Lecture Plan (two lectures) Otoneurology 1. Ear and associated brain function

Similar documents
Lecture Plan. Vestibular Overview. Two main reflexes VOR vestibulo-ocular reflex VSR vestibulo-spinal reflex. Vestibulo-spinal reflex V.S.R.

to vibrate the fluid. The ossicles amplify the pressure. The surface area of the oval window is

Otoconia: Calcium carbonate crystals Gelatinous mass. Cilia. Hair cells. Vestibular nerve. Vestibular ganglion

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. These notes follow Carl s Talk at the beginning of lab

A&P 1. Ear, Hearing & Equilibrium Lab. Basic Concepts. Pre-lab Exercises

What is the effect on the hair cell if the stereocilia are bent away from the kinocilium?

Νευροφυσιολογία και Αισθήσεις

Vestibular Physiology Richard M. Costanzo, Ph.D.

Vestibular Function and Anatomy. UTMB Grand Rounds April 14, 2004 Gordon Shields, MD Arun Gadre, MD

Auditory System Feedback

Chapter 17, Part 2! The Special Senses! Hearing and Equilibrium!

Chapter 17, Part 2! Chapter 17 Part 2 Special Senses! The Special Senses! Hearing and Equilibrium!

Ear. Utricle & saccule in the vestibule Connected to each other and to the endolymphatic sac by a utriculosaccular duct

The Vestibular System

Vestibular/Auditory Systems

THE COCHLEA AND AUDITORY PATHWAY

THE COCHLEA AND AUDITORY PATHWAY

Auditory System. Barb Rohrer (SEI )

The Physiology of the Senses Lecture 10 - Balance

Before we talk about the auditory system we will talk about the sound and waves

Deafness and hearing impairment

Course: PG- Pathshala Paper number: 13 Physiological Biophysics Module number M23: Posture and Movement Regulation by Ear.

9.01 Introduction to Neuroscience Fall 2007

Required Slide. Session Objectives

Chapter 3: Anatomy and physiology of the sensory auditory mechanism

Hearing and Balance 1

Auditory and vestibular system

Chapter 15 Hearing & Equilibrium

Vestibular physiology

Unit VIII Problem 9 Physiology: Hearing

SPECIAL SENSES: THE AUDITORY SYSTEM

Structure, Energy Transmission and Function. Gross Anatomy. Structure, Function & Process. External Auditory Meatus or Canal (EAM, EAC) Outer Ear

Auditory Physiology Richard M. Costanzo, Ph.D.

Cranial Nerve VIII (The Vestibulo-Cochlear Nerve)

Hearing. istockphoto/thinkstock

PSY 215 Lecture 10 Topic: Hearing Chapter 7, pages

Hearing. By: Jimmy, Dana, and Karissa

VESTIBULAR SYSTEM. Deficits cause: Vertigo. Falling Tilting Nystagmus Nausea, vomiting

VESTIBULAR SYSTEM ANATOMY AND PHYSIOLOGY. Professor.Dr. M.K.Rajasekar MS., DLO.,

Central Auditory System Basics and the Effects of Abnormal Auditory Input to the Brain. Amanda M. Lauer, Ph.D. July 3,

The cochlea: auditory sense. The cochlea: auditory sense

Gathering information the sensory systems; Vision

Bony and membranous labyrinth. Vestibular system. János Hanics M.D.

University of Connecticut Schools of Medicine and Dental Medicine Systems Neuroscience Meds Vestibular System

Sensory Physiology. Sensory Range Varies. Introduction to the Special Senses. How do we sense the world around us?

Vestibular System Dr. Bill Yates Depts. Otolaryngology and Neuroscience 110 Eye and Ear Institute

The Physiology of the Senses Lecture 10 - Balance

ENT 318 Artificial Organs Physiology of Ear

au/images/conductive-loss-new.jpg

THE EAR Dr. Lily V. Hughes, Audiologist

COM3502/4502/6502 SPEECH PROCESSING

Chapter 7. Audition, the Body Senses, and the Chemical Senses. Copyright Allyn & Bacon 2004

Cranial Nerve VII & VIII

Anatomy of the Ear Region. External ear Middle ear Internal ear

Physiology Unit 2 SENSORY PHYSIOLOGY

Hearing. By Jack & Tori

COGS 107B Week 2. Hyun Ji Friday 4:00-4:50pm

INCIDENCE OF SUSPECTED OTOLITHIC ABNORMALITIES IN MILD TRAUMATIC BRAIN INJURED VETERANS OBSERVATIONS FROM A LARGE VA POLYTRAUMA NETWORK SITE

THE EAR AND HEARING Be sure you have read and understand Chapter 16 before beginning this lab. INTRODUCTION: hair cells outer ear tympanic membrane

Otologic (Ear) Dizziness Fistula SCD Bilateral. Other. Neuritis BPPV. Menieres

Educational Module Tympanometry. Germany D Germering

Vestibular Differential Diagnosis

Laith Sorour. Facial nerve (vii):

PSY 214 Lecture 16 (11/09/2011) (Sound, auditory system & pitch perception) Dr. Achtman PSY 214

MECHANISM OF HEARING

Systems Neuroscience Oct. 16, Auditory system. http:

Anatomy and Physiology of Hearing

Auditory and Vestibular Systems

Benign Paroxysmal Positional Vertigo (BPPV) Structures of importance. The ear is an inertial navigation device. Vestibular Reflexes

General Sensory Pathways of the Face Area, Taste Pathways and Hearing Pathways

Afternystagmus and Headshaking Nystagmus. David S. Zee

Taste buds Gustatory cells extend taste hairs through a narrow taste pore

Carlson (7e) PowerPoint Lecture Outline Chapter 7: Audition, the Body Senses, and the Chemical Senses

Video Head Impulse Testing

Vestibular Function Testing

Lecture 6 Hearing 1. Raghav Rajan Bio 354 Neurobiology 2 January 28th All lecture material from the following links unless otherwise mentioned:

Sensory Systems Vision, Audition, Somatosensation, Gustation, & Olfaction

Receptors / physiology

Magnetic Vestibular Stimulation (MVS): An Update

AUDITORY STEADY STATE RESPONSE (ASSR)

Topic of the Lecture: Methods of examination (evaluation) of auditory and vestibular systems

4. Which letter in figure 9.1 points to the fovea centralis? Ans: b

Auditory System & Hearing

met het oog op evenwicht

For this lab you will use parts of Exercise #18 in your Wise lab manual. Please be sure to read those sections before coming to lab

Current Concepts in the Management of Patients With Vestibular Dysfunction

AUDITORY APPARATUS. Mr. P Mazengenya. Tel 72204

Waseem Abu Obeida. Muhammad Abid. Loai Al-zghoul

Assessing the Deaf & the Dizzy. Phil Bird Senior Lecturer University of Otago, Christchurch Consultant Otolaryngologist CPH & Private

Clinical aspects of vestibular and ocular motor physiology: bringing physiology and anatomy to the bedside. Skews Nystagmus Tilts

HEARING AND COCHLEAR IMPLANTS

SOLUTIONS Homework #3. Introduction to Engineering in Medicine and Biology ECEN 1001 Due Tues. 9/30/03

PSY 214 Lecture # (11/9/2011) (Sound, Auditory & Speech Perception) Dr. Achtman PSY 214

EYE POSITION FEEDBACK IN A MODEL OF THE VESTIBULO-OCULAR REFLEX FOR SPINO-CEREBELLAR ATAXIA 6

Vestibular System. Dian Yu, class of 2016

BCS 221: Auditory Perception BCS 521 & PSY 221

Corporate Medical Policy

The Structure and Function of the Auditory Nerve

Intro to Audition & Hearing

Cochlear anatomy, function and pathology I. Professor Dave Furness Keele University

Transcription:

Lecture Plan (two lectures) Otoneurology 1. Ear and associated brain function 2. Ear and associated brain anatomy 3. Clinical Disorders Timothy C. Hain, MD Vestibular Physiology Vestibular Overview Vestibular sensors and reflexes VSR VOR Sensor imperfections and local brainstem compensation Central problems and higher level processing Cerebellum Two main reflexes VOR vestibulo-ocular reflex VSR vestibulo-spinal reflex Vestibulo-ocular reflex V.O.R. Stabilizes eye in space Necessary to see while head is in motion 1

Video Frenzel Goggles Vestibulo-spinal reflex V.S.R. Stabilizes body Helps maintain desired orientation to environment C/o Micromedical Technology, Chatham IL VSR Inertial navigation Tonic neck and tonic labyrinthine reflexes add together to allow head to tilt without arm extension. 6 degrees of freedom problem Sailors Sea Chanty Three axes of rotation Roll, pitch and yaw Roll, roll roll you son of a bitch! The more you roll Three axes of translation AP, Lateral, Vertical The less you pitch (anon) 2

The Navigation Problem. Motion sensing is a "mission critical" task -- for example, vestibular system is needed to walk reasonably safely in the dark. The vestibular system incorporates considerable redundancy. The vestibular inner ear is an inertial navigation device Semicircular Canals are angular rate sensors. Otoliths (utricle and saccule) are linear accelerometers Bilateral symmetry means redundant design. 5 sensors, 2 tests Clinical Correlate: can only measure 2/5 -- lateral canal and saccule with available vestibular tests. STARTING AND STOPPING = ACCLERATION The otoliths sense tilt and linear acceleration OTOLITHIC MEMBRANE 3

OTOCONIA - CALCITE CRYSTALS Utricle and Saccule orientation Imperfections in Vestibular Sensors Imbalance Imbalance Timing Gain Noise Push-pull arrangement Common mode rejection Illusion of motion when one side goes bad Vestibular Nystagmus Imperfections in Vestibular Sensors 1. Both sides no nystagmus 2. One side lateral/rotatory 3. One horizontal canal lateral nystagmus. 4. One vertical mixed vertical/rotatory 5. Vertical or horizontal usually central Timing of canals isn t good for eyes or body Need to extend timing for eyes Need phasic emphasis for neck 4

Built in Timing Problems Velocity Storage for VOR Adjust to agile eye Different timing needed for sluggish neck In vestibular lesions Velocity storage goes away for eyes (VOR). Time constant drops from 21 to 7 sec. Not clear what happens to timing in the neck/body may be unchanged. Hain TC, Zee D. S. : Velocity storage in labyrinthine disorders. New York Academy of Sciences, 656, 1992, 297-304 Ewald s 3 Laws (1892) Observations made upon the exposed membranous labyrinth of Pigeons (Ewald s pneumatic hammer) Eye and head movements occur in the plane of the canal being stimulated and in the direction of endolymph flow In the lateral canal, ampullopetal flow causes a greater response than ampullofugal flow In the vertical canal the reverse is true 5

Imperfections in Vestibular Sensors Ewald s 2 nd Law Gain Ewald s 2 nd law built in problem Growth and development Disease bilateral vestibular loss Ewald JR. 1882. Physiologische Untersuchungen uber das Endorgan des Nervus Octavus. Bergman, Wiesbaden. Ewald s Compensation need for both eyes and neck Imperfections in Vestibular Sensors Saturation Anti- Saturation In unilateral vestibular loss, Ewald's 2 nd law probably causes headshaking nystagmus, positive rapiddolls head reflex. We are not sure what happens to VCR/VSR. Linear behavior Noise a common problem Positional vertigo (BPPV mainly) Fluctuations in vestibular function» Ménière's, Fistula Noise makes vestibular input unreliable Logical consequence is to decrease weighting Hain TC, Fetter M and Zee DS: Head-shaking nystagmus in unilateral peripheral vestibular lesions. American J. Otolaryngology., 8:36-47, 1987. Clinical correlations Higher Level Vestibular Problems Grocery Store Syndrome (AKA visual dependence) Unable to tolerate busy visual environments Normally people switch between most salient sensory mode visual/vestibular/somatosensor y Can t switch -> bothered by Target Coordinate rotation is needed to communicate with VCR and VSR Integration is needed of vision and somatosensation with vestibular input Estimation is needed to process multiple unreliable sensors 6

Coordinate Rotation is needed between head and body Ears are in head which can turn on body Must rotate vestibular signals into body coordinates (Nashner, 1974) This is probably computationally intensive and slow. Is there a clinical correlation? Must be, but we haven t figured it out yet. Sensory Integration Visual, vestibular, somatosensory senses must be integrated to form best estimate. If incorrect estimate Motion sickness Visual dependence» Grocery store syndrome» Simulator sickness Internal Model Theory (how the brain works?) Outgrowth of Space program Space Shuttle 100 s of inputs and outputs Some intermittent Some more reliable than others Some sluggish, some rapid Some are noisy Needed a method of formally computing best estimate of Space Shuttle State Kalman Filter (internal model) Grew out of work by Kalman at MIT Wolpert, 1997 Formal method of forming optimal estimate. Integrates efference with afference Accounts for noise, sensor differences. Miniaturization: Everything is in the bony labyrinth (size of dime) Vestibular Anatomy 7

Membranous Labyrinth The Labyrinth is filled with Endolymph and Perilymph MRI of inner ear Clinical Correlations Meniere s disease (?) Meningitis in children Perilymphatic fistula Vestibular Hair cells measure force Relative movement of hair cells to head causes change in electrical potential Same general design for hearing STARTING AND STOPPING = ACCLERATION Clinical Correlation Hair Cells Aminoglycosides kill hair cells Loop diuretics and NSAIDS are hair cell toxins 8

Membranous Labyrinth Clinical correlates Narrow lumen increases effect of viscosity Allows mechanical integration to take place Vestibular Atelectasis Collapse of membranous labyrinth May correlated with dysequilibrium in elderly population. Peripheral circulation to inner ear AICA Labyrinthine Vestibulocochlear» PC, Saccule Anterior vestibular»ac, LC, Utricle Cupula to Brain Cupula Scarpa s ganglion Vestibular Nerve Vestibular Nucleus Cortex Vestibular Nerve Clinical Correlations Superior vestibular nerve: AC, LC, Utricle Inferior vestibular nerve: PC, Saccule Scarpa s ganglion Vestibular neuronitis infection of Scarpa s ganglion? Acoustic Neurinoma Microvascular compression syndrome 9

Vestibular Nucleus Major Nuclei (4) 1. Superior, S, Bechterew, vertical canals, VOR 2. Lateral ( L, Deiters), VSR 3. Medial ( M, Schwalbe), lateral canals, VOR 4. Descending ( D ), cerebellar connections Vascular supply almost everything affects the vestibular nucleus Big nucleus Vertebral/PICA AICA Basilar branches Hearing Disorders: Function Sound Middle ear conductive hearing loss Cochlea sensory hearing loss 8 th nerve and beyond Sensorineural hearing loss Aphasia Central auditory processing disorders Hearing disorders are common 9.75 % of population 45-54 38.55% of population 75 and older source: NCHS 1982b (1977 data) Sound basics Spectrograms Human ear works over 20-20K Hz Loudness quantified in db. 0-120 db. Audiograms use HL units normalized to normal young adults We process the spectrum, not just a single frequency at a time. Massively parallel processing http://cslu.cse.ogi.edu/tutordemos/spectrogr amreading/ipa/formants.html 10

External ear: focus sound Middle ear: impedance matching Inner ear: transform sound into array of neural firing Spiral Ganglion Cochlear nerve Brainstem Hearing overview Sound transmission into inner ear External ear, TM Middle ear ossicular chain Round window pressure relief Clinical Correlations Cochlear Slice Conductive hearing loss Nearly always remediable Organ of Corti Scala = staircase, as in a spiral staircase Wake up question What and where is this building? Scala vestibuli and scala tympani contain perilymph Scala media contains endolymph 11

Organ of Corti Reissners membrane separates scala media from scala vestibuli Stria vascularis lateral wall of scala media, produces endolymph. Inner and outer hair cells inner respond to sound, outer amplify/filter Tonotopy Incoming spectrum of sound gets processed by cochlea/spiral ganglion into an array of frequency specific channels. A spectrum analyzer Tonotopic channels ascend to auditory cortex Cortex parses out Speech Frequency information of components! Loudness of components! Innies and Outies Inner hair cells conventional hearing, one row. Outer hair cells motile. They boost hearing at centrally selected frequencies. Three rows. W pattern Most sensitive to ototoxins Clinical correlation Otoacoustic Emissions (OAE testing) Listen for outer hair cells Newborn screening Malingering Hearing neural wiring Spiral ganglion (wrapped around the cochlea) Cochlear Nucleus Trapezoid body (crossover) Lateral Lemniscus Inferior Colliculus (major integrating center) Medial Geniculate (attention?) Auditory Cortex (Brodman s 41 and 42) Important central auditory structures in Superior Olive Efferents: olivocochlear body (bundle of Rasmussen). Goes to outer hair cells Sound localization based on interaural time differences and intensity. http://www.lib.mcg.edu/edu/eshuphysio/program/section8/8 ch9/s8ch9_21.htm 12

Hearing localization rules Nystagmus Cochlear and above: sensorineural hearing loss The further up the lesion, the less likely unilateral loss The further up the lesion, the greater resemblance to aphasia rather than deafness. Involuntary movement of the eye Obscures vision Jerk nystagmus usually vestibular Congenital nystagmus Horizontal direction usually vestibular Vertical or torsional often central 13