ER- 36, a Novel Variant of ER-, is Expressed in ER-positive and -negative Human Breast Carcinomas

Similar documents
Cell Culture. The human thyroid follicular carcinoma cell lines FTC-238, FTC-236 and FTC-

Potential Value of Hormone Receptor Assay in Carcinoma In Situ of Breast

Characterization and significance of MUC1 and c-myc expression in elderly patients with papillary thyroid carcinoma

Immunohistochemical Expression of Hormone Receptors and The Histological Characteristics of Biochemically Hormone Receptor Negative Breast Cancers

Correlation between estrogen receptor β expression and the curative effect of endocrine therapy in breast cancer patients

Roles of the AIB1 protein in the proliferation and transformation of human esophageal squamous cell carcinoma

HistoCyte Laboratories Ltd

Single and Multiplex Immunohistochemistry

Claudin-4 Expression in Triple Negative Breast Cancer: Correlation with Androgen Receptors and Ki-67 Expression

Original Article CREPT expression correlates with esophageal squamous cell carcinoma histological grade and clinical outcome

(A) PCR primers (arrows) designed to distinguish wild type (P1+P2), targeted (P1+P2) and excised (P1+P3)14-

Functional assay for HER-2/neu demonstrates active signalling in a minority of HER-2/neu-overexpressing invasive human breast tumours

Expression and clinical significance of Kelch-like epichlorohydrin-associated protein 1 in breast cancer

Clinical utility of cancer biomarkers assessed by virtual microscopy

Clinicopathological significance of oestrogen receptor expression in non-small cell lung cancer

Correlation Between GATA-3, Ki67 and p53 Expressions to Histopathology Grading of Breast Cancer in Makassar, Indonesia

Breast Cancer Stem Cells in Antiestrogen Resistance. Creighton University Omaha, NE

THE STUDY ON RELATIONSHIP BETWEEN CIGARETTE SMOKING AND THE p53 PROTEIN AND P21 PROTEIN EXPRESSION IN NON-SMALL LUNG CANCER

LIST OF ORGANS FOR HISTOPATHOLOGICAL ANALYSIS:!! Neural!!!!!!Respiratory:! Brain : Cerebrum,!!! Lungs and trachea! Olfactory, Cerebellum!!!!Other:!

FAQs for UK Pathology Departments

Brief Formalin Fixation and Rapid Tissue Processing Do Not Affect the Sensitivity of ER Immunohistochemistry of Breast Core Biopsies

Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells

Patterns of E.cadherin and Estrogen receptor Expression in Histological Sections of Sudanese Patients with Breast Carcinoma

Quality in Control. ROS1 Analyte Control. Product Codes: HCL022, HCL023 and HCL024

Layered-IHC (L-IHC): A novel and robust approach to multiplexed immunohistochemistry So many markers and so little tissue

Hypoxia inducible factor-1 alpha and carbonic anhydrase IX overexpression are associated with poor survival in breast cancer patients

Dr. dr. Primariadewi R, SpPA(K)

Next-Generation Immunohistochemistry: Multiplex tissue imaging with mass cytometry

Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma

ISPUB.COM. C Choccalingam, L Rao INTRODUCTION ESTROGEN AND PROGESTERONE RECEPTORS

Immunohistochemistry in Breast Pathology- Brief Overview of the Technique and Applications in Breast Pathology

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

Development of important genes during breast carcinogenesis

RCD24, B7-H4 and PCNA expression and clinical significance in ovarian cancer

Estrogen Receptor, Progesterone Receptor, and Her-2/neu Oncogene Expression in Breast Cancers Among Bangladeshi Women

Strep-tag HRP Detection Kit (Horse Radish Peroxidase)

CANCER. Clinical Validation of Breast Cancer Predictive Markers

P atients with primary breast cancer have an increased risk of developing contralateral breast cancer1. When

Phospho-AKT Sampler Kit

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer

The Effect of Delay in Fixation, Different Fixatives, and Duration of Fixation in Estrogen and Progesterone Receptor Results in Breast Carcinoma

# Best Practices for IHC Detection and Interpretation of ER, PR, and HER2 Protein Overexpression in Breast Cancer

Available Online through Research Article

Technique and feasibility of a dual staining method for estrogen receptors and AgNORs

Abstract In the female dog, the mammary gland tumor is the most prevalent tumor. The Progesterone Receptor exists in two independently regulated

Assessment Run B HER-2 IHC. HER-2/chr17 ratio**

Product Introduction. Product Codes: HCL029, HCL030 and HCL031. Issue

Roles of transcriptional factor Snail and adhesion factor E-cadherin in clear cell renal cell carcinoma

Assessment Run GATA3

TITLE: Cyclin E, A Powerful Predictor of Survival in Breast Cancer-A Prospective Study

RNA preparation from extracted paraffin cores:

SMH (Myosin, smooth muscle heavy chain)

Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value

Triple Negative Breast Cancer

In some regions of the world, breast cancer mortality beginning to fall due to earlier

Diseases of the breast (2 of 2) Breast cancer

Estrogen receptor (ER)

Contents 1 The Windows of Susceptibility to Breast Cancer 2 The So Called Pre-Neoplastic Lesions and Carcinoma In Situ

Estrogen receptor (ER)

Anti-PD-L1 antibody [28-8] ab205921

Anti-Lamin B1/LMNB1 Picoband Antibody

Product Datasheet. CD133 Antibody NB Unit Size: 0.1 mg

Comparative Study of Expression of Smad3 in Oral Lichen Planus and Normal Oral Mucosa

Comparison of Immunohistochemical and Fluorescence In Situ Hybridization Assessment of HER-2 Status in Routine Practice

Positive nin one binding protein expression predicts poor outcome in prostate cancer

IMMUNOHISTOCHEMICAL EXPRESSION OF TISSUE INHIBITOR OF METALLOPROTEINASE-1 (TIMP-1) IN INVASIVE BREAST CARCINOMA

Papillary Lesions of the Breast A Practical Approach to Diagnosis. (Arch Pathol Lab Med. 2016;140: ; doi: /arpa.

WT1, Estrogen Receptor, and Progesterone Receptor as Markers for Breast or Ovarian Primary Sites in Metastatic Adenocarcinoma to Body Fluids

External Quality Assessment of melanocytic marker analyses NordiQC experience

Rabbit Polyclonal antibody to NFkB p65 (v-rel reticuloendotheliosis viral oncogene homolog A (avian))

TITLE: The Role of hcdc4 as a Tumor Suppressor Gene in Genomic Instability Underlying Prostate Cancer

General Laboratory methods Plasma analysis: Gene Expression Analysis: Immunoblot analysis: Immunohistochemistry:

"".0.. 2oo 0T0h 7 -

Immunohistochemical classification of breast tumours

Product Datasheet. DARC Antibody NB Unit Size: 0.1 mg. Store at -20C. Avoid freeze-thaw cycles. Publications: 5

Supplemental figure 1. PDGFRα is expressed dominantly by stromal cells surrounding mammary ducts and alveoli. A) IHC staining of PDGFRα in

Expression and Significance of GRP78 and HER-2 in Colorectal Cancer

NordiQC External Quality Assurance in Immunohistochemistry

Immunohistochemistry of Estrogen and Progesterone Receptors Reconsidered Experience With 5,993 Breast Cancers

Clinical significance of CD44 expression in children with hepatoblastoma

Estrogen Receptor Clone 6F11 Liquid Concentrate Primary Antibody, Novocastra

Breast cancer: Antibody selection, protocol optimzation controls and EQA

Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe

Estrogen receptor (ER)

The prognostic role of PRUNE2 in leiomyosarcoma

LQB383 Testbank. Week 8 Cell Communication and Signaling Mechanisms

Cancers of unknown primary : Knowing the unknown. Prof. Ahmed Hossain Professor of Medicine SSMC

Evaluation of cyclin-dependent kinase inhibitor p27 and Bcl-2 protein in nonsmall cell lung cancer

RESEARCH COMMUNICATION. High Ki-67 Expression is a Poor Prognostic Indicator of 5-Year Survival in Patients with Invasive Breast Cancer

TSH Receptor Monoclonal Antibody (49) Catalog Number MA3-218 Product data sheet

Supplementary Information Titles Journal: Nature Medicine

HER2 CISH pharmdx TM Kit Interpretation Guide Breast Cancer

PBMC from each patient were suspended in AIM V medium (Invitrogen) with 5% human

P16 GENE EXPRESSION IN OVARIAN EPITHELIAL CYSTADENOCARCINOMA

Product Datasheet. IGF-I R Antibody (3G5C1) NB Unit Size: 0.1 ml

Biochemistry of Cancer and Tumor Markers

Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

Supplemental Figure 1

Diabetes Mellitus and Breast Cancer

Transcription:

ER- 36, a Novel Variant of ER-, is Expressed in ER-positive and -negative Human Breast Carcinomas LISA M.J. LEE 1, JIANG CAO 3, HAO DENG 4, PING CHEN 3, ZORAN GATALICA 1 and ZHAO-YI WANG 1,2 1 Department of Pathology, and 2 Department of Surgery, Creighton University Medical School, Omaha, NE, U.S.A.; 3 Sir Run Run Shaw Clinical Research Institute, Zhejiang University, Hangzhou; 4 Department of Pathology and Pathophysiology, School of Medical and Life Sciences, Jianghan University, Wuhan, P.R. China Abstract. Background: The status of estrogen receptor-alpha (ER- ) expression is one of the most important diagnostic and prognostic factors of breast cancer. ER- is a 66-kDa, ligandinduced transcription factor, characteristically detected in the cell nucleus by immunohistochemistry (IHC) in breast cancer specimens. Recently, we identified and cloned a 36-kDa novel variant of ER-, ER- 36, which lacks both transactivation domains and functions as a dominant-negative effector of transactivation activities of the full-length ER- (ER- 66) and ER-. ER- 36 primarily localizes to the cytoplasm and plasma membrane, and responds to both estrogens and antiestrogens by transducing membrane-initiated signaling cascades, stimulating proliferation and possibly contributing to a more aggressive phenotype in breast carcinomas. ER- 36 is expressed in established ER-positive and -negative breast cancer cell lines. However, its expression and localization in breast cancer specimens have not been evaluated. As ER- 36 may play important roles in breast cancer tumorigenesis, it is of clinical importance to examine the expression pattern of ER- 36, in addition to that of ER- 66, for more comprehensive molecular profiling of breast carcinomas. Patients and Methods: Thirty-one breast cancer patient tissues were evaluated for ER- 36 and ER- 66 protein expression status by IHC and six additional patient tissue samples were analyzed by Western blot analysis using antibodies specific to ER- 66 or ER- 36. Results: Our experiments reveal a cytoplasmic and plasma-membraneassociated expression pattern of ER- 36 in both ER- 66- positive and -negative breast cancer samples. Furthermore, ER- Correspondence to: Zhao-Yi Wang, Department of Surgery, Creighton University Medical School, Criss III, Room 255, 2500 California Plaza, Omaha, NE 68178, U.S.A. Fax: +1 402 280 3543, e-mail: zywang@creighton.edu Key Words: Estrogen receptor, ER- 36, ER-negative breast cancer, ER- 66. 36 expression appears to be associated with decreasing nuclear and/or cytoplasmic ER- 66 expression, suggesting its potential use as a diagnostic and prognostic marker. Conclusion: ER- 36 is a novel isoform of ER-, frequently expressed in ER- 66- negative cancers, whose detection may provide additional information for better diagnosis and prognosis. Estrogen receptor-alpha (ER- ) expression profiling in breast cancer patients is one of the most important determinants of a cancer patient susceptibility to endocrine (anti-estrogen) therapy (1). ER- expression is currently assessed by immunohistochemical methods (IHC) using commercial ER- antibodies. Approximately 70% of breast cancer cases are ER- - or (ER)-positive, and the remaining (30%), ER-negative (2). In general, patients with ERpositive cancers respond favorably to anti-estrogens such as tamoxifen while ER-negative patients do not (3). However, up to thirty percent of ER-positive patients are unresponsive to anti-estrogen therapy, while some ERnegative breast cancer patients do respond favorably to tamoxifen treatment (4-5). The contradiction to the conventional theory may be explained by potential differential expression of ER variants which may not be detected by the commercial ER antibodies against ER-. ER- 36, a 36 kda protein, is a variant of the full-length 66 kda ER- (ER- 66), which lacks ligand-dependent and -independent transactivation domains (AF-1 and AF-2) but retains portions of ligand- and DNA-binding domains (6, 7). Unlike ER- 66, which is often detected in the cell nucleus, ER- 36 mainly localizes in the cytoplasm and plasma membrane (7). As a result, ER- 36 transduces membraneinitiated estrogen signaling cascades and functions as a dominant-negative effector of estrogen-dependent and independent transactivation induced by ER- 66 (7). ER- 36 expression was detected in both ER- 66-positive and - negative breast cancer cell lines (7). Here, we examined thirty-one cases of breast carcinoma tissues for the potential 0250-7005/2008 $2.00+.40 479

differential ER- 66 and ER- 36 expression patterns by immunohistochemistry and six cases by Western blot analysis, using antibodies specific to ER- 66 or ER- 36. Patients and Methods Cancer tissue samples. Formalin-fixed, paraffin-embedded blocks of breast cancer tissues (31 cases, from 2003 to 2005) were randomly selected and provided by the Department of Pathology of the Run Run Shaw Hospital, Hangzhou, P.R. China, after approval of the Institutional Review Board. Cancer tissues from these patients were all in stages II, III and IV of breast cancer. Snap- frozen breast cancer tissues from six additional patients were randomly selected from samples collected by the Department of Pathology of the Run Run Shaw Hospital and were used in Western blot analysis. None of the thirty-seven patients had received anti-estrogen therapy prior to surgery and no follow-up data were available. Immunohistochemistry assay. Immunohistochemistry assay for ER- 66 and ER- 36 expression was performed on the paraffin-embedded tissue sections using the peroxidase labeled streptavidin-biotin method and a commercially available ER- 66 antibody (RDI-ERECPNabrx; Research Diagnostics Inc., Concord, MA, USA) that recognizes the N-terminal of ER- 66. ER- 36-specific antibody was custom-made by Alpha Diagnostic International (San Antonio, TX, USA) against the 20 unique amino acids at the C-terminal of ER- 36 (7). Immunohistochemical staining was performed using UltraSensitiveì S-P kits (Maixin-Bio, P.R. China) according to the manufacturer's instructions, with specific antibodies against ER- 66 or ER- 36 as primary antibodies. Briefly, slides with 5 Ìm-thick tissue sections were deparaffinized and hydrated in sequential treatment of xylene, ethanol and water. Citrate buffer (0.01 M citric acid, ph 6.0) was used to retrieve antigens in a heated pressure cooker. Endogenous peroxidase activity was quenched with 3% H 2 O 2 before anti-er- 66 (at 1:300) or anti-er- 36 (at 1:100) antibody was applied. Biotinylated secondary antibody and streptavidin-horseradish peroxidase were added subsequently, and 3,3'-diaminobenzidine tetrahydrochloride was used as substrate for chromogenic visualization before counterstaining with hematoxylin. The extent and cellular distribution of staining was evaluated by two investigators on a double-headed microscope. ER expression was defined as positive if more than 10% of tumor cells stained positive. Western blot analysis. Frozen cancer tissues were homogenized in T- PER tissue protein extract reagent (Pierce, Rockford, IL, USA). The protein concentrations of the lysates were measured and proteins were denatured by boiling in a gel-loading buffer and separated by SDS/PAGE in 10% gels. Protein from a normal mammary gland was purchased from Clontech Laboratories, Inc. (Palo Alto, CA, USA). Equal amounts of proteins were analyzed by Western blot analysis as described elsewhere (7), and the same blot was stripped and reprobed with an anti-actin antibody to ensure equal loading. Statistical analysis. The SURVEYFREQ procedure of the SAS statistical package (SAS, Cary, NC, USA) was used to calculate the frequencies, 95% confidence intervals and statistical significance of potential differences in the frequencies of the four phenotypes in terms of ER- 66 and ER- 36 expression in all 37 patients (31 specimens for immunohistochemistry assay and 6 tissue samples for Western blot analysis). Figure 1. Schematic illustration of the protein structures of estrogen receptors ER- 66 and ER- 36. The specific antibodies used and their epitopes are also indicated. Results ER- 36 is expressed in both ER- 66-positive and -negative breast cancer patients. To determine the expression pattern of ER- 36 in breast cancer tissues, immunohistochemistry (IHC) assays were performed on tissue samples from 31 breast cancer patients using an ER- 36-specific antibody raised against the 20 unique amino acids at the C-terminal of ER- 36 (Figure 1). The expression patterns of ER- 66 in the same tissue samples were examined with an ER- 66-specific antibody that recognizes the N-terminal of the ER- 66 (Figure 1). The results from our IHC assays showed that ER- 36 was expressed in both ER- 66-positive and -negative breast cancer cases (Table I), consistent with our previous finding using established breast cancer cell lines (7). All the four possible phenotypes (ER- 66 alone, ER- 36 alone, ER- 66 and ER- 36, and absence of both) were present among breast cancer patients. The frequencies of these four phenotypes are not significantly different (p=0.595). The current clinical evaluation of ER status only checks the expression profile of ER- 66, not ER- 36, which may underestimate the true ER status of the tumors. Western blot analysis of breast cancer tissue lysates from the six randomly selected patients showed co-expression of ER- 66 and ER- 36 in three out of six cases (Figure 2). Expression of ER- 36 alone was observed in two out of six cases, while only one case of breast cancer expressed neither of the receptors (Figure 2). These data further indicated that a subset of breast carcinomas lacked ER- 66 expression (i.e. classified as ER-negative breast cancer) but in fact expressed ER- 36. The IHC assay also confirmed that ER- 66 was not detected in the two specimens that highly expressed ER- 36 (Figure 3). Table I also shows the frequencies and 95% confidence intervals (95% C.I.) of the four phenotypes when results from the IHC assays and Western blot analyses were combined (total thirty-seven patients). Again, there was no significant difference in the frequencies among the four phenotypes (p=0.526); the frequency of ER-positive cases was 480

Lee et al: ER- 36 Expression in Breast Cancer Table I. Frequency of ER- 66 and ER- 36 expression in 37 breast cancer cases. ER Expression Number % (95% C.I.) Clinical ER- status Comprehensive ER- status % (95% C.I.) % (95% C.I.) ER- 66 7 19 (6-32) 51 (34-68) ER-positive 70 (55-86) ER-positive* ER- 66 & ER- 36 12 32 (17-48) ER- 36 7 19 (6-32) 49 (32-66) ER-negative None 11 30 (14-45) 30 (14-45) ER-negative C.I., confidence interval; *p<0.02 compared to ER-negative. Clinical ER- status is evaluated based on ER- 66 expression alone. Comprehensive ER- status is evaluated based on expression of both ER- 66 and ER- 36. significantly higher than that of ER-negative cases (p=0.014). IHC further confirmed the existence of breast cancer tissues that express abundant amounts of ER- 36 (Figure 3 A, C) but little or no ER- 66 expression (Figure 3B, D), which would be considered clinically ER-negative in usual practice. ER- 36 localizes to the cytoplasm and plasma membrane. ER- 66 is a ligand-activated transcription factor, thus it is firmly established that ER- 66 localizes to the cell nucleus and, as such, pathologists usually only score nuclear staining of ER as a positive signal in breast cancer tissues prepared for IHC. Our previous molecular studies revealed a different localization pattern of ER- 36, primarily in the cytoplasm and plasma membrane of cells (7). We further examined whether this localization pattern of ER- 36 would be confirmed in breast cancer tissues. IHC assays of the thirtyone breast cancer tissues confirm our previous studies with established breast cancer cell lines in that ER- 36 is primarily expressed in the cytoplasm and plasma membrane with little or no nuclear staining (Figure 4C, D). Surprisingly, a weak cytoplasmic expression of ER- 66 was observed frequently in ER- 36-expressing breast cancer tissues (Figure 4B). Discussion Results from this study demonstrated that ER- 36 is expressed in breast cancer tissues of subsets of ER (ER- 66)-positive and -negative patients, consistent with findings from our previous experiments using established breast cancer cell lines (7). All four possible phenotypes in terms of expression of ER- 66 and ER- 36 were present with similar frequencies among the breast cancer patients. Many breast cancer patients that are clinically ER-negative in the currently medical practice (determined by lack of nuclear ER- 66 expression) may express ER- 36 although some are truly negative for both ER- 66 and ER- 36. Thus, our data reveal the potential shortcomings of routine clinical ER status evaluation based on ER- 66 expression alone and offer new information potentially useful for treatment of ER-negative breast cancer patients. However, it is Figure 2. Western blot analysis of the expression of ER- 66 and ER- 36 in human breast cancer samples with anti-er- 66 or anti-er- 36 specific antibodies. Lane 1: normal mammary gland; Lane 2: infiltrating ductal carcinoma; Lane 3; infiltrating ductal carcinoma; Lane 4: Invasive ductal carcinoma; Lane 5: infiltrating lobular carcinoma; Lane 6: infiltrating lobular carcinoma; Lane 7: Ductal carcinoma in situ. The same blot was stripped and reprobed with an anti-actin antibody. currently unclear whether patients with breast cancer positive for both ER- 36 and ER- 66, or ER- 36 alone, would respond to endocrine therapy more favorably than patients with breast cancer positive for ER- 66 alone. In this report, we also confirmed in breast cancer patients' tissue that ER- 36 localizes to the plasma membrane and cytoplasm with little or no nuclear staining, which is consistent with results from our previous report using established breast cancer cell lines (7). A surprising new finding is that the cytoplasmic expression of ER- 66 was frequently observed in ER- 36-positive breast cancer tissues while in breast cancer tissues positive for ER- 66 alone, it is primarily expressed in the cell nucleus. A similar phenomenon of cytoplasmic ER- 66 expression was observed in breast cancer cells with longterm treatment of tamoxifen eventually leading to drugresistance (8). These findings suggest that the cytoplasmic expression of ER- 66, which is often neglected in the clinical evaluation of ER status, may be involved in the mechanism of tamoxifen resistance in breast cancer. It may be important to evaluate ER- 36 expression in breast cancer tissues from patients who are undergoing tamoxifen therapy. The finding also suggests a possible regulatory interaction between the two 481

Figure 3. Immunohistochemistry demonstrating ER- 36 and ER- 66 expression in two breast cancer cases. A & B, Tissue from one patient showing strong, cytoplasmic and membrane expression of ER- 36 (A) but little or no ER- 66 (B) expression. C & D. Tissue from another patient showing distinct membrane expression of ER- 36 (C) but no characteristic ER- 66 nuclear expression (D) (all at x400 magnification). isoforms of ER in which ER- 36 may facilitate translocation of ER- 66 from the nucleus to the cytoplasm, or simply retain ER- 66 in the cytoplasm. Previously, Leclercq's group reported cytoplasmic localization of iodinated estradiol- labeled ER isoforms that are devoid of amino-terminal domains in human breast carcinomas (9). They also observed electrophoresed estrogen receptor bands with variable intensity and different molecular weights of 66, 50, 37 and 28 kda in almost all cytosol from primary breast cancer (10). Although smaller molecular weight ER isoforms that localized in the cytoplasm in these studies were considered degradation products, in light of our previous and current studies, those proteins may have been the true, functional variants of ER. Furthermore, sequential transplantations of MXT mouse mammary tumors in nude mice resulted in an apparent passage of a 35 kda ER from the nucleus to the cytoplasm with a concomitant progressive loss of the original ER, ER- 66, suggesting the relevance of the 35 kda ER isoform expression in aggressive breast tumors (11). As ER- 36 has been implicated in membrane-initiated mitogenic estrogen signaling and is thought to mediate estrogen-stimulated proliferation (7), it is tempting to speculate that breast cancer patients with both ER- 66 and ER- 36 expression may represent the breast cancer population that is in transition to a more malignant phenotype or an advanced stage of breast cancer progression. On the other hand, breast cancer tissues only expressing ER- 36 may represent the subset of patients that are diagnosed as ER-negative, but could still respond to mitogenic estrogen signaling and anti-estrogen treatment. Further investigations to determine the therapeutic and prognostic implications of ER- 36 expression in breast cancer in association with patients' clinical course and outcome will be critical for improvements in overall breast cancer care and management. Acknowledgements We thank Dr. Gordon Gong for his help with statistical analysis and for critically reading the manuscript. Grant support: NIH grants CA84328 (Z.Y. Wang) and DK070016 (Z.Y.Wang), the 482

Lee et al: ER- 36 Expression in Breast Cancer Figure 4. Immunohistochemical results of human breast carcinoma tissue, showing different localization patterns of ER- 66 and ER- 36 in breast carcinoma cells from the same patient. A, H&E at x200. B, IHC using an ER- 66-specific antibody, showing diffuse and weak cytoplasmic staining of breast carcinoma cells with little nuclear staining at x200. C & D, IHC using an ER- 36 specific antibody at x200 and at x600, respectively, revealing the cytoplasmic and membrane expression pattern of ER- 36 in breast carcinoma cells. Susan G. Komen Breast Cancer Foundation BCTR81906 (Z.Y. Wang), and the Nebraska Tobacco Settlement Biomedical Research Program Award (LB-595) to (Z.Y. Wang). References 1 Katzenellenbogen BS and Frasor J: Therapeutic targeting in the estrogen receptor hormonal pathway. Semin Oncol 31: 28-38, 2004. 2 Hanstein B, Djahansouzi S, Dall P, Beckmann MW and Bender HG: Insights into the molecular biology of the estrogen receptor define novel therapeutic targets for breast cancer. E J Endo 150: 243-255, 2004. 3 Dickson RB and Lippman ME: Control of human breast cancer by estrogen, growth factors, and oncogenes. Breast Cancer Res Treat 40: 119-165, 1988. 4 Jacquemier JD, Hassoun J, Torrente M and Martin PM: Distribution of estrogen and progesterone receptors in healthy tissue adjacent to breast lesions at various stages immunohistochemical study of 107 cases. Breast Cancer Res Treat 15: 109-117, 1990. 5 Clarke R, Leonessa F, Welch JN and Skaar TC: Cellular and molecular pharmacology of antiestrogen action and resistance. Pharmacology Rev 53: 25-71, 2001. 6 Wang ZY, Zhang XT, Shen P, Loggie BW, Chang Y and Deuel TF: Identification, cloning, and expression of human estrogen receptor-alpha36, a novel variant of human estrogen receptoralpha66. Biochem Biophys Res Commun 336: 1023-1027, 2005. 7 Wang ZY, Zhang XT, Shen P, Loggie BW, Chang Y and Deuel TF: A variant of estrogen receptor-alpha, her-alpha36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc Natl Acad Sci USA 103: 9063-9068, 2006. 8 Fan P, Wang JP, Santen RJ and Yue W: Long-term treatment with tamoxifen facilitates translocation of estrogen receptor a out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 67: 1352-1360, 2007. 9 Maaroufi Y, Lacroix, M, Lespagnard L, Journé F, Larsimont D and Leclercq G: Estrogen receptor of primary breast cancers: evidence for intracellular proteolysis. Breast Cancer Res 2: 444-454, 2000. 10 Leclercq G: Molecular forms of the estrogen receptor in breast cancer. J Steroid Biochem Mol Biol 80: 259-272, 2002. 11 Piccart M, Trivedi S, Maaroufi Y, Debbaudt A, Veenstra S and Leclercq G: Evolution towards hormone independence of the MXT mouse mammary tumors associated with a gradual change in its estrogen receptor molecular polymorphism. Cancer Biochem Biophys 16: 169-182, 1998. Received September 26, 2007 Revised November 21, 2007 Accepted December 11, 2007 483