Elevated erythrocyte sedimentation rate is associated with metastatic disease and worse survival in patients with cutaneous malignant melanoma

Similar documents
Patient age and cutaneous malignant melanoma: Elderly patients are likely to have more aggressive histological features and poorer survival

Malignant Melanoma in Turkey: A Single Institution s Experience on 475 Cases

Serum IGF-1 and IGFBP-3 levels as clinical markers for patients with lung cancer

Tumor necrosis is a strong predictor for recurrence in patients with pathological T1a renal cell carcinoma

Clinicopathological Factors Affecting Distant Metastasis Following Loco-Regional Recurrence of breast cancer. Cheol Min Kang 2018/04/05

Peritoneal Involvement in Stage II Colon Cancer

UK CAA Oncology Certification Charts

Melanoma-Back to Basics I Thought I Knew Ya! Paul K. Shitabata, M.D. Dermatopathologist APMG

Only Estrogen receptor positive is not enough to predict the prognosis of breast cancer

Analysis of the outcome of young age tongue squamous cell carcinoma

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Genetic Testing: When should it be ordered? Julie Schloemer, MD Dermatology

Impact of Prognostic Factors

Supplementary Information

Clinical Value of C-reactive Protein and Erythrocyte Sedimentation Rate in Advanced Bladder Cancer

Is Hepatic Resection Needed in the Patients with Peritoneal Side T2 Gallbladder Cancer?

Locoregional treatment Session Oral Abstract Presentation Saulo Brito Silva

47. Melanoma of the Skin

1

Case Scenario 1 Worksheet. Primary Site C44.4 Morphology 8743/3 Laterality 0 Stage/ Prognostic Factors

After primary tumor treatment, 30% of patients with malignant

Case Report Long Term Survival and Continued Complete Response of Vemurafenib in a Metastatic Melanoma Patient with BRAF V600K Mutation

Melanoma Update: 8th Edition of AJCC Staging System

Long term survival study of de-novo metastatic breast cancers with or without primary tumor resection

Clinicopathologic Characteristics and Prognosis of Gastric Cancer in Young Patients

Sentinel Node Alphabet Soup: MSLT-1, DeCOG-SLT, MSLT-2, UNC

Controversies and Questions in the Surgical Treatment of Melanoma

Epithelial Cancer- NMSC & Melanoma

Polypoid Melanoma, A Virulent Variant of the Nodular Growth Pattern

Hyponatremia in small cell lung cancer is associated with a poorer prognosis

Melanoma Underwriting Presented at 2018 AHOU Conference. Hank George FALU

PROGNOSTIC FACTORS FOR SURVIVAL IN PATIENTS WITH METASTATIC RENAL CELL CARCINOMA TREATED WITH CHEMOTHERAPY

Desmoplastic Melanoma: Clinical Behavior and Management Implications

Implications of Progesterone Receptor Status for the Biology and Prognosis of Breast Cancers

Role of Primary Resection for Patients with Oligometastatic Disease

ORIGINAL ARTICLE. Clinical Node-Negative Thick Melanoma

Lymph node ratio as a prognostic factor in stage III colon cancer

Androgen Receptor Expression in Renal Cell Carcinoma: A New Actionable Target?

WHAT SHOULD WE DO WITH TUMOUR BUDDING IN EARLY COLORECTAL CANCER?

All India Institute of Medical Sciences, New Delhi, INDIA. Department of Pediatric Surgery, Medical Oncology, and Radiology

Attending Physician Statement- Cancer or Carcinoma in-situ

Evaluation of prognostic scoring systems for bone metastases using single center data

Amelanotic melanoma of the skin detailed review of the problem

The Depth of Tumor Invasion is Superior to 8 th AJCC/UICC Staging System to Predict Patients Outcome in Radical Cystectomy.

CODING STAGE: TNM AND OTHER STAGING SYSTEMS. Liesbet Van Eycken Otto Visser

Talk to Your Doctor. Fact Sheet

Protocol applies to melanoma of cutaneous surfaces only.

Prognostic Impact of Hyperglycemia in Patients with Locally Advanced Squamous Cell Carcinoma of Cervix Receiving Definite Radiotherapy

Serum IL-8 and IL-12 Levels in Breast Cancer

Properties of Synchronous Versus Metachronous Bilateral Breast Carcinoma with Long Time Follow Up

Poor Outcomes in Head and Neck Non-Melanoma Cutaneous Carcinomas

Cover Page. The handle holds various files of this Leiden University dissertation

The prognosis of different distant metastases pattern in prostate cancer: A population based retrospective study

MOLECULAR AND CLINICAL ONCOLOGY 4: , 2016

A study on clinicopathological features and prognostic factors of patients with upper gastric cancer and middle and lower gastric cancer.

Primary Cutaneous Melanoma Pathology Reporting Proforma DD MM YYYY. *Tumour site. *Specimen laterality. *Specimen type

Surgical resection improves survival in pancreatic cancer patients without vascular invasion- a population based study

Indeterminate Pulmonary Nodules in Patients with Colorectal Cancer

Melanoma Case Scenario 1

Melanoma Quality Reporting

The Impact of Adjuvant Chemotherapy in Pulmonary Large Cell Neuroendocrine Carcinoma (LCNC)

Clinical Pathological Conference. Malignant Melanoma of the Vulva

Metastatic Melanoma. Cynthia Kwong February 16, 2017 SUNY Downstate Medical Center Department of Surgery Grand Rounds

WHAT DOES THE PATHOLOGY REPORT MEAN?

Racial differences in six major subtypes of melanoma: descriptive epidemiology

Glasgow Prognostic Score (GPS) Can Be a Useful Indicator to Determine Prognosis of Patients With Colorectal Carcinoma

University of Groningen

Reevaluating the prognostic significance of male gender for papillary thyroid carcinoma and microcarcinoma: a SEER database analysis

Melanoma Case Scenario 1

Lung cancer is the leading cause of death from cancer in

Increasing Age Is Associated with Worse Prognostic Factors and Increased Distant Recurrences despite Fewer Sentinel Lymph Node Positives in Melanoma

Temporal Trends in Demographics and Overall Survival of Non Small-Cell Lung Cancer Patients at Moffitt Cancer Center From 1986 to 2008

Rare Small Cell Carcinoma in Genitourinary Tract: Experience from E-Da Hospital

Breslow Thickness and Clark Level Evaluation in Albanian Cutaneous Melanoma

Therapeutic Lymph Node Dissection in Melanoma: Different Prognosis for Different Macrometastasis Sites?

Are there the specific prognostic factors for triplenegative subtype of early breast cancers (pt1-2n0m0)?

Index. Surg Oncol Clin N Am 16 (2007) Note: Page numbers of article titles are in boldface type.

Physician Follow-Up and Guideline Adherence in Post- Treatment Surveillance of Colorectal Cancer

Quality ID #397: Melanoma Reporting National Quality Strategy Domain: Communication and Care Coordination

6/22/2015. Original Paradigm. Correlating Histology and Molecular Findings in Melanocytic Neoplasms

Update on Lymph Node Management in Melanoma

BY Mrs. K.SHAILAJA., M. PHARM., LECTURER DEPT OF PHARMACY PRACTICE, SRM COLLEGE OF PHARMACY

CURRENT ISSUES IN TRANSPLANT DERMATOLOGY

General Information, efficacy and safety data

Prognostic value of visceral pleura invasion in non-small cell lung cancer q

Disclosures. SLNB for Melanoma 25/02/2014 SENTINEL LYMPH NODE BIOPSY FOR MELANOMA: CURRENT GUIDELINES AND THEIR CLINICAL APPLICATION

Measure #397: Melanoma Reporting National Quality Strategy Domain: Communication and Care Coordination

Springer Healthcare. Staging and Diagnosing Cutaneous Melanoma. Concise Reference. Dirk Schadendorf, Corinna Kochs, Elisabeth Livingstone

Prognostic significance of stroma tumorinfiltrating lymphocytes according to molecular subtypes of breast cancer

Revisit of Primary Malignant Neoplasms of the Trachea: Clinical Characteristics and Survival Analysis

Prognostic Inflammation Score in Surgical Patients with Colorectal Cancer

Update on 8 th Edition Cutaneous AJCC Staging of Primary Cutaneous Melanoma. Michael T. Tetzlaff MD, PhD

Long-term Follow-up for Patients with Papillary Thyroid Carcinoma Treated as Benign Nodules

Update on Colorectal Cancer: Integrating the Host Immune Response 3 rd Emirates Surgical Pathology Conference 15 December 2017 Dubai, UAE

> 6000 Mutations in Melanoma. Tests That Cay Be Employed. FISH for Additions/Deletions. Comparative Genomic Hybridization

Surveillance following treatment of primary ocular melanoma

Surgical Management of Metastatic Colon Cancer: analysis of the Surveillance, Epidemiology and End Results (SEER) database

Life Science Journal 2014;11(7)

Characterization of Patients with Poor-

Transcription:

1142 Elevated erythrocyte sedimentation rate is associated with metastatic disease and worse survival in patients with cutaneous malignant melanoma FARUK TAS and KAYHAN ERTURK Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul 34390, Turkey Received July 12, 2017; Accepted October 2, 2017 DOI: 10.3892/mco.2017.1440 Abstract. Elevated erythrocyte sedimentation rate (ESR) is common in cancer patients and it may affect survival. However, its clinical role and prognostic significance remain unknown in melanoma patients. The objective of the present study was to determine the clinical significance of the ESR levels in cutaneous melanoma patients. A total of 139 cutaneous melanoma patients were enrolled in this study and were retrospectively investigated. The median age of the patients was 52 years (range, 16 88 years). The median ESR was 22 mm/h (range, 2 122 mm/h). Significant differences in ESR were found to be associated with sex, histology, blood hemoglobin level, lactate dehydrogenase (LDH) and metastatic disease. Female patients (P=0.006) and those with nodular histology (P=0.005), low hemoglobin concentration (P<0.001), higher LDH levels (P=0.003) and metastatic disease (P<0.001) were more likely to have elevated ESR levels. However, ESR was not found to be significantly associated with age, site of lesion, or pathological indicators, including Clark's level of invasion, Breslow's depth, mitotic rate, ulceration, vertical growth phase, tumor infiltrating lymphocytes, regression, neurotropism, lymphovascular invasion and BRAF (V600E) mutation (P>0.05). ESR was also not associated with lymph node involvement (P=0.188) or responsiveness to chemotherapy (P=0.390). However, ESR was found to be significantly associated with outcome; patients with increased ESR had worse survival compared with those with normal values (hazard ratio=2.033; 95% confidence interval: 1.156 3.577; P=0.012). In conclusion, elevated ESR was found to be associated with metastatic disease and Correspondence to: Dr Faruk Tas, Department of Medical Oncology, Institute of Oncology, Istanbul University, 118 Millet Street, Capa, Istanbul 34390, Turkey E mail: faruktas2002@yahoo.com Key words: erythrocyte sedimentation rate, melanoma, prognosis, survival was also found to be a prognostic factor adversely affecting survival in patients with cutaneous melanoma. Introduction It has been demonstrated that there is an association between chronic inflammation and carcinogenesis (1), and that subclinical or even undetectable inflammation may be as significant as chronic inflammation in increased cancer risk, cancer development and progression (1). Chronic inflammation may promote excessive cell proliferation and activate a cascade of cellular events, promoting tumor cell growth (2). Furthermore, tumor progression per se may also stimulate host immune response and inflammation. Erythrocyte sedimentation rate (ESR) is the most widely used laboratory test for evaluating the inflammatory status in clinical practice, including infection, autoimmune and malignant diseases (3). Elevated ESR is frequently encountered in patients with cancer. The outcome in various malignancies depends on the type of the underlying disorder, the stage and duration of the disease, and the regimen and intensity of the antitumor treatment. In addition, an elevated ESR level has also been identified as a prognostic factor adversely affecting survival in cancer patients (2 8). A number of studies indicated that an increased ESR level is associated with worse survival; patients with higher ESR values in various malignancies, including colorectal cancer (2), renal cell cancer (4), head and neck cancer (5), soft tissue sarcoma (6), breast cancer (7), glioma (8) and prostate cancer (9), had a shorter survival compared with those with normal ESR levels. Although there have been sufficient data on other types of tumors, to the best of our knowledge, the prognostic value of ESR in melanoma patients has not been adequately investigated (10,11) and the significance of elevated ESR levels in melanoma patients has not been fully elucidated. However, increased ESR levels have been identified as an adverse prognostic factor for survival in melanoma patients as a secondary finding when different parameters were investigated in our previously published trials (12 15). In the present study, the ESR levels were evaluated in cutaneous melanoma patients, and the associations with disease prognosis and various known clinical variables were determined.

TAS and ERTURK: ESR IN MELANOMA 1143 Patients and methods Patients. A total of 139 adult patients with histologically confirmed cutaneous melanoma in whom ESR was determined were included in the present analysis and were retrospectively investigated. The patient records were retrieved from the cancer registry of the Institute of Oncology, University of Istanbul (Istanbul, Turkey) for review of the clinicopathological factors and patient survival. The patients were treated and followed up according to standard international guidelines, such as National Comprehensive Cancer Network (https://www.nccn.org/patients/guidelines/melanoma/) and European Society for Medical Oncology (http://www.esmo.org/guidelines/melanoma) guidelines. The ESR values of the patients were determined at first admission by the standard Westergren method (16,17). The study protocol was reviewed and approved by the local Ethics Committee. Statistical analysis. Comparisons between clinicopathological characteristics and ESR values were performed using the Mann Whitney U test, independent samples t test and logistic regression test. Receiver operating characteristic curves were used to define the cut off value of ESR levels for survival analysis. Kaplan Meier analysis was used for estimation of patient survival and differences in outcomes were assessed using log rank statistics. A P value of 0.05 was considered to indicate statistically significant differences. Results Patient characteristics. A total of 139 cutaneous melanoma patients were enrolled in the present study. The median age of the patients was 52 years (range, 16 88 years). The demographic and clinicopathological characteristics are summarized in Table I. The median value of ESR values of the patients was 22 mm/h (range, 2 122 mm/h). Significant differences in ESR were only found in association with sex, histology, blood hemoglobin level, lactate dehydrogenase (LDH) levels and metastatic disease (Table I). Female patients (P=0.006) and those with nodular histology (P=0.005), low hemoglobin concentration (P<0.001), higher LDH levels (P=0.003) and metastatic disease (P<0.001) were more likely to have elevated ESR values. However, the ESR levels were not found to be significantly associated with age, site of lesion, or pathological indicators such as Clark's level of invasion, Breslow's depth, mitotic rate, ulceration, vertical growth phase, tumor infiltrating lymphocytes, regression, neurotropism, lymphovascular invasion and BRAF (V600E) mutation (P>0.05). ESR was also not associated with lymph node involvement (P=0.188) or responsiveness to chemotherapy (P=0.390). Effect of elevated ESR on survival. When survival analyses of possible clinicopathological variables affecting outcome were performed, nodular histology (P=0.043), high mitotic rate (P=0.004), presence of ulceration (P=0.034), presence of lymphovascular invasion (P<0.001), increased serum LDH level (P<0.001), lymph node involvement (P=0.005), multiple node involvement (P=0.010), distant metastasis (P<0.001) and Figure 1. Overall survival curves in melanoma patients according to ESR (<35 vs. 35 mm/h; P=0.012). Dotted line, <35 mm/h; straight line, 35 mm/h. ESR, erythrocyte sedimentation rate. failure to respond to chemotherapy (P=0.002) were found to be poor prognostic factors for overall survival (Table II). ESR was found to be significantly associated with outcome, with patients with elevated ESR exhibiting worse survival compared with those with normal ESR values (P=0.012) (Table II, Fig. 1). Discussion The aim of the present study was to evaluate the prognostic value of ESR elevation focusing specifically on cutaneous melanoma patients. The study analyzed 139 melanoma patients, including all disease stages, which, to the best of our knowledge, is the largest population based sample size from a single institution to date. At the time of the analysis, to our knowledge, only a limited number of studies had focused on the prognostic value of the ESR level in cutaneous melanoma patients (10,11). In the Norwegian Radium Hospital, 177 metastatic melanoma patients treated with various chemotherapy regimens were included in a regression analysis of prognostic factors (10). Multivariate analysis identified ESR >15 mm/h as a significant prognostic factor indicating short survival with a low probability of surviving for 3 months, whereas patients with normal ESR values had a median survival of 11.5 months, with 94% surviving for 3 months. In another study, 71 patients with metastatic disease were included (11). The serum ESR levels were significantly elevated in patients with progressive disease. On logistic regression analysis, ESR was found to be of low specificity. The present study revealed that an elevated ESR level was associated with metastatic disease, but not lymph node involvement. ESR level at diagnosis was a prognostic factor

1144 Table I. Patient/disease characteristics and correlations between ESR and various clinicopathological variables. Variables n ESR (mm/h), median (range) HR (95% CI) P value No. of patients 139 22 (2 122) Age (years) 1.001 (0.985 1.018) 0.162 <50 64 20.5 (2 122) 50 75 23 (3 83) Sex 1.017 (0.999 1.035) 0.006 Male 87 19 (2 122) Female 52 30 (5 83) Site of lesion 1.005 (0.984 1.026) 0.652 Axial 69 22 (3 70) Extremities 58 19.5 (2 83) Histopathology 0.978 (0.953 1.003) 0.005 Nodular 24 27 (10 70) Others 74 19.5 (2 83) Clark's level 1.012 (0.979 1.047) 0.280 I III 19 16 (3 63) IV V 83 21 (5 83) Breslow's thickness, mm 1.016 (0.981 1.051) 0.398 <2 20 18.5 (3 62) 2 85 21 (3 83) Mitotic rate, n/mm 2 1.011 (0.986 1.036) 0.387 3 47 20 (3 83) >3 50 21 (7 83) Ulceration 1.028 (0.999 1.059) 0.115 Absent 38 20 (3 52) Present 62 22 (3 83) Neurotropism 1.013 (0.953 1.075) 0.690 Absent 58 20.5 (3 83) Present 3 25 (22 40) Vertical growth phase 0.999 (0.925 1.079) 0.988 Absent 3 15 (10 42) Present 60 20 (3 83) Lymphovascular invasion 1.026 (0.994 1.060) 0.107 Absent 72 19.5 (3 66) Present 15 26 (5 83) Tumor infiltrating lymphocytes 1.008 (0.978 1.039) 0.599 Absent 23 16 (3 83) Present 70 21.5 (3 83) Regression 1.012 (0.987 1.039) 0.350 Absent 61 20 (3 66) Present 28 21 (7 83) BRAF (V600E) mutation 0.972 (0.931 1.015) 0.171 Negative 12 27 (7 96) Positive 15 22 (6 63) Hemoglobin level 0.953 (0.931 0.975) <0.001 Low 36 35.5 (10 122) Normal 98 18 (2 83) Serum lactate dehydrogenase 1.033 (1.012 1.055) 0.003 Normal 109 21 (2 83) High 24 34 (11 122)

TAS and ERTURK: ESR IN MELANOMA 1145 Table I. Continued. Variables n ESR (mm/h), median (range) HR (95% CI) P value Lymph node metastasis 1.023 (0.994 1.054) 0.188 No 35 18 (2 52) Yes 68 22 (5 83) No. of lymph node metastasis 1.028 (0.996 1.060) 0.078 1 37 21 (5 51) 2 30 22 (5 83) Metastatic stage (M1) 1.044 (1.022 1.066) <0.001 No 99 18 (2 75) Yes 40 31.5 (2 122) Stage of metastatic disease 0.989 (0.965 1.014) 0.401 M1a b 14 37 (15 96) M1c 26 31.5 (2 122) Response to chemotherapy 0.987 (0.959 1.016) 0.390 No 20 38 (15 122) Yes 14 31.5 (6 83) ESR, erythrocyte sedimentation rate; HR, hazard ratio; CI, confidence interval. Table II. Analysis of variables in association with overall survival. Variables HR (95% CI) P value Age 1.037 (0.607 1.772) 0.893 Sex 0.677 (0.377 1.215) 0.191 Site of lesion 0.608 (0.332 1.115) 0.104 Histology 0.457 (0.211 0.993) 0.043 Clark's level 2.054 (0.717 5.881) 0.171 Breslow's thickness 1.824 (0.702 4.743) 0.211 Ulceration 2.362 (1.045 5.341) 0.034 Mitotic rate 2.972 (1.354 6.523) 0.004 Neurotropism 2.430 (0.314 18.77) 0.379 Vertical growth phase 22.06 (0.001 48851) 0.356 Lymphovascular invasion 5.681 (2.432 13.27) <0.001 Tumor infiltrating 0.886 (0.383 2.049) 0.776 lymphocytes Regression 0.892 (0.370 2.146) 0.798 BRAF (V600E) mutation 1.037 (0.397 2.709) 0.940 Hemoglobin level 0.903 (0.492 1.657) 0.740 Serum lactate 3.844 (2.104 7.020) <0.001 dehydrogenase Lymph node metastasis 4.002 (1.396 11.47) 0.005 No. of lymph node 2.729 (1.233 6.044) 0.010 metastases Metastatic disease 8.299 (4.717 14.60) <0.001 Stage of metastatic disease 1.384 (0.647 2.964) 0.398 Response to chemotherapy 0.268 (0.110 0.651) 0.002 Erythrocyte sedimentation 2.033 (1.156 3.577) 0.012 rate HR, hazard ratio; CI, confidence interval. for survival in melanoma patients and it was associated with other poor prognostic factors. A number of previously reported trials suggested that increased ESR values at presentation may adversely affect prognosis in patients with various types of cancer (2,4 9). Our findings were in agreement with the results reported by these studies. A limited number of our previously performed trials, which included small sample sizes (<100 patients), were focused specifically on melanoma and yielded similar confirmative results (12 15). The P values in those studies were significantly low, namely P<0.001 (12,14), P=0.001 (13) and P=0.002 (15). The association of systemic inflammation and patient survival may have implications for immune modulation in melanoma. The correlation of inflammatory status with metastatic disease suggests that melanoma with metastasis may be more immunogenic, thus inducing a more prominent inflammatory response. ESR, as a widely used laboratory test for evaluating the inflammatory status in clinical practice was found to be significantly associated with survival in melanoma patients, suggesting an important role of inflammation in melanoma progression. Inflammatory cells have been suggested to promote carcinogenesis, possibly by augmenting DNA damage, promoting tumor cell proliferation, and stimulating angiogenesis and metastasis. In conclusion, elevated ESR was found to be associated with metastasis and it predicts worse survival in cutaneous melanoma patients. Therefore, ESR may be a prognostic risk factor and be correlated with other powerful prognostic variables. Despite its relatively low sensitivity and specificity in monitoring disease activity, the ESR assessment is a widely used, cost effective and simple test, which may be a viable alternative to novel, more expensive methods in the prognostication of cutaneous melanoma patients. The present study was limited by its retrospective design and relatively

1146 small number of included patients. A prospective study of a larger patient sample is required to confirm the results of the present study. References 1. Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell 140: 883 899, 2010. 2. Seong MK: Prognostic inflammation score in surgical patients with colorectal cancer. J Korean Med Sci 30: 1793 1799, 2015. 3. Bochen K, Krasowska A, Milaniuk S, Kulczynska M, Prystupa A and Dzida G: Erythrocyte sedimentation rate an old marker with new applications. J Pre Clin Clin Res 5: 50 55, 2011. 4. Sengupta S, Lohse CM, Cheville JC, Leibovich BC, Thompson RH, Webster WS, Frank I, Zincke H, Blute ML and Kwon ED: The preoperative erythrocyte sedimentation rate is an independent prognostic factor in renal cell carcinoma. Cancer 106: 304 312, 2006. 5. Chen Z, Malhotra PS, Thomas GR, Ondrey FG, Duffey DC, Smith CW, Enamorado I, Yeh NT, Kroog GS, Rudy S, et al: Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clin Cancer Res 5: 1369 1379, 1999. 6. Choi ES, Kim HS and Han I: Elevated preoperative systemic inflammatory markers predict poor outcome in localized soft tissue sarcoma. Ann Surg Oncol 21: 778 785, 2014. 7. Eboreime O, Atoe K and Idemudia JO: Erythrocyte sedimentation rate and C reactive protein levels in breast cancer patients in Benin City, Nigeria. IOSR J Dent Med Sci 14: 116 119, 2015. 8. Strojnik T, Smigoc T and Lah TT: Prognostic value of erythrocyte sedimentation rate and C reactive protein in the blood of patients with glioma. Anticancer Res 34: 339 347, 2014. 9. Johansson JE, Sigurdsson T, Holmberg L and Bergström R: Erythrocyte sedimentation rate as a tumor marker in human prostatic cancer. An analysis of prognostic factors in 300 population based consecutive cases. Cancer 70: 1556 1563, 1992. 10. Heimdal K, Hannisdal E and Gundersen S: Regression analyses of prognostic factors in metastatic malignant melanoma. Eur J Cancer Clin Oncol 25: 1219 1223, 1989. 11. Deichmann M, Benner A, Bock M, Jäckel A, Uhl K, Waldmann V and Näher H: S100 Beta, melanoma inhibiting activity, and lactate dehydrogenase discriminate progressive from nonprogressive American Joint Committee on Cancer stage IV melanoma. J Clin Oncol 17: 1891 1896, 1999. 12. Tas F, Ciftci R, Kilic L, Bilgin E, Keskin S, Sen F, Yildiz I and Yasasever V: Clinical and prognostic significance of coagulation assays in melanoma. Melanoma Res 22: 368 375, 2012. 13. Tas F, Karabulut S, Serilmez M, Yildiz I, Sen F, Ciftci R and Duranyildiz D: Clinical significance of serum M30 and M65 levels in melanoma. Melanoma Res 23: 390 395, 2013. 14. Tas F, Karabulut S, Bilgin E, Tastekin D and Duranyildiz D: Clinical significance of serum fibronectin and vitronectin levels in melanoma patients. Melanoma Res 24: 475 479, 2014. 15. Tas F, Bilgin E, Erturk K and Duranyildiz D: Clinical significance of serum claudin 1 levels in melanoma patients. Melanoma Res 26: 377 381, 2016. 16. Westergren A: The technique of the red cell sedimentation reaction. Am Rev Tuberc 14: 94 101, 1926. 17. ICSH recommendations for measurement of erythrocyte sedimentation rate. International Council for Standardization in Haematology (Expert Panel on Blood Rheology). J Clin Pathol 46: 198 203, 1993.