Adipose tissue INSR splicing in humans associates with fasting insulin level and is regulated by weight loss

Similar documents
Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance

Does metformin modify the effect on glycaemic control of aerobic exercise, resistance exercise or both?

Shared genetic influence of BMI, physical activity and type 2 diabetes: a twin study

VTT Technical Research Centre of Finland, P.O. Box 1000, Espoo, Finland 3

Elevated Serum Levels of Adropin in Patients with Type 2 Diabetes Mellitus and its Association with

ARTICLE. Henna Cederberg & Alena Stančáková & Nagendra Yaluri & Shalem Modi & Johanna Kuusisto & Markku Laakso

Treating Type 2 Diabetes by Treating Obesity. Vijaya Surampudi, MD, MS Assistant Professor of Medicine Center for Human Nutrition

IL METABOLISMO EPATICO DEI CARBOIDRATI IN FISIOLOGIA E PATOLOGIA

Energy Adaptations Persist 2 Years After Sleeve Gastrectomy and Gastric Bypass

Supplementary Figures

Roux-and-Y Gastric Bypass and its Metabolic Effects

TBP (H) CACAGTGAATCTTGGTTGTAAACTTGA AAACCGCTTGGGATTATATTCG ANGPTL8 (H) CTGGGCCCTGCCTACCGAGA CCGATGCTGCTGTGCCACCA [1]

Effects of short-term exercise training on intestinal metabolism and gut microbiota

Childhood BMI trajectories and the risk of developing young adult-onset diabetes

This is the published version of a paper published in British Journal of Nutrition. Citation for the original published paper (version of record):

Understanding phenotypes of prediabetes: essential to influencing progression to type 2 diabetes. October 2015; SAGLB.DIA

BARIATRIC SURGERY AND TYPE 2 DIABETES MELLITUS

A novel role for vitamin D: modulation of expression and function of the local renin angiotensin system in mouse pancreatic islets

Obesity Management in Patients with Diabetes Jamy D. Ard, MD Sunday, February 11, :15 a.m. 11:00 a.m.

Getting Ahead of the Curve in the Trouble with Fat

Serum, liver and bile sitosterol and sitostanol in obese patients with and without NAFLD

The Impact Of Adiposity And Insulin Resistance On Endothelial Function In Middle-Aged Subjects

BIOL212 Biochemistry of Disease. Metabolic Disorders - Obesity

Identification and characterization of multiple splice variants of Cdc2-like kinase 4 (Clk4)

Inflammation & Type 2 Diabetes Prof. Marc Y. Donath

Interactions of exercise and diet in health prevention

Other Ways to Achieve Metabolic Control

Supplemental Table 1: Demographics and characteristics of study participants. Male, n (%) 3 (20%) 6 (50%) Age, years [mean ± SD] 33.3 ± ± 9.

SHORT COMMUNICATION. K. Lukacs & N. Hosszufalusi & E. Dinya & M. Bakacs & L. Madacsy & P. Panczel

Nonalcoholic fatty liver disease (NAFLD) is the. Desmosterol in Human Nonalcoholic Steatohepatitis

Adipose tissue dysfunction in obesity. Gijs Goossens, PhD

Gene expression in insulin resistance

What is Metabolic About Metabolic Surgery? The New ADA Recommendations

Supplementary Table 1. The primers used for quantitative RT-PCR. Gene name Forward (5 > 3 ) Reverse (5 > 3 )

Applied Physiology, Nutrition, and Metabolism. Aspartame intake is associated with greater glucose intolerance in individuals with obesity

Crosstalk between Adiponectin and IGF-IR in breast cancer. Prof. Young Jin Suh Department of Surgery The Catholic University of Korea

Tesamorelin Clinical Data Overview Jean-Claude Mamputu, PhD Senior Medical Advisor, Theratechnologies

Body Mass Index Chart = overweight; = obese; >40= extreme obesity

Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue

FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue

The enteroinsular axis in the pathogenesis of prediabetes and diabetes in humans

Supplementary Appendix

The Epigenetics of Obesity: Individual, Social, and Environmental Influences. K. J. Claycombe, Ph.D.

Implications of mitochondrial skeletal muscle metabolism on diabetes and obesity before and after weight loss

Association of physical activity with lower type 2 diabetes incidence is weaker among individuals at high genetic risk

Regulation of Alternative Splicing in Obesity and Weight Loss

Association between serum IGF-1 and diabetes mellitus among US adults

Diabetes and Weight Management: Tools to Affect Patient Outcomes

Inhibition of 11β-hydroxysteroid dehydrogenase type 1 reduces food intake and weight gain but maintains energy expenditure in diet-induced obese mice

Cardiometabolic Side Effects of Risperidone in Children with Autism

5g vs. control, contrast. 10g vs. control, contrast. -3.6e-15 ± 4.3

Fast-food, Fatty liver, & Insulin Resistance. Giulio Marchesini Clinical Dietetics Alma Mater Studiorum University of Bologna

Body Mass Index Chart = overweight; = obese; >40= extreme obesity

2011, Editrice Kurtis

control kda ATGL ATGLi HSL 82 GAPDH * ** *** WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi WT/cTg WT/cTg ATGLi AKO/cTg AKO/cTg ATGLi iwat gwat ibat

Non-Cholesterol Sterol Levels Predict Hyperglycemia and Conversion to Type 2 Diabetes in Finnish Men

Supplementary Materials for

Circulating IL-18 and the risk of type 2 diabetes in women

FADS2 genotype regulates delta-6 desaturase activity and inflammation in human adipose tissue

ARTICLE. Diabetologia (2018) 61:

Effect of High-fat or High-glucose Diet on Obesity and Visceral Adipose Tissue in Mice

Obesity, Metabolic Syndrome, and Diabetes: Making the Connections

SHORT COMMUNICATION. Diabetologia (2013) 56: DOI /s

SHORT COMMUNICATION. J. C. Reubi & A. Perren & R. Rehmann & B. Waser & E. Christ & M. Callery & A. B. Goldfine & M. E. Patti

Project Summary. Funded by The Beef Checkoff. Regulation of Marbling Development in Beef Cattle by Specific Fatty Acids

patient-oriented and epidemiological research

TYPE 2 DIABETES MELLITUS is a common, multifactorial

Metabolic defects underlying dyslipidemia in abdominal obesity

Associations among Lifestyle Status, Serum Adiponectin Level and Insulin Resistance

Letter to the Editor. Association of TCF7L2 and GCG Gene Variants with Insulin Secretion, Insulin Resistance, and Obesity in New-onset Diabetes *

Pathogenesis of Diabetes Mellitus

Adapting to insulin resistance in obesity: role of insulin secretion and clearance

G enetic and environmental factors

Like mother, like offspring Does maternal overweight predict health outcomes?

Supplementary Fig. 1 eif6 +/- mice show a reduction in white adipose tissue, blood lipids and normal glycogen synthesis. The cohort of the original

The Finnish Diabetes Prevention Study

Association of variants of the TCF7L2 gene with increases in the risk of type 2 diabetes and the proinsulin:insulin ratio in the Spanish population

Association of serum adipose triglyceride lipase levels with obesity and diabetes

In The Name Of God. In The Name Of. EMRI Modeling Group

Insulin Resistance. Biol 405 Molecular Medicine

Adiponectin/leptin ratio and insulin resistance in pregnancy

GPR120 *** * * Liver BAT iwat ewat mwat Ileum Colon. UCP1 mrna ***

NIH Public Access Author Manuscript Diabetologia. Author manuscript; available in PMC 2014 February 01.

Yiying Zhang, PhD Research Scientist. Research Summary:

Introduction ARTICLE. and 3.4%, respectively. In both the medium- and majorweight-reduction

A Central Role of MG53 in Metabolic Syndrome. and Type-2 Diabetes

SHORT COMMUNICATION. Keywords Anxiety. Depression. Diabetes. Obesity. Diabetologia (2010) 53: DOI /s

ARTICLE. J. Vangipurapu & A. Stančáková & J. Pihlajamäki & T. M. Kuulasmaa & T. Kuulasmaa & J. Paananen & J. Kuusisto & E. Ferrannini & M.

India is one of the diabetes capitals of the world and at the same time the capital

Diabetes and Weight in Comparative Studies of Bariatric Surgery vs Conventional Medical Therapy: A Systematic Review and Meta-Analysis

Obesity and the Metabolic Syndrome in Developing Countries: Focus on South Asians

THE DiRECT APPROACH TO TYPE 2 DIABETES REMISSION FEATURE TYPE 2 REMISSION. Lead investigators Professor Mike Lean (left) and Professor Roy Taylor

New insights in metabolic surgery

Obesity in aging: Hormonal contribution

Laparoscopic sleeve gastrectomy for the treatment of diabetes mellitus type 2 patients single center early experience

Metabolic Syndrome. DOPE amines COGS 163

m 6 A mrna methylation regulates AKT activity to promote the proliferation and tumorigenicity of endometrial cancer

Chief of Endocrinology East Orange General Hospital

Goals 1/9/2018. Obesity over the last decade Surgery has become a safer management strategy Surgical options for management

ASSOCIATION OF BMI WITH INSULIN RESISTANCE IN TYPE 2 DIABETES MELLITUS -A STUDY IN LOCAL TELANGANA POPULATION

Transcription:

Diabetologia (214) 57:347 351 DOI 1.17/s125-13-397-4 SHORT COMMUNICATION Adipose tissue INSR splicing in humans associates with fasting insulin level and is regulated by weight loss Dorota Kaminska & Maija Hämäläinen & Henna Cederberg & Pirjo Käkelä & Sari Venesmaa & Pekka Miettinen & Imre Ilves & Karl-Heinz Herzig & Marjukka Kolehmainen & Leila Karhunen & Johanna Kuusisto & Helena Gylling & Markku Laakso & Jussi Pihlajamäki Received: 5 August 213 /Accepted: 9 October 213 /Published online: 7 November 213 # Springer-Verlag Berlin Heidelberg 213 Abstract Aims/hypothesis The insulin receptor (INSR) has two protein isoforms based on alternative splicing of exon 11. INSR-A promotes cell growth whereas INSR-B predominantly regulates glucose homeostasis. In this study we investigated whether weight loss regulates INSR alternative splicing and the expression of splicing factors in adipose tissue. Methods To determine the relative ratio of the INSR splice variants, we implemented the PCR-capillary electrophoresis method with adipose tissue samples from two weight-lossintervention studies, the Kuopio Obesity Surgery study (KOBS, n =18) and a very low calorie diet (VLCD) Electronic supplementary material The online version of this article (doi:1.17/s125-13-397-4) contains supplementary material, which is available to authorized users. D. Kaminska: M. Hämäläinen : M. Kolehmainen : L. Karhunen : H. Gylling: J. Pihlajamäki (*) Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, 721 Kuopio, Finland e-mail: jussi.pihlajamaki@uef.fi H. Cederberg : J. Kuusisto : M. Laakso Department of Medicine, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland P. Käkelä: S. Venesmaa : P. Miettinen : I. Ilves Department of Surgery, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland K.<H. Herzig Department of Physiology, Institute of Biomedicine, University of Oulu, Oulu, Finland J. Pihlajamäki Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland intervention (n =32), and from the population-based Metabolic Syndrome in Men study (METSIM, n =49). Results Expression mrna variant increased in response to weight loss induced by both bariatric surgery (p =1 1 5 ) and the VLCD (p =1 1 4 ). The adipose tissue expression correlated negatively with fasting insulin levels in the pooled data of the three studies (p =3 1 22 ). Finally, expression of several splicing factors correlated negatively with the expression of the INSR-B variant. The strongest correlation was with HNRNPA1 (p = 1 1 5 ), a known regulator of INSR exon 11 splicing. Conclusions/interpretation INSR splicing is regulated by weight loss and associates with insulin levels. The effect of weight loss on INSR splicing could be mediated by changes in theexpressionofsplicingfactors. Keywords Adipose tissue. Alternative splicing. Insulin receptor. qpcr, Quantitative PCR. Weight loss Abbreviations INSR Insulin receptor KOBS Kuopio Obesity Surgery study METSIM Metabolic Syndrome in Men study qpcr Quantitative PCR VLCD Very low calorie diet Introduction The insulin receptor (INSR) exists in two protein isoforms arising from inclusion (INSR-A) or skipping (INSR-B) of exon 11. Expression of the INSR gene variants depends on the tissue type and stage of tissue development. The INSR-A isoform is predominantly expressed in fetal cells and plays a

348 Diabetologia (214) 57:347 351 role in fetal development, whereas the INSR-B isoform is expressed in adult differentiated cells. These two protein isoforms have different functions: INSR-A promotes growth through its ability to bind IGF-II and proinsulin, whereas INSR-B is a highly specific receptor for insulin. It is expressed predominantly in insulin-sensitive tissues and thus regulates glucose homeostasis (reviewed in Belfiore et al [1]). INSR splicing has mostly been studied in skeletal muscle in relation to type 2 diabetes. In most, but not all, of the studies high skeletal muscle expression of the INSR-B variant has been associated with type 2 diabetes and insulin resistance (reviewed in Belfiore et al [1]). An increased level of INSR- B was detected in isolated adipocytes from ten patients with type 2 diabetes compared with 11 normoglycaemic patients [2]. The effect of weight loss on adipose tissue INSR splicing has not been studied. We have previously shown that expression of several splicing factors is reduced in liver and skeletal muscle of obese individuals [3]. In addition, we have shown that the splicing of TCF7L2 is regulated by weight loss in adipose tissue and liver [4]. Thus, we hypothesised that adipose tissue INSR splicing is modified by weight loss through changes in splicing factor gene expression levels. To test this hypothesis we determined the association of INSR splicing with metabolic variables and the expression of splicing factors in three independent studies (n =189 combined): Kuopio Obesity Surgery study (KOBS, n =18) [4], a very low calorie diet (VLCD) intervention (n = 32) [5] and the population-based Metabolic Syndrome in Men study (METSIM, n =49) [4]. Methods Participants and clinical studies Subcutaneous adipose tissue samples were collected at the time of Roux-en-Y gastric bypass surgery from a total of 18 morbidly obese individuals participating in the ongoing KOBS study (45 with type 2 diabetes, 63 non-diabetic individuals). In addition, subcutaneous fat biopsies were taken 1 year after the surgery. Visceral biopsies (n =81) were collected at the baseline [4]. Two independent study groups were used for the replication of the results. First, subcutaneous adipose tissue samples were taken from a study of 32 non-diabetic individuals recruited into a dietary intervention study consisting of a 7 week long VLCD followed by a 24 week weight-maintenance period. During the weight loss period the energy intake was 2, 51 kj/day (6 kcal/day) [5]. Subcutaneous tissue biopsies were collected at all visits (baseline, 7 weeks and 24 weeks). Second, subcutaneous adipose tissue samples from a total of 49 men (21 with type 2 diabetes, 28 with normal glucose tolerance) were included from the population-based METSIM study [4] (Table 1). Diabetic status was determined using the ADA 23 criteria. The study protocols were approved by the Ethics Committee of Northern Savo Hospital District and carried out in the accordance with the Helsinki Declaration. Gene expression and splicing analysis A PCR-capillary electrophoresis method was used to determine the relative ratio of INSR splice variants (ABI Prism 31 DNA Genetic Analyzer, Applied Biosystems, Foster City, CA, USA). Quantification of peak area was performed with Peak Scanner Software v1. ( Applied Biosystems, Foster City, CA, USA). Total gene expression of HNRNPA1, SF3A1, SFRS7, SFRS1 and INSR normalised to RPLP was analysed by quantitative (q)pcr, using SYBR Green chemistry (KAPA SYBR FAST qpcr Kit, Kapa Biosystems, Woburn, MA, USA). Statistical analysis Data are presented as mean ± SD. Data from the same individuals at different time points were Table 1 Characteristicsofthestudygroups Characteristic KOBS VLCD METSIM Baseline (n =18) 1year (n =81) Baseline (n =32) 7weeks (1) (n =32) 24 weeks (2) (n =32) (1) (2) NGT (n =28) T2DM (n =21) Sex (male/female) 34/74 26/55 9/23 9/23 9/23 28/ 21/ Age (years) 47.1±9.1 47.6±9. 48.8±8.7 49.±8.8 49.5±8.8 56.7±5.3 56.3±5.5.83 BMI (kg/m 2 ) 45.±6.3 34.6±5.8 2 1 37 34.7±2.7 29.9±2.4 3.3±2.8 3 1 24 2 1 16 23.2±1.4 26.±3.9.4 Fasting glucose 6.7±1.7 5.6±.9 2 1 8 6.1±.8 5.6± 5.7± 1 1 4 6 1 5 5.5±.3 7.±1.1 3 1 6 (mmol/l) Fasting insulin (pmol/l) 135.7±135.5 71.4±67.4 3 1 1 82.8±46.2 4.8±19.2 51.±27. 3 1 6 4 1 6 27.6±8.4 65.4±47.4.2 Data are expressed as mean ± SD Differences of variables between two groups were compared using paired t tests NGT, normal glucose tolerance; T2DM, type 2 diabetic participants

Diabetologia (214) 57:347 351 349 compared using the two-tailed paired samples t test. Correlations were assessed using non-parametric Spearman s correlations and with partial correlations. Insulin levels were logarithmically transformed (log 1 ) to obtain a normal distribution. The main effects of BMI, age, sex, fasting insulin, fasting glucose and study group on INSR splicing were evaluated by general linear model. A <.5 was considered significant. a.8.4.2 METSIM VLCD KOBS n 49 32 18 BMI 24.5±3.2 34.7±2.7 45.±6.3 b.8.4.2 KOBS Results The proportion mrna differed in the study groups at baseline (Fig. 1a). The relative proportion mrna in the subcutaneous fat increased by 9.1% in response to surgery (p=1 1 5 ; Fig. 1b) and by 8.1% during the VLCD (p=1 1 4 ;Fig.1c). The relative proportion remained increased by 6.7% after the weight-maintenance period in the VLCD study (p=2 1 4, Fig. 1c). No change in total gene expression of INSR was detected. Thus, the effects on splicing were independent of transcriptional regulation (electronic supplementary material [ESM] Fig. 1a). No difference in expression was observed between visceral and subcutaneous fat depots at baseline (ESM Fig. 1b). Next, we investigated clinical variables that associate with INSR splicing. Fasting glucose correlated negatively with INSR-B splicing in the KOBS study (r =.261, p =.1, ESM Table 1). INSR-B expression was 7.1% higher in normoglycaemic individuals compared with patients with type 2 diabetes in the METSIM study (p =5 1 4 ; Fig. 1d). However, the most consistent finding was a negative correlation between fasting insulin levels and INSR splicing in subcutaneous fat in all three studies, KOBS (r =.348, p =5 1 4 ), VLCD (r =-.417, p =.2) and METSIM (r =.522, p =1 1 4 ). Significant correlation was also observed between insulin levels and INSR splicing in visceral fat (KOBS n=81, r =.338, p = 8 1 4 ; ESM Table 1). Additionally, negative correlation was observed between HOMA-IR and INSR-B at baseline in all three studies (ESM Table 2). In pooled data from the KOBS, VLCD and METSIM studies (n =189) INSR-B variant correlated strongly with fasting insulin levels (r = 49, p=3 1 22 ;Fig.1e). Insulin was the strongest determinant splicing (p=9 1 9 ) followed by BMI (5 1 7 ), age (p =.9) and sex (p =.36) in a multivariate general linear model. After controlling for study group, insulin remained the strongest determinant splicing (p=7 1 7 ) (ESM Table 3). Fasting glucose level did not associate with INSR-B splicing. Expression of HNRNPA1, SF3A1, SFRS7 and SFRS1 has been shown to be lower in the skeletal muscle and liver of c e.8.4.2.9.7.5 VLCD time point.3.5 1. 1.5 2. 2.5 3. 3.5 log 1 insulin (pmol/l) obese individuals compared with lean individuals [3]. Therefore, we analysed the effect of weight loss on the adipose tissue expression of these genes and the association with INSR splicing. The expression of HNRNPA1, a known regulator of INSR splicing [6], was increased in response to surgery-induced weight loss (p =.1, data not shown) and its expression correlated negatively with INSR-B expression in the KOBS (r=.427, p=1 1 5 ), but not significantly in the VLCD study (r=.222, p=.238). However, after pooling adipose tissue samples from all time points of the KOBS and VLCD studies and after controlling for insulin levels the correlation between INSR-B and HNRPNA1 was significant in both KOBS and VLCD studies (r =.226, p = d.8.4.2 METSIM KOBS Fig. 1 The relative proportion in subcutaneous fat (a) inthe METSIM, VLCD and KOBS studies at baseline and in response to (b) obesity surgery in the KOBS study (white bar, baseline; black bar, 1 year post surgery) and (c) to a 7 week VLCD followed by a 24 week weightmaintenance period (white bar, baseline; black bar, 7 weeks VLCD; grey bar, 24 weeks weight maintenance). (d) of the INSR- B variant in individuals with and without type 2 diabetes in the METSIM and KOBS studies. White bars, non-diabetic participants; black bars, participants with type 2 diabetes. (e) Scatter plot demonstrating the correlation with logarithmically transformed fasting insulin levels in pooled samples from the KOBS, VLCD and METSIM studies (r = 49, p=3 1 22 ). Black diamonds, non-diabetic participants (n =123, r = 76, p =4 1 16 ); white circles, participants with type 2diabetes(n =66,r = 1, 3 1 7 ). Mean ± SD shown. p <.1 (b,c) vs baseline of same study(d) and vs non-diabetic participants of same study

35 Diabetologia (214) 57:347 351.5 and r =.33, p =.12 respectively) (ESM Table 4). In addition, we observed negative correlations expression with SF3A1 and SFRS7 expression in the KOBS study (ESM Table 4). No correlation between examined splicing factors and fasting insulin levels was detected (ESM Table 5). Discussion In this study we report, for the first time, that weight loss regulates alternative splicing of INSR in adipose tissue. The proportion mrna variant was increased in response to weight loss induced by both obesity surgery and VLCD (Fig. 1b, c). Interestingly, insulin levels correlated strongly with INSR splicing (Fig. 1e) in both subcutaneous and visceral fat (ESM Table 1), suggesting common regulatory mechanisms related to insulin action. Finally, we observed a correlation between alternatively spliced INSR variants and expression of HNRNPA1, a known regulator of INSR splicing [6]. Weight loss resulted in higher expression, the more active isoform in insulin signalling [7]. Accordingly, we detected a strong negative correlation between INSR-B and fasting insulin levels, suggesting an association between INSR-B splicing and insulin action. Multivariate analysis of the pooled samples from all three studies (n =189) revealed that the main determinant of the expression of INSR splice variants in subcutaneous adipose tissue was fasting insulin. This is consistent with a previous study in monkeys, including an analysis of human data, suggesting a link between hyperinsulinaemia and INSR splicing [8, 9]. There are two potential mechanisms for an association of INSR splicing with fasting insulin levels. First, lower insulin levels in relation to INSR-B may reflect better peripheral insulin sensitivity as expected for this isoform. However, an increase in INSR-B in response to weight loss could also be secondary to lower insulin levels, as insulin is a known regulator of splicing factor activity through phosphorylation [1] and because hyperinsulinaemia associates with lower expression of splicing factors [3]. We found a correlation between INSR splicing and expression of HNRNPA1, SF3A1 and SFRS7 in the KOBS study (ESM Table 4). The strongest negative correlation was with HNRNPA1, previously reported to inhibit exon 11 inclusion in HepG2 and HEK293 cells [6]. We acknowledge that other regulators of INSR splicing exist [6], and they may also be modified by weight loss. One limitation of this study is that INSR protein isoforms created by alternative splicing could not be detected because the difference between the protein isoforms is only 1 kda (data not shown). In conclusion, we demonstrated that INSR splicing correlates strongly with fasting insulin and is regulated by weight loss. These changes may associate with changes in splicing factor activity. Acknowledgements The authors thank T. Sistonen (Department of Medicine, University of Eastern Finland, Kuopio, Finland), P. Turunen, M. Laitinen, K. Juvonen, A. Jääskeläinen and E. Holma (Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland) for assistance with tissue biopsies and laboratory analyses. Some of the data were presented as an abstract at the 73rd Scientific Sessions of the ADA in 213. Funding This study was supported by grants from the Academy of Finland (contracts 124243 to ML and 12979 and 1386 to JP), the Emil Aaltonen Foundation (to JP), the Finnish Diabetes Research Foundation (to ML and JP), the Finnish Cultural Foundation (to JP), the Finnish Heart Foundation (to ML) and Tekes the Finnish Funding Agency for Technology and Innovation (contracts 151/31/ 6 to ML and 41/7 to LK). Duality of interest The authors confirm that there is no duality of interest associated with this manuscript. Contribution statement DK acquired, analysed and interpreted splicing and qpcr data and wrote the manuscript. MH acquired qpcr data. PK, SV and HG acquired data in the KOBS study. PM, II, K-HH, MK and LK acquired data in the VLCD study. LK is the principal investigator responsible for the VLCD study. ML, JK and HC acquired data in the METSIM study. ML is the principal investigator responsible for the METSIM study. JP is the principal investigator responsible for the KOBS study, designed the study, contributed to the discussion, and reviewed and edited the manuscript. JP is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. All authors critically revised the manuscript for intellectual content and approved the final version to be published. References 1. Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (29) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 3:586 623 2. Sesti G, Marini MA, Tullio AN et al (1991) Altered expression of the two naturally occurring human insulin receptor variants in isolated adipocytes of non-insulin-dependent diabetes mellitus patients. Biochem Biophys Res Commun 181:1419 1424 3. Pihlajamaki J, Lerin C, Itkonen P et al (211) Expression of the splicing factor gene SFRS1 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab 14:28 218 4. Kaminska D, Kuulasmaa T, Venesmaa S et al (212) Adipose tissue TCF7L2 splicing is regulated by weight loss and associates with glucose and fatty acid metabolism. Diabetes 61:287 2813 5. Karhunen L, Lyly M, Lapvetelainen A et al (212) Psychobehavioural factors are more strongly associated with successful weight management than predetermined satiety effect or other characteristics of diet. J Obes 212:27468 6. Talukdar I, Sen S, Urbano R, Thompson J, Yates JR 3rd, Webster NJ (211) hnrnp A1 and hnrnp F modulate the alternative splicing of exon 11 of the insulin receptor gene. PLoS One 6:e27869 7. Kosaki A, Pillay TS, Xu L, Webster NJ (1995) The B isoform of the insulin receptor signals more efficiently than the A isoform in HepG2 cells. J Biol Chem 27:2816 2823

Diabetologia (214) 57:347 351 351 8. Huang Z, Bodkin NL, Ortmeyer HK et al (1996) Altered insulin receptor messenger ribonucleic acid splicing in liver is associated with deterioration of glucose tolerance in the spontaneously obese and diabetic rhesus monkey: analysis of controversy between monkey and human studies. J Clin Endocrinol Metab 81:1552 1556 9. Huang Z, Bodkin NL, Ortmeyer HK, Hansen BC, Shuldiner AR (1994) Hyperinsulinemia is associated with altered insulin receptor mrna splicing in muscle of the spontaneously obese diabetic rhesus monkey. J Clin Invest 94:1289 1296 1. Jiang K, Patel NA, Watson JE et al (29) Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Endocrinology 15: 287 297