, Analysis, and Reporting

MOST: detecting cancer differential gene expression

Bayesian meta-analysis of Papanicolaou smear accuracy

DeconRNASeq: A Statistical Framework for Deconvolution of Heterogeneous Tissue Samples Based on mrna-seq data

Numerical Integration of Bivariate Gaussian Distribution

Case Studies in Bayesian Augmented Control Design. Nathan Enas Ji Lin Eli Lilly and Company

Effective Implementation of Bayesian Adaptive Randomization in Early Phase Clinical Development. Pantelis Vlachos.

THE UNIVERSITY OF OKLAHOMA HEALTH SCIENCES CENTER GRADUATE COLLEGE A COMPARISON OF STATISTICAL ANALYSIS MODELING APPROACHES FOR STEPPED-

Multivariate Bioequivalence

IDENTIFICATION OF OUTLIERS: A SIMULATION STUDY

Combining Risks from Several Tumors Using Markov Chain Monte Carlo

PSYCHOLOGY IAS MAINS: QUESTIONS TREND ANALYSIS

Fundamental Clinical Trial Design

Bayesian and Frequentist Approaches

Confounding by indication developments in matching, and instrumental variable methods. Richard Grieve London School of Hygiene and Tropical Medicine

Citation for published version (APA): Ebbes, P. (2004). Latent instrumental variables: a new approach to solve for endogeneity s.n.

Discussion Meeting for MCP-Mod Qualification Opinion Request. Novartis 10 July 2013 EMA, London, UK

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Midterm, 2016

Simple Linear Regression the model, estimation and testing

A STATISTICAL PATTERN RECOGNITION PARADIGM FOR VIBRATION-BASED STRUCTURAL HEALTH MONITORING

14. Linear Mixed-Effects Models for Data from Split-Plot Experiments

Empirical assessment of univariate and bivariate meta-analyses for comparing the accuracy of diagnostic tests

J2.6 Imputation of missing data with nonlinear relationships

Bayesian Estimation of a Meta-analysis model using Gibbs sampler

The Impact of Continuity Violation on ANOVA and Alternative Methods

Detection Theory: Sensitivity and Response Bias

Mathematical Microbiologists: Why we have to return to our square roots to uncover uncertainty (of measurement) in Quantitative PCR (qpcr)

A Bayesian Nonparametric Model Fit statistic of Item Response Models

Bayesian Nonparametric Methods for Precision Medicine

EC352 Econometric Methods: Week 07

Experimental Design for Immunologists

Appendix III Individual-level analysis

Study Guide for the Final Exam

A Case Study: Two-sample categorical data

Multiple trait model combining random regressions for daily feed intake with single measured performance traits of growing pigs

The questions are changing in early phase cancer clinical trials: Opportunities for novel statistical designs

Problem set 2: understanding ordinary least squares regressions

Treatment effect estimates adjusted for small-study effects via a limit meta-analysis

Decision Making in Confirmatory Multipopulation Tailoring Trials

Describe what is meant by a placebo Contrast the double-blind procedure with the single-blind procedure Review the structure for organizing a memo

Memorial Sloan-Kettering Cancer Center

MATCHMAKING IN ONCOLOGY CHALLENGES AND COMBINATION STRATEGY FOR NOVEL TARGETED AGENTS

New Challenges: Model-based Dose Finding in the Era of Targeted Agents

The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation Multivariate Analysis of Variance

Calibrating Time-Dependent One-Year Relative Survival Ratio for Selected Cancers

TWISTED SURVIVAL: IDENTIFYING SURROGATE ENDPOINTS FOR MORTALITY USING QTWIST AND CONDITIONAL DISEASE FREE SURVIVAL. Beth A.

Investigating the robustness of the nonparametric Levene test with more than two groups

SCHOOL OF MATHEMATICS AND STATISTICS

Center for Advanced Studies in Measurement and Assessment. CASMA Research Report

ASSESSING LONG-TERM BENEFITS OF IMMUNOTHERAPY BASED ON EARLY TUMOR ASSESSMENT DATA

Survival Prediction Models for Estimating the Benefit of Post-Operative Radiation Therapy for Gallbladder Cancer and Lung Cancer

Various performance measures in Binary classification An Overview of ROC study

MISSING DATA AND PARAMETERS ESTIMATES IN MULTIDIMENSIONAL ITEM RESPONSE MODELS. Federico Andreis, Pier Alda Ferrari *

Biostatistics Primer

Progress in Risk Science and Causality

Still important ideas

Clinical Policy: Nivolumab (Opdivo) Reference Number: CP.PHAR.121

Basic concepts and principles of classical test theory

A Comparison of Several Goodness-of-Fit Statistics

Dynamic Outlier Algorithm Selection for Quality Improvement and Test Program Optimization

A Biostatistics Applications Area in the Department of Mathematics for a PhD/MSPH Degree

A Comparison of Robust and Nonparametric Estimators Under the Simple Linear Regression Model

Optimal dose selection considering both toxicity and activity data; plateau detection for molecularly targeted agents

Readings: Textbook readings: OpenStax - Chapters 1 13 (emphasis on Chapter 12) Online readings: Appendix D, E & F

Bayesian Joint Modelling of Benefit and Risk in Drug Development

A Survey of Techniques for Optimizing Multiresponse Experiments

International Journal on Future Revolution in Computer Science & Communication Engineering ISSN: Volume: 4 Issue:

Bias in regression coefficient estimates when assumptions for handling missing data are violated: a simulation study

BREAST CANCER EPIDEMIOLOGY MODEL:

UNLOCKING VALUE WITH DATA SCIENCE BAYES APPROACH: MAKING DATA WORK HARDER

10-1 MMSE Estimation S. Lall, Stanford

Transcription:

51867JBXXXX10.1177/108705711451867Journal of Biomolecular ScreeningZhao et al. research-article014 Technical Note A New Bliss Independence Model to Analyze Drug Combination Data Journal of Biomolecular Screening 014, Vol. 19(5) 817 81 014 Society for Laboratory Automation and Screening DOI: 10.1177/108705711451867 jbx.sagepub.com Wei Zhao 1*, Kris Sachsenmeier 1*, Lanju Zhang, Erin Sult 1, Robert E. Hollingsworth 1, and Harry ang 1 Abstract The Bliss independence model is widely used to analyze drug combination data when screening for candidate drug combinations. The method compares the observed combination response ( O ) with the predicted combination response ( ), which was obtained based on the assumption that there is no effect from drug-drug interactions. Typically, the combination effect is declared synergistic if O is greater than. However, this method lacks statistical rigor because it does not take into account the variability of the response measures and can frequently cause false-positive claims. In this article, we introduce a two-stage response surface model to describe the drug interaction across all dose combinations tested. This new method enables robust statistical testing for synergism at any dose combination, thus reducing the risk of false positives. The use of the method is illustrated through an application describing statistically significant synergy regions for candidate drug combinations targeting epidermal growth factor receptor and the insulin-like growth factor 1 receptor. Keywords drug combination, drug screening, Bliss independence Introduction Various oncogenic cell signaling pathways are known to provide cross-talk and redundancy within tumors. 1 Thus, inhibition of such pathways individually by a single targeted therapy has been shown to lead to compensation by other pathways. This, in turn, results in a loss of sensitivity to the original targeted therapeutic agent at the cellular level. In the clinic, this type of compensation leads to innate and/or acquired tumor resistance and relapse. Because advanced tumors are often resistant to single agents, there is an increasing trend to combine drugs to achieve better treatment effect and reduce safety issues.,3 It is desirable that the combination drugs are synergistic; that is, better activity is achieved at lower dose levels when drugs are combined than individually observed at single drug doses. Depending on drug doses, drug combinations can yield activity that is synergistic, independent, or antagonistic. Commonly used statistical models to evaluate drug combination efficacy are the Bliss independence and Loewe additivity models. Greco et al. 4 have discussed these two reference models in detail. Conceptually, the Loewe additivity model focuses on dose reduction and the Bliss independence model focuses on treatment effect enhancement. The two reference models handle the same question from two different perspectives. The Bliss independence model has been criticized for its potential to incorrectly claim synergy when two identical drugs are combined (i.e., the sham experiment). But in reality, ethical and economic constraints preclude sham testing of a combination of two identical drugs to evaluate synergy in a clinical setting. Furthermore, we find that Bliss independence is legitimately derived from the complete additivity of probability theory 5 and serves well as a reasonable reference model. Suppose two drugs, A and B, both inhibit tumor growth: drug A at dose a inhibits a percent of tumor growth and drug B at dose b inhibits b percent of tumor growth. If two drugs work independently, the combined percentage inhibition can be predicted using the complete additivity of probability theory as = + (1) a b a b. 1 MedImmune LLC, Gaithersburg, MD, USA Abbvie INC, North Chicago, IL, USA * These authors contributed equally to this work. Received Oct 7, 013, and in revised form Nov 6, 013. Accepted for publication Jan 8, 014. Corresponding Author: Wei Zhao, Non-clinical Biostatistics Group, 1 MedImmune Way, Gaithersburg, MD 0878, USA. Email: Zhaow@MedImmune.com

818 Journal of Biomolecular Screening 19(5) The observed combined percentage inhibition O is then compared with. Typically, if O >, the combination treatment is thought to be more efficacious than expected; if O <, the combination treatment is worse than expected; and if O =, the combination is equal to a simple addition of two separate drugs. More concisely, the three scenarios are summarized as O > = < Synergy Independent. Antagonism Typically, the comparison is examined at each dose combination. Average percentage inhibition is usually used when replicates are available and a conclusion can be drawn by strictly following equations (1) and (). But performing tests repetitively at all combination doses becomes a multiple testing problem, which easily leads to false-positive claims. Response surface methodology (RSM) is a well-established method to explore relationships between dose combinations and treatment effect in combination studies. Recently, a Loewe additivity based two-stage response surface model for a drug interaction index was developed. 6 The method gives a global view of synergistic effects across all drug combinations. However, we find in practice that the Loewe additivity based models work well only when monotherapy dose-response curves are well characterized through parametric models such as four-parameter logistic (4L) nonlinear regression curves. When dose-response curves are nonstandard or not available, we find that the Bliss independence based model provides a viable alternative. This is particularly important in high-throughput screening settings where large dose ranges are less practical. Even when large dose ranges are feasible for combination screening, nonstandard response curves compromise the reliability of the Loewe additivity model. In the following section, we adopt the two-stage framework to develop a response surface model based on Bliss independence. Methods We use a response surface model M( Γ a, b) to describe the difference between the observed percentage inhibition and the predicted percentage inhibition as () I = O ab, = M( Γ ab, ) + ε, (3) where ε is a random error that is normally distributed with mean 0 and variance σ, Г={γ 0, γ 1, γ, γ 3, γ 4, γ 5 } is a set of response surface model parameters. I is called the interaction index, an indicator for synergism. In this article, the response surface model we use is a quadratic polynomial function, M( Γ a, b) = γ + γ a+ γ b+ γ ab+ γ a + γ b. 0 1 3 4 If I is known, Г can be easily solved using the multiple linear regression method. Moving to the right side of the equation (3), we have O = ab, + M( Γ a, b) + ε. Since is a random term itself, its distribution will be estimated in the first stage and then be incorporated in the equation (3) to estimate parameters of the response surface model. In this way, the variance of the response surface model parameters will include the variance of O and the variance of. First Stage Model of the redicted ercentage Inhibition We estimate the predicted percentage inhibition,, in the first stage. The monotherapy percentage inhibition models at dose (a, b) can be written separately using simple linear regression models as = µ + e, = µ + e, a a a b b b where µ i (i = a, b) is the true percentage inhibition for drug A and B at dose (a, b) and e i is a normally distributed random error with mean 0 and variance σ i. Because negative inhibition values are often observed in real experiments, we model the percentage inhibition purposely using a Gaussian model instead of the more traditional logistic regression function to accommodate possible negative values. The similar modeling approach was adopted by other researchers as well. 7 The predicted percentage inhibition of the combination treatment can then be written as = µ a + µ b µµ a b + ea + eb µ aeb µ bea eaeb. (5) Since the expectations of all the terms with random errors are zero, the expectation of can be written as 5 (4) E( )= µ a + µ b µµ a b, (6) and the variance of and covariance between two combination doses, ab and a'b', can be written as var ( ab, )=( 1 µ b ) σ a + ( 1 µ a ) σ b + σσ a b, (7) ( )( ) = 1 µ b 1 µ b σa, if a a, b b cov (, a b, )= ( 1 µ a )( 1 µ a ) σb, if a a, b= b. (8) 0, if a a b b,

Zhao et al. 819 Figure 1. Monotherapy dose-response curves for the anti insulin-like growth factor 1 receptor (IGF1R) antibody and anti epidermal growth factor receptor (EGFR) antibody for the non small cell lung cancer (NSCLC) data. Second Stage Model to Calculate arameter Variance Conditional on the predicted percentage inhibition, the difference between O and is modeled using a response surface model. All parameters with a sign are estimated using statistical models. Following the two-stage paradigm, 6 the estimated variance covariance matrix of model parameters Γ can be written as ( ) + ( ( )) var Γ E var Γ, var E Γ ab ab,. ( )= ( ) The first term on the right-hand side of equation (9) is the mean variance of Γ assuming the predicted response is, and the second term is the variance of the expected Γ. roperly calculating var ( Γ ) is of critical importance in constructing the confidence interval of the interaction index. The bootstrap method is commonly used for this type of calculation. First, a random sample of is simulated from a multivariate normal distribution with mean and covariance matrix parameters calculated using equations (6), (7), and (8). Conditional on, response surface parameters Γ in equation (3) and var Γ ( ) in equation (9) are calculated using the linear model method. These steps are repeated for a number of times and then var ( Γ ) can be approximated by replacing expectation and variance with sample mean and sample variance in equation (9). var ( Γ ) roughly stabilizes after 50 iterations. Usually, the difference of var ( Γ ) between 50 and 10,000 iterations is within 15%, and the difference between 1000 and 10,000 repeats is within 5%. The 100(1 α)% confidence interval for interaction index I at any combination dose (a, b) can then be calculated using the following formula: ( 1 α/ 1 α/ ) CI = I z x var( Γ ) x, I + z x var( Γ ) x, (9) = ( ) where x 1, a, b, ab, a, b and z α/ is the 100(α/)th percentile of the standard normal distribution. α is the type I error rate, which is the probability to falsely claim the combination is synergistic when it is not. α=005. is commonly used as a benchmark error rate. Results Data for combinations studies reported here arise from in vitro combination experiments testing antibodies against two well-characterized and clinically validated oncology targets: the epidermal growth factor receptor (EGFR) and the insulin-like growth factor 1 receptor (IGF1R). Each of these targets has been shown to play a role in tumor biology. 8 Both are frequently coexpressed in tumor cells 9 and have been shown to be a part of the same cellular complexes using coimmunoprecipitation experiments. 10 Furthermore, cross-talk between the IGF1R and EGFR receptor has been shown to result in compensation and resistance during targeted inhibition of either receptor. 11 Finally, various preclinical studies have shown improved activity when both IGF1R and EGFR are inhibited concomitantly. 1,13 Given that anti-igf1r and anti-egfr antibodies have shown toxicity clinically, it is important to study the combined effects of anti-igf1r and anti-egfr treatment quantitatively. Of particular interest is the hypothesis that subtoxic doses of each agent might yield efficacy comparable to that seen with toxic doses separately because of synergism when tested in combination. These data are evaluated using the proposed model with a view toward predicting superior efficacy in combination than that observed when the same antibodies are dosed separately. In this experiment, both antibodies were tested at four doses (0.5, 5, 50, and 500 nm) in quadruplicate. Including monotherapy data, there are 96 data points in total. Figure 1 clearly shows that drug A does not follow a classic 4L

80 Journal of Biomolecular Screening 19(5) Table 1. Estimated arameters for the Non Small Cell Lung Cancer Data. γ 0 γ 1 γ γ 3 γ 4 γ 5 0.077 0.018 0.06-0.001-0.014-0.01 dose-response curve, which precludes the use of Loewe additivity based models. Table 1 gives the estimated parameters of the response surface model. The 95% lower bound of the estimated interaction index is shown in Figure, and the contour plot with log 10 -transformed doses is shown in Figure 3. Strong synergistic interaction is seen at lower doses of both antibodies. Subsequent animal studies using the same antibodies in a xenograft model revealed synergistic activity arising from this target combination. 14 Discussion The Bliss independence based model has fewer restrictions than Loewe additivity based models. First, Loewe additivity models rely on accurately estimated doseresponse curves to support the calculation of the effective dose for a given response. When a 4L model is used for estimating a dose response, it is mandatory that the response has to fall between the estimated E min and E max parameters a result that is often not possible. When the data point is not between E min and E max, it has to be manually removed from the analysis, which is undesirable for statistical analysis. Second, the Loewe additivity model becomes unusable when a dose-response curve is not available or difficult to model. Third, the Loewe additivity model is far more computationally challenging than the Bliss independence model. When both methods have solutions, their results are very similar (comparisons not shown). The Bliss independence model presented in this article requires only a linear model technique, which is readily available in most software. Screening for effective combination drugs among hundreds of possible candidates is a challenging task. Those analytical methods without proper statistical modeling can easily lead to false decisions. The methodology introduced in this article rigorously considers the variances in both monotherapy and combination drug experiments and provides a practical way to integrate those variances into one comprehensive model. The confidence intervals constructed using this method have successfully helped us to identify synergistic regions of the test antibodies. Finally, it should be emphasized that most other methods provide only a simple score to quantify synergism. In contrast, the method reported here provides both a synergy score as well as a statistical confidence interval to qualify that synergy score. Figure. Estimated 95% lower confidence bound of interaction index based on Bliss Independence at all dose combinations. EGFR, epidermal growth factor receptor; IGF1R, insulin-like growth factor 1 receptor. Figure 3. Contour plot of interaction index for the anti insulin-like growth factor 1 receptor (IGF1R) antibody and anti epidermal growth factor receptor (EGFR) antibody combination for the non small cell lung cancer (NSCLC) data. The analysis was conducted using Windows R.14.1. Code is available upon request.

Zhao et al. 81 Acknowledgment We thank David Stewart, Rachael Martin, and Rachael Eastwood in the informatics group for independently validating the program and developing a user friendly interface for internal use. Declaration of Conflicting Interests The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article. Funding The authors received no financial support for the research, authorship, and/or publication of this article. References 1. Natarajan, M.; Lin, K. M.; Hsueh, R. C.; et al. A Global Analysis of Cross-Talk in a Mammalian Cellular Signalling Network. Nat. Cell Biol. 006, 8, 571 580.. Ramaswamy, S. Rational Design of Cancer-Drug Combinations. N. Engl. J. Med. 007, 357, 99 300. 3. Sun, T.; Aceto, N.; Meerbrey, K. L.; et al. Activation of Multiple roto-oncogenic Tyrosine Kinases in Breast Cancer via Loss of the TN1 hosphatase. Cell 011, 144, 703 718. 4. Greco, W. R.; Bravo, G.; arsons, J. C. The Search for Synergy: A Critical Review from a Response Surface erspective. harmacol. Rev. 1995, 47, 331 385. 5. Fisz, M. robability Theory and Mathematical Statistics; John Wiley: New ork, 1963. 6. Zhao, W.; Zhang, L. J.; Zeng, L. M.; et al. A Two-Stage Response Surface Approach to Modeling Drug Interaction. Stat. Biopharm. Res. 01, 4, 375 383. 7. Novick, S. J. A Simple Test for Synergy for a Small Number of Combinations. Stat. Med. 013, 3, 5145 5155. 8. Belani, C..; Goss, G.; Blumenschein, G., Jr. Recent Clinical Developments and Rationale for Combining Targeted Agents in Non Small Cell Lung Cancer (NSCLC). Cancer Treat. Rev. 01, 38, 173 184. 9. Takahari, D.; amada,.; Okita, N. T.; et al. Relationships of Insulin-Like Growth Factor-1 Receptor and Epidermal Growth Factor Receptor Expression to Clinical Outcomes in atients with Colorectal Cancer. Oncology 009, 76, 4 48. 10. Riedemann, J.; Takiguchi, M.; Sohail, M.; et al. The EGF Receptor Interacts with the Type 1 IGF Receptor and Regulates Its Stability. Biochem. Biophys. Res. Commun. 007, 355, 707 714. 11. Jameson, M. J.; Beckler, A. D.; Taniguchi, L. E.; et al. Activation of the Insulin-Like Growth Factor-1 Receptor Induces Resistance to Epidermal Growth Factor Receptor Antagonism in Head and Neck Squamous Carcinoma Cells. Mol. Cancer Ther. 011, 10, 14 134. 1. Dong, J.; Sereno, A.; Aivazian, D.; et al. A Stable IgG-Like Bispecific Antibody Targeting the Epidermal Growth Factor Receptor and the Type I Insulin-Like Growth Factor Receptor Demonstrates Superior Anti-Tumor Activity. mabs 011, 3, 73 88. 13. Galer, C. E.; Corey, C. L.; Wang, Z.; et al. Dual Inhibition of Epidermal Growth Factor Receptor and Insulin-Like Growth Factor Receptor I: Reduction of Angiogenesis and Tumor Growth in Cutaneous Squamous Cell Carcinoma. Head Neck 011, 33, 189 198. 14. Sachsenmeier, K. F.; Dimasi, N.; Huang, Q. H.; et al. The Avidity Hypothesis: Comparing Bi-specific and Monospecific Antibodies in re-clinical Oncology Models. latform resentation. American Association for Cancer Research Annual Meeting; Washington, DC, April 9, 013.