The prevalence of malocclusion among 7 15-year-old Lithuanian schoolchildren

Similar documents
INTRODUCTION: AIMS AND OBJECTIVE:

The need for orthodontic treatment among and year-old Lithuanian schoolchildren

Malocclusion and upper airway obstruction

ORTHODONTICS Treatment of malocclusion Assist.Lec.Kasem A.Abeas University of Babylon Faculty of Dentistry 5 th stage

Frequency of Malocclusion in an Orthodontically Referred Jordanian Population

Attachment G. Orthodontic Criteria Index Form Comprehensive D8080. ABBREVIATIONS CRITERIA for Permanent Dentition YES NO

MEDICAL ASSISTANCE BULLETIN COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF PUBLIC WELFARE

Assessment of Malocclusion in school children of Karnataka State between the age groups of years and years.

Prevalence of Malocclusion among School children in Benin City, Nigeria

An Analysis of Malocclusion and Occlusal Characteristics in Nepalese Orthodontic Patients

Correlation Between Naso Labial Angle and Effective Maxillary and Mandibular Lengths in Untreated Class II Patients

Dr Robert Drummond. BChD, DipOdont Ortho, MChD(Ortho), FDC(SA) Ortho. Canad Inn Polo Park Winnipeg 2015

ASSOCIATION OF MAXILLARY TRANSVERSE DISCREPANCY AND IMPACTED MAXILLARY CANINES

Problems of First Permanent Molars - The first group of permanent teeth erupt in the oral cavity. - Deep groove and pit

Research methodology University of Turku, Finland

Orthodontics. Anomalies

Corporate Medical Policy

ORIGINAL PAPERS. Department of Dentofacial Orthopedics and Orthodontics, Poznan University of Medical Science, Poland 2

Changes of the Transverse Dental Arch Dimension, Overjet and Overbite after Rapid Maxillary Expansion (RME)

ADOLESCENT TREATMENT. Thomas J. Cangialosi. Stella S. Efstratiadis. CHAPTER 18 Pages CLASS II DIVISION 1 WHY NOW?

A SIMPLE METHOD FOR CORRECTION OF BUCCAL CROSSBITE OF MAXILLARY SECOND MOLAR

The feasibility of Index of Orthodontic Treatment Need (IOTN) in labial segment malocclusion among 8-10 years old

MALAYSIAN DENTAL JOURNAL. Orthodontic Treatment Need Among Dental Students Of Universiti Malaya And National Taiwan University

Arch dimensional changes following orthodontic treatment with extraction of four first premolars

Mesial Step Class I or Class III Dependent upon extent of step seen clinically and patient s growth pattern Refer for early evaluation (by 8 years)

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

Treatment planning of nonskeletal problems. in preadolescent children

ORTHODONTIC INITIAL ASSESSMENT FORM (OIAF) w/ INSTRUCTIONS

Anterior Open Bite Correction with Invisalign Anterior Extrusion and Posterior Intrusion.

Dental Anatomy and Occlusion

APPENDIX A. MEDICAID ORTHODONTIC INITIAL ASSESSMENT FORM (IAF) You will need this scoresheet and a disposable ruler (or a Boley Gauge)

Maxillary Expansion and Protraction in Correction of Midface Retrusion in a Complete Unilateral Cleft Lip and Palate Patient

Applicability of Pont's Index in Orthodontics

An Anterior Tooth Size Comparison in Unilateral and Bilateral Congenitally Absent Maxillary Lateral Incisors

The following standards and procedures apply to the provision of orthodontic services for children in the Medicaid/NJ FamilyCare (NJFC) programs.

Volume 22 No. 14 September Dentists, Federally Qualified Health Centers and Health Maintenance Organizations For Action

UNILATERAL UPPER MOLAR DISTALIZATION IN A SEVERE CASE OF CLASS II MALOCCLUSION. CASE PRESENTATION. 1*

Orthodontic treatment outcome in specialized training Center in Khartoum, Sudan

Research Article The Need for Orthodontic Treatment among Vietnamese School Children and Young Adults

Objective: There is little information regarding the mesiodistal angulation of permanent teeth

Relationship between tooth size discrepancies and malocclusion Kristina Lopatiene, Aiste Dumbravaite

Early treatment. Interceptive orthodontics

Class II Correction with Invisalign Molar rotation.

Peninsula Dental Social Enterprise (PDSE)

Is Herbst-Multibracket Appliance Treatment More Efficient in Adolescents than in Adults?

A Clinical and Cephalometric Study of the Influence of Mandibular Third Molars on Mandibular Anterior Teeth

Alveolar Growth in Japanese Infants: A Comparison between Now and 40 Years ago

Extraction Planning in Orthodontics

Preventive Orthodontics

Mandibular incisor extraction: indications and long-term evaluation

ISW for the Treatment of Bilateral Posterior Buccal Crossbite

Class II Correction using Combined Twin Block and Fixed Orthodontic Appliances: A Case Report

Prevalence of malocclusion and orthodontic treatment needs among 16 and 17 year-old school-going children in Shimla city, Himachal Pradesh

Significant improvement with limited orthodontics anterior crossbite in an adult patient

Prevalence and distribution by gender of occlusal characteristics in a sample of Italian secondary school students: a cross-sectional study

Orthodontic Outcomes Assessment Using the Peer Assessment Rating Index

Instability of tooth alignment and occlusal relationships

Arrangement of the artificial teeth:

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

A Study to determine the Prevalence of Malocclusion and Chief Motivational Factor for Desire of Orthodontic Treatment in Jaipur City, India

Different Non Surgical Treatment Modalities for Class III Malocclusion

Clinical Management of Tooth Size Discrepanciesjerd_

Relapse of maxillary anterior crowding in Class I and Class II malocclusion treated orthodontically without extractions

The role of removable appliances in contemporary orthodontics S. J. Littlewood, 1 A. G. Tait, 2 N. A. Mandall, 3 and D. H.

Gentle-Jumper- Non-compliance Class II corrector

EUROPEAN SOCIETY OF LINGUAL ORTHODONTICS

An Effectiv Rapid Molar Derotation: Keles K

Objective: There is little information regarding the mesiodistal angulation of permanent teeth

Invisalign technique in the treatment of adults with pre-restorative concerns

#45 Ortho-Tain, Inc PREVENTIVE ERUPTION GUIDANCE -- PREVENTIVE OCCLUSAL DEVELOPMENT

Palatal Depth and Arch Parameter in Class I Open Bite, Deep Bite and Normal Occlusion

Early Mixed Dentition Period

Evaluation of Mandibular Third Molar Positions in Various Vertical Skeletal Malocclusions

The Tip-Edge appliance and

Clinical UM Guideline

Orthodontic treatment needs in an urban Iranian population, an epidemiological study of year old children

Archived SECTION 14 - SPECIAL DOCUMENTATION REQUIREMENTS

A Cross-sectional Epidemiological Survey on Prevalence of Malocclusion in Government, Aided and Private School Children of Karnataka

ISW for the treatment of adult anterior crossbite with severe crowding combined facial asymmetry case

Evaluation for Severe Physically Handicapping Malocclusion. August 23, 2012

Incisal and Soft Tissue Effects of Maxillary Premolar Extraction in Class II Treatment

Definition and History of Orthodontics

Management of Crowded Class 1 Malocclusion with Serial Extractions: Report of a Case

Treatment of Long face / Open bite

The Tip-Edge Concept: Eliminating Unnecessary Anchorage Strain

Treatment Planning for the Loss of First Permanent Molars D.S. GILL, R.T. LEE AND C.J. TREDWIN

THSteps Orthodontic Dental Benefit to Change March 1, 2012

The resolution of mandibular incisor

Treatment of Angle Class III. Department of Paedodontics and Orthodontics Dr. habil. Melinda Madléna associate professor

Removable appliances

The fact that mandibular incisor irregularity

Experience with Contemporary Tip-Edge plus Technique A Case Report.

Correction of a maxillary canine-first premolar transposition using mini-implant anchorage

Treatment times of Class II malocclusion: four premolar and non-extraction protocols

Jamal K. Mahmoud, Dept. of Surgery, College of Dentistry, University of Tikrit. Maxillary dental arch asymmetry in the mixed dentition

NHS Orthodontic E-referral Guidance

Effect of the lower third molars on the lower dental arch crowding Šidlauskas Antanas, Trakinienė Giedrė

Dental Services Referral Form- Orthodontic Clinic

Prevalence of malocclusions in the early mixed dentition and orthodontic treatment need

Ortho-surgical Management of Severe Vertical Dysplasia: A Case Report

Transcription:

The prevalence of malocclusion among 7 15-year-old Lithuanian schoolchildren 147 Department of Orthodontics, Kaunas University of Medicine, Lithuania Key words: malocclusion; prevalence. Summary. The epidemiological data on the prevalence of malocclusion is an important determinant in planning appropriate levels of orthodontic services. The occurrence of occlusal anomalies varies between different countries, ethnic and age groups. The aim of this study was to describe the prevalence of malocclusion among Lithuanian schoolchildren in the 7 9-, 10 12-, and 13 15-year age groups assessing occlusal morphology. The study included 1681 schoolchildren aged 7 15 years. The crowding, spacing, overbite, overjet, the relationship of the first upper and lower molars according Angle s classification, and posterior crossbite were assessed. The study demonstrated that only 257 children had normal occlusion, and 44 had undergone orthodontic treatment among them. The greatest overjet in the studied contingent was 11 mm, and the negative overjet 3 mm. The overbite ranged between 0 and 6 mm with a mean of 2.29±1.23 mm. Posterior crossbite was recorded in 148 children (8.8%). This study showed that the prevalence of malocclusion among 7 15-year-old Lithuanian schoolchildren is 84.6%. The most common malocclusion was dental crowding. The upper dental arch crowding was registered for 44.1% and lower for 40.3% of all schoolchildren. The class I molar relationship was detected in 68.4% of the subjects, class II in 27.7%, and class III in 2.8%. Introduction The epidemiological data on the prevalence of malocclusion is an important determinant in planning appropriate levels of orthodontic services. The occurrence of occlusal anomalies varies between different countries, ethnic and age groups (1 6). The incidence of malocclusion has been reported to vary from 11% up to 93% (2 5). These significant variations are difficult to explain. The factors such as study design, subjects age, sample size, and diagnostic criteria must be considered when assessing malocclusion and comparing results (6, 7). The diagnostic criteria are the key factor determining the prevalence of malocclusion. Majority of epidemiological studies are based on occlusal indices. Numerous indices such as IOTN, DAI, ICON have been developed to rank or score the deviation of malocclusion from the normal (9 12). Majority of these indices assess not only severity of dental occlusion but also include evaluation of the aesthetics. The aesthetic component of the indices is more subjective and less readily measurable than the morphological characteristics. The subjectivity of indices used to record orthodontic anomalies, their questionable validity and reliability may contribute to inconsistency of results. An alternative approach to the use of indices is a registration of measurable occlusal characteristics such as overjet, overbite, crowding, crossbite, and other. The aim of this study was to describe the prevalence of malocclusion among Lithuanian schoolchildren in the 7 9-, 10 12-, and 13 15-year age groups assessing occlusal morphology. Materials and methods The study included 1681 schoolchildren aged 7 15 years from five schools. The distribution of subjects by age and gender is presented in Fig. 1. All children were examined by one orthodontist (K.L., author of article) in a dental setting in schools. The crowding, spacing, overbite, overjet, relationship of the first upper and lower molars according to Angle s classification, and posterior crossbite were recorded. The crowding was assessed by subtracting space required for tooth alignment from the dental arch length (Fig. 2). The lack of space not exceeding 2 mm was considered as no crowding, 2.1 4.0 mm mild crowding, 4.1 7.0 mm moderate crowding, more than 7.1 mm severe crowding. Surplus space in the dental arch exceeding 2 mm was considered as spacing. Overjet (OJ), the distance between the edge of the Correspondence to K. Lopatienė, Pašilės 114-2, 51302 Kaunas, Lithuania. E-mail: klopatiene@zebra.lt

148 13 15-year-olds 35% Girls 7 9-year-olds 27% 13 15-year-olds 36% Boys 7 9-year-olds 24% 10 12-year-olds 38% 10 12-year-olds 40% Fig. 1. Distribution of the contingent according to age and gender A B Fig. 2. Evaluation of dental crowding The difference between available and required space in the dental arch (measured in millimeters). A space required is the sum of the mesiodistal widths of all individual teeth; B measurement of available space. upper central incisor and the labial surface of the lower central incisor, was measured in millimeters. The overjet from 0 mm to 3.5 mm was accepted as normal. The increased OJ from the point of clinical relevance was divided into three groups: from 3.5 to 6 mm, from 6 to 9 mm, and more than 9 mm, respectively. Overbite (OB), the perpendicular distance from the edge of the central lower incisor to the upper central incisor edge, was measured in millimeters and considered as open bite (<0 mm), normal overbite (from 0 to 3.0 mm), and deep bite (more than 3.0 mm). The relationship of the first upper and lower molars was evaluated according to Angle s classification: class I, the mesiobuccal cusp of the first upper molar occludes in the buccal groove of the first lower molar; class II, the first lower molar is distally positioned relative to the first upper molar; and class III, the first lower molar is mesially positioned relative to the first upper molar. Posterior crossbite was evaluated assessing transversal relationship of the upper and lower premolars and molars. The normal transversal relationship was considered when the tips of the buccal cusps of the lower teeth occlude with the central fossae of the opposing upper premolars and molars. The crossbite was considered when the tips of the buccal cusps of one or more upper molar or premolar occlude in the central fossae of the lower molars or premolars, either buccal aspects of buccal cusps of the upper molars or premolars contact with lingval aspects of buccal cusps of appropriate lower teeth. Statistical data analysis was performed using the software package STATISTICA 5.0. The analyzed characteristics of the studied groups were described using standard statistical methods. Hypotheses about the relationships between quantitative variables were verified using chi-square (c 2 ) criterion. The comparison of quantitative data was performed using Student s or Fisher s F criteria. The mean and the standard error of the sample of the descriptive statistics were calculated. Results The study demonstrated that only 257 children (15.3%) had normal occlusion, and 44 of them had undergone orthodontic treatment. The distribution of

The prevalence of malocclusion among 7 15-year-old Lithuanian schoolchildren 149 the children with normal occlusion in the age groups was the following: 39 children (9.2%) in the first age group, 84 children (19.86%) in the second age group, and 134 children (31.68%) in the third age group. The number of children was increased in the third age group (P<0.05). The upper dental arch crowding was detected in 645 children (38.4%). The distribution of dental crowding among age groups was the following: 102 children (24.1%) in the first age group, 259 children (39.2%) in the second age group, and 284 children (47.6%) in the third age group (Table 1). Dental crowding in the upper dental arch was found to be related to age this anomaly was more common among older children (P<0.001). Spacing in the upper dental arch was detected in 133 children (7.9%); this anomaly was equally distributed in all age groups. Dental crowding in the lower dental arch was detected in 593 children (35.4%), and the distribution of this anomaly in age groups was the following: 129 children (30.5%) in the first age group, 218 children (33.0%) in the second age group, and 246 children (41.2%) in the third age group (Table 2). Dental crowding in the lower dental arch was more common among older children (P<0.001). Spacing in the lower dental arch was detected in 73 children (4.3%); this anomaly was evenly distributed in all age groups. The distribution of the overjet is presented in Table 3. The greatest overjet in the studied contingent was 11 mm, and the negative overjet was 3 mm (Fig. 3). The mean overjet among 7 9-year-old children was 2.56±1.85 mm, among 10 12-year-old children Table 1. Distribution of the crowding in the upper dental arch by age groups Crowding in the upper dental arch Age group 0 2.0 mm 2.1 4.0 mm 4.1 7.0 mm >7.0 mm n % n % n % n % 7 9 years 321 75.88 57 13.48 34 8.04 11 2.60 10 12 years 402 60.82 136 20.57 99 14.98 24 3.63 13 15 years 313 52.43 143 23.95 98 16.42 43 7.2 Total 1036 61.60 336 19.99 231 13.74 78 4.67 c 2 =63.6, P<0.001. Table 2. Distribution of the crowding in the lower dental arch by age groups Crowding in the lower dental arch Age group 0 2.0 mm 2.1 4.0 mm 4.1 7.0 mm >7.0 mm n % n % n % n % 7 9 years 294 69.50 74 17.49 41 9.69 14 3.32 10 12 years 443 67.02 141 21.33 51 7.72 26 3.93 13 15 years 351 58.79 139 23.28 88 14.74 19 3.19 Total 1088 64.72 354 21.02 180 10.71 59 3.55 c 2 =24.8, P<0.001. Table 3. Distribution of the overjet by age groups Overjet Age group 0 3.5 mm 3.6 6.0 mm 6.1 9.0 mm >9.0 mm n % n % n % n % 7 9 years 308 74.44 68 16.39 37 8.89 1 0.28 10 12 years 504 76.48 110 16.72 40 6.10 5 0.70 13 15 years 504 84.69 66 11.05 24 4.07 1 0.19 Total 1316 78.89 244 14.62 101 6.06 7 0.41 c 2 =21.6, P<0.001. Negative overjet was evaluated in 6 children.

150 Fig. 3. Distribution of the overjet in study sample 2.7±1.8 mm, and among 13 15-year-old children 2.11±1.57 mm. Negative overjet was detected in 6 children (0.4%). The results of the analysis of overbite are shown in Table 4. The overbite in the subjects ranged between 0 and 6 mm, and the maximal open bite was 4 mm (Fig. 4). The mean of the overbite was 2.29± 1.23 mm. There was no significant variation in overbite among age groups: the mean overbite in 7 9- year-old children was 2.24±1.32 mm, in 10 12-yearold children 2.46±1.20 mm, and in 13 15-yearolds 2.14±1.29 mm. The mean incidence of open bite was 3.5% (4.7% in the 7 9-year age group, 2.1% in the 10 12-year age group, 4.1% in the 13 15-year Table 4. Distribution of the overbite by age groups Overbite Age group open bite norma l 0 3.0 mm deep bite >3.0 mm n % n % n % 7 9 years 23 5.53 338 81.21 55 13.26 10 12 years 16 2.43 533 80.63 112 16.94 13 15 years 19 4.64 503 82.78 75 12.58 Total 58 3.46 1374 82.02 242 14.46 Number of children Number of children Overjet, mm Overbite, mm Fig. 4. Distribution of the overbite in all study sample

The prevalence of malocclusion among 7 15-year-old Lithuanian schoolchildren 151 Table 5. Prevalence of malocclusion according to Angle s classification Molar relationship Age group Class I Class II Class III n % n % n % 7 9 years 283 66.90 134 31.68 2 0.47 10 12 years 448 67.78 196 29.65 12 1.82 13 15 years 419 70.18 135 22.61 33 5.52 Total 1150 68.42 465 27.66 47 2.79 Molar relationship was not evaluated in 19 children. age group, respectively). The overbite and overjet was not measured due to unerupted or missing permanent central incisors in 7 children. The prevalence of malocclusion according to Angle s classification is presented in Table 5. Angle class I occlusion was found in 1150 children (68.4%); 465 children (27.7%) had Angle class II, and 47 children (2.8%) Angle class III occlusion. The relationship of the first permanent molars was not determined due to unerupted or removed first molars in 19 schoolchildren. Analysis of dental arch relationship for transverse dimensions revealed comparatively low range of anomalies. Posterior crossbite was found in 148 children (8.8%). Unilateral crossbite was detected in 101 children (6.0%), and bilateral crossbite in 47 children (2.8%). The mean number of teeth involved in the unilateral and bilateral crossbites was 1.92±0.91 and 4.41±1.47, respectively. The distribution of the crossbite according to the age was following: 10.3% of children aged 7 9 years had crossbite (6.8% unilateral and 3.5% bilateral), 8.8% in the group of 10 12 years (6.2% unilateral and 2.6% bilateral), and 7.7% in the group of 13 15 years (5.5% unilateral and 2.2% bilateral). There were no differences in the mean number of teeth involved in unilateral and bilateral crossbite when comparing different age groups. Discussion The present study was carried out to evaluate the prevalence of malocclusion among Lithuanian schoolchildren in the 7 9-, 10 12-, and 13 15-year age groups assessing occlusal morphology. This study demonstrated that 84.7% of schoolchildren had different types of occlusal pathology. These results of the study correspond to the findings of other studies. Thilander (2001) reported that malocclusion was detected in 88.0% of 5 17-year-old children; Ng ang a (1996) found that the prevalence of malocclusion was 72% among 13 15-year-old children. Dental crowding was detected in 38.4% of children in the upper dental arch and in 35.4% of children in the lower dental arch. Dental crowding was more common among older children, which corresponds to the findings of other clinical epidemiological studies (1, 6). The prevalence of malocclusion according to Angle s classification was as follows: class I, in 68.4% children; class II, in 27.7% children; and class III, in 2.8% children. Our findings corresponds to results of other studies; in Hosseini, Hannuksela and Thilander studies, Angle class II malocclusions were reported to be in 15% to 20% and Angle class III malocclusions in 0.8% to 4.2% of investigated persons (1, 5, 6). We found increased overjet (more than 3.5 mm) in 20.11% of the children; this corresponds to the results of other studies (1). The numerous studies reported that overjet decreased with the age. It can be explain by bone and jaw growth, eruption of permanent posterior teeth, and some individuals having received orthodontic treatment of this problem. We did not find a significant decrease in overjet among children of different age groups. The prevalence of posterior crossbite as reported in recent studies varies from 8% to 16% (1, 4, 6). It corresponds to the results of our study where posterior crossbite was found in 8.8% of the studied children. Conclusions 1. The prevalence of malocclusion among 10 15- year-old schoolchildren is 84.6%. 2. The most common malocclusion was dental crowding. The upper dental arch crowding was registered for 44.1% and lower for 40.3% of all schoolchildren. 3. The class I molar relationship was detected in 68.4% of the subjects; class II, in 27.7%; and class III, in 2.8%.

152 Ortodontinių anomalijų paplitimas tarp 7 15 metų Lietuvos moksleivių Kauno medicinos universiteto Ortodontijos klinika Raktažodžiai: ortodontinės anomalijos, paplitimas. Santrauka. Epidemiologiniai ortodontinių anomalijų paplitimo duomenys yra svarbūs planuojant ortodontinės pagalbos reikalingumą bei apimtį. Ortodontinių anomalijų paplitimas labai skiriasi įvairiose šalyse, etninėse bei amžiaus grupėse. Tyrimo tikslas. Nustatyti ortodontinių anomalijų paplitimą ir sąkandžio morfologinių požymių nukrypimų nuo normos dažnį tarp 7 9, 10 12 ir 13 15 metų Lietuvos moksleivių. Ištirtas 1681 7 15 metų amžiaus moksleivis. Klinikinio tyrimo metu vertintas dantų susigrūdimas, tarpai tarp dantų, horizontalusis kandžių persidengimas, vertikalusis kandžių persidengimas, viršutinių ir apatinių pirmųjų nuolatinių krūminių dantų santykis pagal Angle klasifikaciją, kaplių ir krūminių dantų santykis skersine kryptimi. Nustatyta, kad tik 257 vaikai turėjo taisyklingą sąkandį, iš kurių 44 buvo taikytas ortodontinis gydymas. Didžiausias horizontalusis kandžių persidengimas siekė 11 mm, o atvirkščias persidengimas 3 mm. Vertikalusis kandžių persidengimas svyravo nuo 0 iki 6 mm, didžiausias atviras tarpas tarp kandžių siekė 4 mm. Vertikaliojo kandžių persidengimo vidurkis buvo 2,29±1,23 mm. Kryžminis kaplių ir krūminių dantų srities sąkandis nustatytas 8,8 proc. moksleivių. Ortodontinių anomalijų nustatyta 84,7 proc. 7 15 metų Lietuvos moksleivių. Dažniausiai diagnozuota ortodontinė anomalija dantų susigrūdimas, kuris viršutiniame dantų lanke nustatytas 44,1 proc., apatiniame 40,3 proc. tirtųjų. Pirmųjų pastoviųjų krūminių dantų santykio pagal Angle klasifikaciją pasiskirstymo dažnis: I klasė 68,4 proc.; II klasė 27,7 proc.; III klasė 2,8 proc. moksleivių. Adresas susirašinėti: K. Lopatienė, Pašilės 114-2, 51302 Kaunas. El. paštas: klopatiene@zebra.lt References 1. Proffit WR, Fields HW, Moray LW. Prevalence of malocclusion and orthodontic treatment need in the United States: estimates from the NHANES III survey. Int J Adult Orthod Orthognath Surg 1998;13(2):97-106. 2. Vig KWL, Fields HW. Facial growth and management of orthodontic problems. Pediatric Clinics of North America 2000;47(5):1085-123. 3. Freitas KMS, Freitas DS, Valarelli FP, Freitas MR, Janson G. PAR evaluation of treated class I extraction patients. Angle Orthodontist 2008;78:270-4. 4. Wilems G, Bruyne I, Verdonck A, Fieuws S, Carels C. Prevalence of dentofacial characteristics in a Belgian orthodontic population. Clin Oral Invest 2001;5:220-6. 5. Hill PA. The prevalence and severity of malocclusion and the need for orthodontic treatment in 9-, 12-, and 15-yearold Glasgow schoolchildren. Br J Orthod 1992;19:87-96. 6. Thilander B, Pena L, Infante C, Parada SS, Mayorga C. Prevalence of malocclusion and orthodontic treatment need in children and adolescents in Bogota, Colombia. An epidemiological study related to different stages of dental development. Eur J Orthod 2001;23:153-67. 7. Abdullah MSB, Rock WP. Assessment of orthodontic treatment need in 5,112 Malaysian children using the IOTN and DAI indices. Community Dent Health 2001;18:242-8. 8. Brin I, Weiberger T, Ben-Chorin E. Classification of occlusion reconsidered. Eur J Orthod 1999;21:169-74. 9. Onyeaso CO, BeGole EA. Orthodontic treatment improvement and standards using the Peer Assessment Rating Index. Angle Orthodontist 2006;76:260-4. 10. Cooper S, Mandall NA, Dibiase D, Shaw WC. The reliability of the Index of Orthodontic Treatment Need over time. J Orthod 2000;27:47-53. 11. Hamdan AM. Orthodontic treatment need in Jordanian school children. Community Dent Health 2001;18:177-80. 12. Sayin MO, Turkkahraman H. Malocclusion and crowding in an orthodontically referred Turkish population. Angle Orthodontist 2004;74:635-39. 13. Šidlauskas A. The effects of the Twin-block appliance treatment on the skeletal and dentoalveolar changes in class II division I malocclusion. Medicina (Kaunas) 2005;41:392-400. 14. Lopatienė K, Babarskas A. Malocclusion and upper airway obstruction. Medicina (Kaunas) 2002;38:277-83. Received 28 August 2008, accepted 5 Febuary 2009 Straipsnis gautas 2008 08 28, priimtas 2009 02 05