Medicine. D-Dimer Can Serve as a Prognostic and Predictive Biomarker for Metastatic Gastric Cancer Treated by Chemotherapy OBSERVATIONAL STUDY

Similar documents
Only Estrogen receptor positive is not enough to predict the prognosis of breast cancer

Is Hepatic Resection Needed in the Patients with Peritoneal Side T2 Gallbladder Cancer?

Clinicopathological Factors Affecting Distant Metastasis Following Loco-Regional Recurrence of breast cancer. Cheol Min Kang 2018/04/05

VTE Risk Assessment. Challenges of Hemostasis in Cancer Patients. Cihan Ay, MD Associate Professor

Prognostic Factors for Node-Negative Advanced Gastric Cancer after Curative Gastrectomy

Supplementary Information

Prognostic Value of Plasma D-dimer in Patients with Resectable Esophageal Squamous Cell Carcinoma in China

Treatment outcomes and prognostic factors of gallbladder cancer patients after postoperative radiation therapy

Lymph node ratio as a prognostic factor in stage III colon cancer

Are there the specific prognostic factors for triplenegative subtype of early breast cancers (pt1-2n0m0)?

Log odds of positive lymph nodes is a novel prognostic indicator for advanced ESCC after surgical resection

Prognostic value of visceral pleura invasion in non-small cell lung cancer q

The new DR-70 immunoassay detects cancer of the gastrointestinal tract: a validation study

A study on clinicopathological features and prognostic factors of patients with upper gastric cancer and middle and lower gastric cancer.

Extent of visceral pleural invasion and the prognosis of surgically resected node-negative non-small cell lung cancer

Analysis of the outcome of young age tongue squamous cell carcinoma

Satisfactory surgical outcome of T2 gastric cancer after modified D2 lymphadenectomy

Rare Small Cell Carcinoma in Genitourinary Tract: Experience from E-Da Hospital

Indeterminate Pulmonary Nodules in Patients with Colorectal Cancer

Original Article CREPT expression correlates with esophageal squamous cell carcinoma histological grade and clinical outcome

Xiang Hu*, Liang Cao*, Yi Yu. Introduction

Clinicopathologic Characteristics and Prognosis of Gastric Cancer in Young Patients

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

Prognostic significance of stroma tumorinfiltrating lymphocytes according to molecular subtypes of breast cancer

WHAT SHOULD WE DO WITH TUMOUR BUDDING IN EARLY COLORECTAL CANCER?

The Egyptian Journal of Hospital Medicine (July 2018) Vol. 72 (9), Page

RESEARCH COMMUNICATION

Long term survival study of de-novo metastatic breast cancers with or without primary tumor resection

P-Selectin as Predictor Venous Thromboembolism in Cancer Patients Undergoing Chemotherapy

Validation of the T descriptor in the new 8th TNM classification for non-small cell lung cancer

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

The Younger Patients Have More Better Prognosis in Limited Disease Small Cell Lung Cancer

Predictors and Patterns of recurrence after radical surgery in ampulla of vater cancer: Comparison analysis between early and late recu rrence.

Prognostic factors in curatively resected pathological stage I lung adenocarcinoma

RISK FACTORS. Cancer type. Cancer stage

Characteristics and prognostic factors of synchronous multiple primary esophageal carcinoma: A report of 52 cases

Significance of Ovarian Endometriosis on the Prognosis of Ovarian Clear Cell Carcinoma

Surgical resection improves survival in pancreatic cancer patients without vascular invasion- a population based study

Ischemic Stroke in Critically Ill Patients with Malignancy

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Int J Clin Exp Med 2016;9(6): /ISSN: /IJCEM Lei Wang, Liming Sheng, Peng Liu

RESEARCH ARTICLE. Bo He 1, Hui-Qing Zhang 1 *, Shu-Ping Xiong 2, Shan Lu 1, Yi-Ye Wan 1, Rong-Feng Song 1. Abstract. Introduction

Clinicopathological and prognostic differences between mucinous gastric carcinoma and signet-ring cell carcinoma

Tumor necrosis is a strong predictor for recurrence in patients with pathological T1a renal cell carcinoma

PROGNOSIS AND SURVIVAL

Analysis of Lymph Node Metastasis Correlation with Prognosis in Patients with T2 Gastric Cancer

Impact of conversion during laparoscopic gastrectomy on outcomes of patients with gastric cancer

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Correlation between serum level of chemokine (C-C motif) ligand 18 and poor prognosis in breast cancer

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Elevated erythrocyte sedimentation rate is associated with metastatic disease and worse survival in patients with cutaneous malignant melanoma

Genetic variability of genes involved in DNA repair influence treatment outcome in osteosarcoma

Although the international TNM classification system

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

Lung cancer is a major cause of cancer deaths worldwide.

The Prognostic Value of Ratio-Based Lymph Node Staging in Resected Non Small-Cell Lung Cancer

Ratio of maximum standardized uptake value to primary tumor size is a prognostic factor in patients with advanced non-small cell lung cancer

Correlation of pretreatment surgical staging and PET SUV(max) with outcomes in NSCLC. Giancarlo Moscol, MD PGY-5 Hematology-Oncology UTSW

Risk Factors and Tumor Recurrence in pt1n0m0 Gastric Cancer after Surgical Treatment

Clinical results of sublobar resection versus lobectomy or more extensive resection for lung cancer patients with idiopathic pulmonary fibrosis

Cancer associated thrombosis. 17 th November 2016 Simon Noble Clinical Professor Palliative Medicine Cardiff University Wales, UK

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Role of Primary Resection for Patients with Oligometastatic Disease

Cancer Associated Thrombosis An update.

RESEARCH ARTICLE. Masaki Tomita 1, Takanori Ayabe 1, Eiichi Chosa 1, Naohiro Nose 1, Kunihide Nakamura 2 * Abstract. Introduction

RESEARCH COMMUNICATION

ABSTRACT. Shuisheng Zhang 1, Xiaozhun Huang 2, Yuan Tian 3, Saderbieke Aimaiti 1, Jianwei Zhang 1, Jiuda Zhao 4, Yingtai Chen 1 and Chengfeng Wang 1

Revisit of Primary Malignant Neoplasms of the Trachea: Clinical Characteristics and Survival Analysis

Tissue Factor-positive Microparticles in Cancerassociated

Cancer and the Heparins

Treatment Strategy for Non-curative Resection of Early Gastric Cancer. Jun Haneg Lee. Sungkyunkwan University, Samsung Medical Center, Seoul Korea

Lower lymph node yield following neoadjuvant therapy for rectal cancer has no clinical significance

Diagnostic and prognostic significance of receptor-binding cancer antigen expressed on SiSo cells in lung-cancer-associated pleural effusion

New oral anticoagulants and Palliative Care.

Pre-Operative Assesment of Lymphocyte Monocyte Ratio in Ovarian Neoplasms. Athulya Krishna Kumar K.T*, Krishnaraj Upadhyaya and Vineeth G Nair

Pancreas Quizzes c. Both A and B a. Directly into the blood stream (not using ducts)

Peritoneal Involvement in Stage II Colon Cancer

Positive impact of adding No.14v lymph node to D2 dissection on survival for distal gastric cancer patients after surgery with curative intent

Advances in gastric cancer: How to approach localised disease?

A retrospective discussion of the prognostic value of combining prothrombin time(pt) and fibrinogen(fbg) in patients with Hepatocellular carcinoma

Diagnostic test pepsinogen I and combination with tumor marker CEA in gastric cancer

Christopher M. Lehman, MD, 1,3 Lori W. Wilson, MT(ASCP), MS, 3 and George M. Rodgers, MD, PhD 1-3. Abstract

Glasgow Prognostic Score (GPS) Can Be a Useful Indicator to Determine Prognosis of Patients With Colorectal Carcinoma

The Depth of Tumor Invasion is Superior to 8 th AJCC/UICC Staging System to Predict Patients Outcome in Radical Cystectomy.

Does the Retrieval of at Least 15 Lymph Nodes Confer an Improved Survival in Patients with Advanced Gastric Cancer?

Serum Carcinoembryonic Antigen Levels and the Risk of Whole-body Metastatic Potential in Advanced Nonsmall Cell Lung Cancer

Clinical Significance of Preoperative Inflammatory Parameters in Gastric Cancer Patients

Combined use of AFP, CEA, CA125 and CAl9-9 improves the sensitivity for the diagnosis of gastric cancer

Pre-operative assessment of patients for cytoreduction and HIPEC

Prognostic Role of Gastrectomy in Patients With Gastric Cancer With Positive Peritoneal Cytology

Preoperative serum fibrinogen is an independent prognostic factor in operable esophageal cancer

A comparison of the proposed classifications for the revision of N descriptors for non-small-cell lung cancer

PRIMARY THROMBOPROPHYLAXIS IN AMBULATORY CANCER PATIENTS: CURRENT GUIDELINES

Original Articles. Hyuk-Chan Kwon 1, Sung Yong Oh 1, Suee Lee 1, Sung-Hyun Kim 1, Jin Yeong Han 2, Ri Young Koh 2, Min Chan Kim 3 and Hyo-Jin Kim 1

Topics: Staging and treatment for pancreatic cancer. Staging systems for pancreatic cancer: Differences between the Japanese and UICC systems

Surgical Management of Pancreatic Cancer

Exosomal Del 1 as a potent diagnostic marker for breast cancer : A prospective cohort study

The effect of delayed adjuvant chemotherapy on relapse of triplenegative

Diagnostic and prognostic value of CEA, CA19 9, AFP and CA125 for early gastric cancer

Prognostic Factors on Overall Survival in Lymph Node Negative Gastric Cancer Patients Who Underwent Curative Resection

Transcription:

Medicine OBSERVATIONAL STUDY D-Dimer Can Serve as a Prognostic and Predictive Biomarker for Metastatic Gastric Cancer Treated by Chemotherapy Se-Il Go, MD, Min Jeong Lee, MD, Won Sup Lee, MD, PhD, Hye Jung Choi, MD, Un Seok Lee, MD, Rock Bum Kim, MD, PhD, Myoung Hee Kang, MD, Hoon-Gu Kim, MD, PhD, Gyeong-Won Lee, MD, PhD, Jung Hun Kang, MD, PhD, Jeong-Hee Lee, MD, PhD, and Sun Joo Kim, MD, PhD Abstract: Systemic activation of hemostasis and thrombosis has been implicated in tumor progression and metastasis. D-dimer has been used as an indicator for the thrombosis. Here, we investigated the role of the activation of coagulation in patients with metastatic gastric cancer by measuring D-dimer level. We conducted an observation study of 46 metastatic gastric cancer patients who received palliative chemotherapy (CTx). D-dimer levels were assessed before CTx and at the first response evaluation after CTx. The overall survival (OS) of patients with pretreatment D-dimer levels <1.5 mg/ml was significantly longer than that of patients with D-dimer levels 1.5 mg/ml (22.0 vs 7.9 months, P ¼ 0.019). At the first response evaluation, the mean level of D-dimer was significantly decreased by 2.11 mg/ml in patients either with partial response or stable disease (P ¼ 0.011) whereas the mean level of D-dimer, although the difference did not reach statistical significance, was increased by 2.46 mg/ml in patients with progressive disease. In addition, the OS of patients with D- dimer levels <1.0 mg/ml at the first response evaluation was significantly longer than that of patients with D-dimer levels 1.0 mg/ml (22.0 vs 7.0 months, P ¼ 0.009). The lower D-dimer levels (<1.0 mg/ml) at the first response evaluation after CTx was independent predictive factor for better survival in multivariate analysis (P ¼ 0.037). This study suggests that D-dimer levels may serve as a biomarker for response to CTx and OS in patients with metastatic gastric cancer. (Medicine 94(30):e951) Abbreviations: CEA = carcinoembryonic antigen, CTx = chemotherapy, df = degree of freedom, GNUH = Gyeongsang National University Hospital, OS = overall survival, PD = Editor: Maohua Xie. Received: March 9, 2015; revised: May 6, 2015; accepted: May 8, 2015. From the Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea (S-IG, MJL, WSL, HJC, USL, MHK, H-GK, G-WL, JHK); Department of Preventive Medicine and Environmental Health Center, Gyeongsang National University School of Medicine, Jinju, Korea (RBK), Department of Pathology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea (JHL); and Department of Laboratory Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Korea (SJK). Correspondence: Won Sup Lee, Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, 79 Gangnam-ro, Jinju 660-702, South Korea (e-mail: lwshmo@ gnu.ac.kr). S-IG and MJL are first two authors who equally contributed to this work. This study was supported by a grant of the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea (0820050). The authors have no conflicts of interest to disclose. Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved. This is an open access article distributed under the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ISSN: 0025-7974 DOI: 10.1097/MD.0000000000000951 progressive disease, PR = partial response, SD = stable disease, TNM = tumor node metastasis, VIF = variance inflation factor, VTE = venous thromboembolism. INTRODUCTION Gastric cancer is the most common cancer and the third leading cause of cancer death in Korea. 1 For localized gastric cancer, surgical resection is the curative therapy at present. However, a significant number of patients with gastric cancer experience a recurrence after surgery or are firstly diagnosed with metastatic disease. In this case, systemic chemotherapy (CTx) is a standard treatment, but the prognosis is very poor. 2 Recently, comprehensive molecular characterization of gastric cancer enables to conduct tailored therapy that will improve survival of the patients with gastric cancer. 3 However, there are few prognostic or predictive biomarkers for the treatment of gastric cancer. For the operable cases, tumor node metastasis (TNM) staging is the most important for predicting prognosis of gastric cancer so far, but for the metastatic gastric cancer, TNM staging cannot serve as a prognostic factor anymore. 4 Now, carcinoembryonic antigen (CEA) is widely used as a monitoring tool for cancer progression of gastric cancer after surgery. 5 However, only few data that needs more validation are available. The cause of cancer death is mostly due to cancer progression, but thromboembolism also accounts for 10% to 20%. 6 Levitan et al 7 reported that the risk for venous thromboembolism (VTE) in cancer patients is 6 times higher than the control group. It is well known that gastric cancer has a high risk of developing VTE in particular. 8 VTE in cancer patients is typically associated with plasma hypercoagulability, endothelial damage, and stasis of blood flow. 9 The possible mechanisms of hypercoagulability are shown in Figure 1. The clotting process is exacerbated by direct interaction between cancer cells and the endothelial cells, by activating blood cells such as monocyte, macrophage, and platelet, and/or by secreting tissue factor, cancer procoagulants, and cytokines from cancer cells. 10,11 Interestingly, these coagulation products are also associated with the growth, progression, metastasis, and angiogenesis of cancer. 11,12 Therefore, thromboembolism is not only a direct cause of death in cancer patients but also closely related to the death from cancer progression. This is supported by the reports that the coagulation abnormality is associated with low survival rate in cancer patients. 8,13 As a compensation mechanism for fibrin clot formation, fibrinolysis is activated, and then D-dimer is produced. The D- dimer is a specific indicator that reflects degradation of crosslinked fibrin polymer by plasmin and is widely used as assessment tool for diagnosis and treatment of thrombosis. 14 The role of D-dimer as a prognostic factor has been evaluated mostly in Medicine Volume 94, Number 30, July 2015 www.md-journal.com 1

Go et al Medicine Volume 94, Number 30, July 2015 first-line CTx was defined according to the Response Evaluation Criteria in Solid Tumor, version 1.1. FIGURE 1. Mechanisms for cancer-induced hypercoagulation and consequential D-dimer formation. Cancer cells promote a hypercoagulable status and activate the hemostatic system. The cancer cells induce the hypercoagulable status by cell-to-cell interaction with endothelial cells, direct release of TF and CP, production of cytokines such as IL-1and TNF, and activation of monocyte, macrophage, and platelet. CP ¼ cancer procoagulants, IL-1 ¼ interleukin-1, PAI ¼ plasminogen activator inhibitor, TF ¼ tissue factor, TNF ¼ tumor necrosis factor. operable colorectal, pancreatic, and lung cancer. 15 17 Given the suggestion that cancer progression may closely be associated with the activation of blood clotting system, we hypothesized that D-dimer serves as an indicator for cancer progression. Therefore, we evaluated the role of D-dimer along with CEA as a prognostic and a predictive biomarker in patients with metastatic gastric cancer who had received CTx. PATIENTS AND METHODS Patients We retrospectively reviewed all patients newly diagnosed with histologically confirmed metastatic gastric cancer between January 2002 and December 2013 in Gyeongsang National University Hospital (GNUH), Jinju, Korea. Among them, 55 patients treated with palliative first-line CTx and in whom the measurement of pretreatment D-dimer was available were assessed for eligibility. Then, the following patients were excluded: 3 patients with acute illness such as infection within the previous 2 weeks from the time of D-dimer measurement; 2 patients with VTE; 3 patients who were taking anticoagulant medication at the start of CTx; and 1 patient with another malignancy. Finally, a total of 46 patients were included in the study. Institutional Review Board permission of GNUH was obtained for the use of these samples for this analysis (GNUHIRB-2009-19). Data Collection We collected clinical data including age, sex, histological differentiation, site of distant metastasis, response to first-line CTx, survival duration, and the incidence and the type of thromboembolism during CTx. The levels of D-dimer were measured by an immunoturbidimetric method (STA-R Evolution; Diagnostica Stago, Paris, France) and assessed before CTx and at the time of the first response evaluation. Response to Statistical Analysis SPSS for Windows, version 21.0 (SPSS Inc., Chicago, IL) was used for all statistical analyses. Categorical variables were presented as frequencies and percentages and compared using the x 2 test or Fisher exact test. Continuous variables were presented as mean standard deviation and range and compared with Mann Whitney U test and Wilcoxon signed-rank test. Simple regression analysis was performed to convince that the measurements of D-dimer were consistent regardless of the time of D-dimer measurement. No correlation between the D- dimer level and the time of D-dimer measurement was observed (at pretreatment, r ¼þ0.048, P ¼ 0.750; at the first response evaluation, r ¼ 0.148, P ¼ 0.357). The median follow-up duration was calculated by the reverse Kaplan Meier method. Overall survival (OS) was calculated as the time from the date of the first-line CTx to the date of death from any cause. OS was estimated using the Kaplan Meier method and comparisons between groups were made using the log-rank test. Multivariate analysis for variables associated with OS via the Cox proportional hazards model was performed and expressed as hazard ratios and 95% confidence intervals. To detect multicollinearity, the variance inflation factor (VIF) was calculated for the variables included in the Cox proportional hazards model. A 2-tailed P value of <0.05 was considered to be statistically significant. According to the minimal P-value approach, the cutoff levels of D-dimer and CEA were determined as the value maximizing the log-rank statistic for OS. 18 Potential cutoff levels between 25 and 75 percentiles in steps of 0.5 mg/ml of D-dimer and in steps of 1.0 ng/ml of CEA were assessed. Finally, 1.5 mg/ml (log-rank statistic 5.51, 1 degree of freedom [df]) and 1.0 mg/ml (log-rank statistic 6.83, 1 df) were decided as the cutoff level of pretreatment D-dimer and as those of D-dimer at the first response evaluation, respectively. P values were adjusted by Bonferroni correction for multiple testing. The appropriate cutoff level of CEA, however, could not be determined through the minimal P-value approach, because P value of <0.05 was not achieved at any level of CEA. Thus, here we used 3.4 ng/ml as the cutoff level of CEA because this value is upper normal limit in our institution. Patients were grouped into low and high D-dimer (or CEA) groups based on these cutoff values. RESULTS Patients Characteristics Baseline characteristics of 46 patients according to pretreatment D-dimer level are shown in Table 1. Median age and distribution of sex were not statistically different between the 2 groups, with male predominance (male and female ratio, 3.6:1). The site of metastasis was similarly distributed between the 2 groups. However, poorly differentiated histology was associated with high pretreatment D-dimer level (P ¼ 0.048). The number of CTx cycles was similar between the 2 groups. However, pretreatment D-dimer levels appeared to be higher in the patients showing progressive disease (PD) after CTx, but statistically insignificant. The thrombosis during CTx occurred with similar frequency between the 2 groups. Among 7 patients with thrombosis during CTx, 2 had pulmonary thromboembolism, 1 had deep vein thrombosis of right common femoral vein, 3 had other VTEs (1 left renal vein and 2 portal vein), and 1 had 2 www.md-journal.com Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.

Medicine Volume 94, Number 30, July 2015 D-Dimer as a Biomarker for Gastric Cancer TABLE 1. Baseline Characteristics Low Pretreatment D-Dimer (<1.5 mg/ml, n ¼ 14) High Pretreatment D-Dimer (1.5 mg/ml, n ¼ 32) P Median age, y 64 (range: 50 78) 58 (range: 36 78) 0.333 Sex 0.699 Male 12 (85.7%) 24 (75.0%) Female 2 (14.3%) 8 (25.0%) Site of metastasis LN only 2 (14.3%) 7 (21.9%) 0.701 Liver metastasis 8 (57.1%) 10 (31.2%) 0.098 Peritoneal seeding 5 (35.7%) 12 (37.5%) 0.908 Histology 0.048 w/d or m/d 8 (57.1%) 8 (25.0%) p/d 6 (42.9%) 24 (75.0%) Elevated CEA (n ¼ 44) 5 (38.5%) 15 (48.4%) 0.546 Median no. of CTx cycles 7 (range: 2 16) 4.5 (range: 1 13) 0.501 Best response 0.364 PR 1 (7.1%) 4 (12.5%) SD 12 (85.7%) 21 (65.6%) PD 1 (7.1%) 7 (21.9%) Thrombosis during CTx 1.000 Yes 2 (14.3%) 5 (15.6%) No 12 (85.7%) 27 (84.4%) CEA ¼ carcinoembryonic antigen, CTx ¼ chemotherapy, LN ¼ lymph node, m/d ¼ moderately differentiated, p/d ¼ poorly differentiated, PD ¼ progressive disease, PR ¼ partial response, SD ¼ stable disease, w/d ¼ well differentiated. Cutoff value of CEA: 3.4 ng/ml. arterial thrombosis of lower abdominal aorta. Figure 2 shows the dot plot with the raw data of each patient for the relationship between D-dimer levels at pretreatment and at the first response evaluation. There was no close relationship between the 2 time points without statistical significance (P ¼ 0.095). Relationship Between the Changes in D-Dimer Levels and the Responses to CTx The changes in D-dimer levels between the pretreatment and the first treatment response evaluation were assessed in 41 patients available for response evaluation (Table 2). At the FIGURE 2. Dot plot with the raw data for the relationship between D-dimer levels at pretreatment and at the first response evaluation. Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved. www.md-journal.com 3

Go et al Medicine Volume 94, Number 30, July 2015 TABLE 2. Difference of D-Dimer Levels Response (n ¼ 41) Pretreatment At the First Response Evaluation PR (n ¼ 8) 4.96 4.04 1.85 1.52 0.093 SD (n ¼ 26) 4.15 5.58 2.35 2.55 0.055 PR þ SD 4.34 4.96 2.23 2.33 0.011 (n ¼ 34) PD (n ¼ 7) 3.20 2.27 5.66 5.71 0.176 PD ¼ progressive disease, PR ¼ partial response, SD ¼ stable disease. The P values are calculated by Wilcoxon signed-rank test on the difference in D-dimer levels between at the pretreatment and the first response evaluation. first response evaluation, the mean level of D-dimer was significantly decreased by 2.11 mg/ml in 34 patients either with partial response (PR) or stable disease (SD) (P ¼ 0.011). The mean D-dimer levels of 8 patients with PR and 26 patients with SD were decreased by 3.11 and 1.80 mg/ml compared to that of pretreatment D-dimer, respectively (P ¼ 0.093 and P ¼ 0.055). In contrast to PR or SD, in 7 patients with PD, the mean level of D-dimer at the first response evaluation was increased by 2.46 mg/ml although the difference did not reach statistical significance (P ¼ 0.176). These results suggest that D-dimer level may serve as a predictive biomarker to CTx. Survival Analysis Median follow-up duration was 16.2 months (range: 2.2 25.8 months) and median OS was 10.5 months. In survival analysis, the group with high pretreatment D-dimer level was associated with worse survival than that with low pretreatment D-dimer level (median OS, 22.0 vs 7.9 months, P ¼ 0.019, P ¼ 0.171 after Bonferroni correction; Figure 3A). The patients with high D-dimer level (1.0 mg/ml) at the first response evaluation also showed shorter OS than those with low D-dimer P (<1.0 mg/ml) (median OS, 22.0 vs 7.0 months, P ¼ 0.009, P ¼ 0.045 after Bonferroni correction; Figure 3B). For the survival analysis according to CEA levels at pretreatment and the first response evaluation, survival curves was not different between low and high CEA level at pretreatment evaluation (median OS, 10.7 vs 7.0 months, P ¼ 0.529; Figure 4A) and at the first response evaluation (median OS, 16.1 vs 10.5 months, P ¼ 0.179; Figure 4B). This result suggests that pretreatment CEA level could not serve as a prognostic biomarker in metastatic gastric cancer. Univariate analysis showed that high level of D-dimer both at the pretreatment and at the first response evaluation were unfavorable prognostic factors along with poor response to CTx and poorly differentiated histology. Multivariate analysis for these factors demonstrated that high level of D-dimer at the first response evaluation and poorly differentiated histology were independent unfavorable prognostic factors (Table 3). The estimated VIFs were <2 for all variables included in the multivariate analysis, indicating that multicollinearity was not a problem. These results suggest that high level of D-dimer at the first response evaluation may have more significant influence on survival than those at pretreatment evaluation. DISCUSSION We evaluated the value of D-dimer as a prognostic and predictive biomarker for CTx along with CEA in metastatic gastric cancer. This study showed that patients with high level of D-dimer at pretreatment had poor prognosis, but not those with high level of CEA. There were several reports on the relationship between D-dimer level and prognosis in patients with gastric cancer, but these studies were performed in patients with operable gastric cancer. 19,20 This study has unique value that the role of D-dimer was shown as a prognostic factor in metastatic gastric cancer. Furthermore, this study revealed that high level of D-dimer at the first response evaluation was more significantly associated with poor prognosis than those at pretreatment. These findings suggest that the prognosis can change according to whether the level of D-dimer decreases FIGURE 3. OS curve by D-dimer levels. (A) Patients with D-dimer levels <1.5 mg/ml at the pretreatment showed a significantly longer OS than those with D-dimer levels 1.5 mg/ml (median OS, 22.0 vs 7.9 mo, respectively). (B) Patients with D-dimer levels <1.0 mg/ml at the first response evaluation showed a significantly longer OS than those with D-dimer levels 1.0 mg/ml (median OS, 22.0 vs 7.0 mo, respectively). OS ¼ overall survival. 4 www.md-journal.com Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.

Medicine Volume 94, Number 30, July 2015 D-Dimer as a Biomarker for Gastric Cancer FIGURE 4. OS curve by CEA levels. There was no significant difference in OS between low and high CEA groups (A) at the pretreatment (median OS, 10.7 vs 7.0 mo, respectively) and (B) at the first response evaluation (median OS, 16.1 vs 10.5 mo, respectively). CEA ¼ carcinoembryonic antigen, OS ¼ overall survival. <1.0 mg/ml during anticancer therapy in patients with metastatic gastric cancer. The clinical importance of the change of D-dimer level during anticancer therapy was further supported by the analysis for the association between the therapeutic response and the change of D-dimer level shown in this study. There has been no report that evaluated the role of D-dimer as a predictive biomarker for response to anticancer therapy in gastric cancer. The present study revealed that D-dimer level in patients with PR and SD tended to decrease at the first response evaluation TABLE 3. Multivariate Analysis for Overall Survival Prognostic Factors HR 95% CI P Pretreatment D-dimer <1.5 mg/ml Reference 1.5 mg/ml 2.309 0.610 8.738 0.218 D-dimer at the first response evaluation <1.0 mg/ml Reference 1.0 mg/ml 3.128 1.072 9.129 0.037 Treatment response PR þ SD Reference PD 3.130 0.996 9.834 0.051 Histology w/d or m/d Reference p/d 3.687 1.031 13.187 0.045 CI ¼ confidence interval, HR ¼ hazard ratio, m/d ¼ moderately differentiated, p/d ¼ poorly differentiated, PD ¼ progressive disease, PR ¼ partial response, SD ¼ stable disease, w/d ¼ well differentiated. with a greater degree in those with PR, and that D-dimer level in patients with PD showed an increasing tendency at the first response evaluation. Although the degree of changes in D-dimer levels in patients with PR was greater than those in patients with either PR or SD, the change of D-dimer level was not statistically significant in patients with PR. This may result from the decreased statistical power derived from the decrease in the number of patients. The role of D-dimer as a predictor for therapeutic response has been recently reported on other malignancies. Inanc et al 21 reported that when comparing D-dimer level at pretreatment and after 3 cycles of CTx in patients with colorectal cancer, D- dimer level in those with PR was significantly decreased, whereas in case of PD, considerable increase was seen in D-dimer level. Komurcuoglu et al 22 also demonstrated that pretreatment D-dimer level in patients with lung cancer was significantly higher in nonresponders than in responders. These reports showing a tendency to be consistent with the result of present study support the role of D-dimer as a predictor for therapeutic response in cancer patients. This study is the first report that suggests the clinical significance of D-dimer as a predictor for therapeutic response in patients with metastatic gastric cancer. In the present study, we found that poorly differentiated histology was associated with poor survival and high level of pretreatment D-dimer. The correlation between histological differentiation and D-dimer has not been reported in metastatic gastric cancer, but there are some related reports. Diao et al 23 showed that the D-dimer level was higher in histological grades 3 and 4 than in histological grades 1 and 2 in patients with esophageal cancer. Furthermore, Hwang et al 24 reported that 80% of advanced gastric cancer patients with disseminated intravascular coagulation had signet-ring cell and poorly differentiated histology. In contrast, there is a report 25 showing no correlation between these 2 factors in colon cancer. Therefore, further studies will be needed for the relationship between D-dimer and histological grade. Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved. www.md-journal.com 5

Go et al Medicine Volume 94, Number 30, July 2015 Regarding the determination of cutoff value in this study, it is debatable to apply the different cutoff value of D-dimer in the same patients during the treatment course. Ay et al 26 reported a significant difference in survival rate according to the D-dimer level in a prospective study performed on cancer patients. Particularly, a group of >1.33 mg/ml of D-dimer had the poorest prognosis. Liu et al 19 evaluated the prognosis according to preoperative level of D-dimer in 247 patients with gastric cancer and showed a significant difference in OS based on cutoff value of 1.465 mg/ml for D-dimer. These cutoff values are between the values of the pretreatment (1.5 mg/ml) and the first response evaluation (1.0 mg/ml) in our study. Additional study is warranted for optimal cutoff value of D-dimer in cancer patients. In contrast to D-dimer, CEA has neither prognostic nor predictive biomarker role in metastatic gastric cancer in the present study. Lu et al 27 could not find the role of CEA as a prognostic factor in metastatic gastric cancer, either. In addition, Blackwell et al 15 reported that changes in D-dimer levels were correlated more strongly with disease progression than changes in CEA levels in colorectal cancer. At present, the impact of CEA on prognosis in patients with gastric cancer has not been established. There are several limitations in this study. First, this study is retrospective in nature. Second, subject enrolment period was long and small number of patients was included in this study. In part, it was because of the fact that the measurement of D-dimer had not been considered as a part of baseline assessments in patients with metastatic gastric cancer. In conclusion, this study suggests that high D-dimer levels at pretreatment and the first response evaluation are associated with poor prognosis in patients with metastatic gastric cancer, and that D-dimer also serves as a predictive biomarker for therapeutic response. These findings provide evidence to support that the activation of blood coagulation system is closely related to cancer progression and prognosis. Large-scale prospective study is warranted to validate the role of D-dimer in patients with metastatic gastric cancer. REFERENCES 1. Jung KW, Won YJ, Kong HJ, et al. Prediction of cancer incidence and mortality in Korea, 2013. Cancer Res Treat. 2013;45:15 21. 2. Wesolowski R, Lee C, Kim R. Is there a role for second-line chemotherapy in advanced gastric cancer? Lancet Oncol. 2009;10:903 912. 3. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202 209. 4. Zhang J, Zhou Y, Jiang K, et al. Evaluation of the seventh AJCC TNM staging system for gastric cancer: a meta-analysis of cohort studies. Tumour Biol. 2014;35:8525 8532. 5. Liu X, Cai H, Wang Y. Prognostic significance of tumor markers in T4a gastric cancer. World J Surg Oncol. 2012;10:68. 6. Khorana AA, Francis CW, Culakova E, et al. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost. 2007;5:632 634. 7. Levitan N, Dowlati A, Remick SC, et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore). 1999;78:285 291. 8. Chew HK, Wun T, Harvey D, et al. Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med. 2006;166:458 464. 9. Wolberg AS, Aleman MM, Leiderman K, et al. Procoagulant activity in hemostasis and thrombosis: Virchow s triad revisited. Anesth Analg. 2012;114:275 285. 10. Kuderer NM, Ortel TL, Francis CW. Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J Clin Oncol. 2009;27:4902 4911. 11. Wojtukiewicz MZ, Sierko E, Klement P, et al. The hemostatic system and angiogenesis in malignancy. Neoplasia. 2001;3:371 384. 12. Ruf W, Yokota N, Schaffner F. Tissue factor in cancer progression and angiogenesis. Thromb Res. 2010;125(Suppl 2):S36 S38. 13. Connolly GC, Francis CW. Cancer-associated thrombosis. Hematology Am Soc Hematol Educ Program. 2013;2013:684 691. 14. Tripodi A. D-dimer testing in laboratory practice. Clin Chem. 2011;57:1256 1262. 15. Blackwell K, Hurwitz H, Lieberman G, et al. Circulating D-dimer levels are better predictors of overall survival and disease progression than carcinoembryonic antigen levels in patients with metastatic colorectal carcinoma. Cancer. 2004;101:77 82. 16. Sun W, Ren H, Gao CT, et al. Clinical and prognostic significance of coagulation assays in pancreatic cancer patients with absence of venous thromboembolism. Am J Clin Oncol. 2014doi: 10.1097/ 01.coc.0000436088.69084.22. 17. Altiay G, Ciftci A, Demir M, et al. High plasma D-dimer level is associated with decreased survival in patients with lung cancer. Clin Oncol (R Coll Radiol). 2007;19:494 498. 18. Mazumdar M, Glassman JR. Categorizing a prognostic variable: review of methods, code for easy implementation and applications to decision-making about cancer treatments. Stat Med. 2000;19:113 132. 19. Liu L, Zhang X, Yan B, et al. Elevated plasma D-dimer levels correlate with long term survival of gastric cancer patients. PLoS One. 2014;9:e90547. 20. Kwon HC, Oh SY, Lee S, et al. Plasma levels of prothrombin fragment F1þ2, D-dimer and prothrombin time correlate with clinical stage and lymph node metastasis in operable gastric cancer patients. Jpn J Clin Oncol. 2008;38:2 7. 21. Inanc M, Er O, Karaca H, et al. D-dimer is a marker of response to chemotherapy in patients with metastatic colorectal cancer. J BUON. 2013;18:391 397. 22. Komurcuoglu B, Ulusoy S, Gayaf M, et al. Prognostic value of plasma D-dimer levels in lung carcinoma. Tumori. 2011;97:743 748. 23. Diao D, Zhu K, Wang Z, et al. Prognostic value of the D-dimer test in oesophageal cancer during the perioperative period. J Surg Oncol. 2013;108:34 41. 24. Hwang IG, Choi JH, Park SH, et al. Chemotherapy in advanced gastric cancer patients associated with disseminated intravascular coagulation. Cancer Res Treat. 2014;46:27 32. 25. Kilic M, Yoldas O, Keskek M, et al. Prognostic value of plasma D- dimer levels in patients with colorectal cancer. Colorectal Dis. 2008;10:238 241. 26. Ay C, Dunkler D, Pirker R, et al. High D-dimer levels are associated with poor prognosis in cancer patients. Haematologica. 2012;97:1158 1164. 27. Lu Z, Lu M, Zhang X, et al. Advanced or metastatic gastric cancer in elderly patients: clinicopathological, prognostic factors and treatments. Clin Transl Oncol. 2013;15:376 383. 6 www.md-journal.com Copyright # 2015 Wolters Kluwer Health, Inc. All rights reserved.