Determining the optimal method for proteinuria detection in chronic spinal cord injury

Similar documents
Original Article. Verônica Verleine Hörbe Antunes, Francisco José Veríssimo Veronese and José Vanildo Morales. Introduction

An unresolved issue: The relationship between spot urine protein-to-creatinine ratio and 24-hour proteinuria

The CARI Guidelines Caring for Australians with Renal Impairment. 4. Monitoring proteinuria in patients with suspected or known renal disease

Assessment of Proteinuria using Protein Creatinine Ratio in Spot Urine Sample Versus 24 Hours Urine Sample

Urinary albumin creatinine ratio (ACR) A comparative study on two different instruments

VetScan UA Urine Analyzer Clinical Performance Larry Lem, PhD & Andrew Rosenfeld, DVM, ABVP

Cost-benefit analysis and prediction of 24-hour proteinuria from the spot urine proteincreatinine

Diabetic Nephropathy

Evaluation of the Cockroft Gault, Jelliffe and Wright formulae in estimating renal function in elderly cancer patients

Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation

Asyntomatic bacteriuria, Urinary Tract Infection

Dipstick Urinalysis as a Test for Microhematuria and Occult Bladder Cancer

QUICK REFERENCE FOR HEALTHCARE PROVIDERS

Association of microalbuminuria and the urine albumin-to-creatinine ratio with systemic disease in cats

Reducing proteinuria

Objectives. Pre-dialysis CKD: The Problem. Pre-dialysis CKD: The Problem. Objectives

>4000 mg/dl (=20000/(500/100)) >615 mmol/l (=20000/(65*0.5))

Masatoshi Kawashima 1, Koji Wada 2, Hiroshi Ohta 2, Rika Moriya 3 and Yoshiharu Aizawa 1. Journal of Occupational Health

Can modifications of the MDRD formula improve the estimation of glomerular filtration rate in renal allograft recipients?

The CARI Guidelines Caring for Australasians with Renal Impairment. Membranous nephropathy role of steroids GUIDELINES

Diagnostic methods 2: receiver operating characteristic (ROC) curves

The recommended method for diagnosing sleep

Use of Protein:Creatinine Ratio Measurements on Random Urine Samples for Prediction of Significant Proteinuria: A Systematic Review

Is the new Mayo Clinic Quadratic (MCQ) equation useful for the estimation of glomerular filtration rate in type 2 diabetic patients?

Improved methods of assessing proteinuria in hypertensive pregnancy

Taking a dip into urinalysis

Poor Predictive Ability of Urinalysis and Microscopic Examination to Detect Urinary Tract Infection

Renal Protection Staying on Target

Management of New-Onset Proteinuria in the Ambulatory Care Setting. Akinlolu Ojo, MD, PhD, MBA

Special Challenges and Co-Morbidities

Introduction to Clinical Diagnosis Nephrology

Numerous epidemiologic studies have shown an association

Diabetes and Hypertension

Long-term outcomes in nondiabetic chronic kidney disease

Chronic kidney disease (CKD) has received

A Comparison Of Diagnostic Accuracy Of Cystatin C With Creatinine In The Sample Of Patient Of T2 DM With Diabetic Nephropathy


The CARI Guidelines Caring for Australians with Renal Impairment. 5. Classification of chronic kidney disease based on evaluation of kidney function

ACEIs / ARBs NDHP dihydropyridine ( DHP ) ACEIs ARBs ACEIs ARBs NDHP. ( GFR ) 60 ml/min/1.73m ( chronic kidney disease, CKD )

16.1 Risk of UTI recurrence in children

Spot urinary protein creatinine ratio with 24 hour urine protein in hypertensive disorders of pregnancy- a comparative study

protein: Creatininee ratio and HBA1c in type 2 diabetes with and without nephropathy diabetics without nephropathy

EMPIRICAL TREATMENT OF SELECT INFECTIONS ADULT GUIDELINES. Refer to VIHA Algorithm for the empiric treatment of Urinary Tract Infection

TREAT THE KIDNEY TO SAVE THE HEART. Leanna Tyshler, MD Chronic Kidney Disease Medical Advisor Northwest Kidney Centers February 2 nd, 2009

Life Science Journal 2014;11(10)

Blood ionized calcium fraction in various serum albumin levels surveyed. Yoshitaka MAEDA and Tatsuo SHIIGAI

The CARI Guidelines Caring for Australians with Renal Impairment. Specific effects of calcium channel blockers in diabetic nephropathy GUIDELINES

Iranian Journal of Diabetes and Lipid Disorders; 2009 pp 27-36

Creatinine & egfr A Clinical Perspective. Suheir Assady MD, PhD Dept. of Nephrology & Hypertension RHCC

Solving Slowing Progressive Renal Disease

Validity of the use of Schwartz formula against creatinine clearance in the assessment of renal functions in children

Predicting proteinuria in hypertensive pregnancies with urinary protein-creatinine or calcium-creatinine ratio

Clinical and laboratory indices of severe renal lesions in children with febrile urinary tract infection

Development of Renal Disease in People at High Cardiovascular Risk: Results of the HOPE Randomized Study

The relation between estimated glomerular filtration rate and proteinuria in Okayama Prefecture, Japan

VA/DoD Clinical Practice Guideline for the Management of Chronic Kidney Disease in Primary Care (2008) PROVIDER REFERENCE CARDS Chronic Kidney Disease

Proteinuria (Protein in the Urine) Basics

Statistical Considerations: Study Designs and Challenges in the Development and Validation of Cancer Biomarkers

Comparison of Serum Cystatin C and Creatinine Levels to Evaluate Early Renal Function after Kidney Transplantation

Educational Goals & Objectives

Mosby s PATHOLOGY for Massage Therapists. Lesson 12.1 Objective. Chapter 12 Urinary Pathologies. Urinary System (cont. Urinary System. (cont d.

Blood Pressure Monitoring in Chronic Kidney Disease

Chapter 4: Steroid-resistant nephrotic syndrome in children Kidney International Supplements (2012) 2, ; doi: /kisup.2012.

Evaluation of Chronic Kidney Disease KDIGO. Paul E de Jong University Medical Center Groningen The Netherlands

Patterns of Sodium Excretion During Sympathetic Nervous System Arousal. Gregory A. Harshfield, Derrick A. Pulliam, and Bruce S.

Year 1 MBChB Clinical Skills Session Urinalysis

Supplementary Online Content

Summary of Recommendation Statements Kidney International Supplements (2013) 3, 5 14; doi: /kisup

Predictive value of spot versus 24-hour measures of proteinuria for death, end-stage kidney disease or chronic kidney disease progression

The University of Arizona Pediatric Residency Program. Primary Goals for Rotation. Nephrology

Possible discrepancy of HbA1c values and its assessment among patients with chronic renal failure, hemodialysis and other diseases

1. Albuminuria an early sign of glomerular damage and renal disease. albuminuria

RESEARCH. Population based screening for chronic kidney disease: cost effectiveness study

Proteinuria is the excretion of protein urine

1. Staging of CKD based on blood creatinine concentration

Characteristics of factor x so that its clearance = GFR. Such factors that meet these criteria. Renal Tests. Renal Tests

Laboratory Bulletin...

Surveillance report Published: 7 July 2016 nice.org.uk. NICE All rights reserved.

ORIGINAL ARTICLE Estimating the glomerular filtration rate using serum cystatin C levels in patients with spinal cord injuries

Classification of CKD by Diagnosis

Evaluation and Management of Proteinuria. Negiin Pourafshar, MD University of Virginia Division of Nephrology

Optimization of urinary dipstick ph: Are multiple dipstick ph readings reliably comparable to commercial 24-hour urinary ph?

A New Approach for Evaluating Renal Function and Predicting Risk. William McClellan, MD, MPH Emory University Atlanta

Quantitative protein estimation of Urine

The validity of screening based on spot morning urine samples. detect subjects with microalbuminuria in the general population

Title: A novel differential diagnostic model based on multiple biological parameters for immunoglobulin A nephropathy

Kerry Cooper M.D. Arizona Kidney Disease and Hypertension Center April 30, 2009

The NEPHROCHECK Test System Training Program. The NEPHROCHECK Training Program US: Astute Medical, Inc PN Rev D 2014/09/16

Primary Care Approach to Management of CKD

Clinical Significance of Subjective Foamy Urine

. Time to transplant listing is dependent on. . In 2003, 9.1% of all prevalent transplant. . Patients with diabetes mellitus are less

Out of date SUGGESTIONS FOR CLINICAL CARE (Suggestions are based on level III and IV evidence)

The hypertensive kidney and its Management

Hypertension. Risk of cardiovascular disease beginning at 115/75 mmhg doubles with every 20/10mm Hg increase. (Grade B)

Proceedings of the 34th World Small Animal Veterinary Congress WSAVA 2009

Chronic kidney disease-what can you do and when to refer?

Chronic Kidney Disease

Serum and urinary markers of early impairment of GFR in chronic kidney disease patients: diagnostic accuracy of urinary -trace protein

ACE Inhibitors and Protection Against Kidney Disease Progression in Patients With Type 2 Diabetes: What s the Evidence?

PART ONE. Peritoneal Kinetics and Anatomy

Transcription:

(2012) 50, 153 158 & 2012 International Society All rights reserved 1362-4393/12 www.nature.com/sc ORIGINAL ARTICLE Determining the optimal method for proteinuria detection in chronic spinal cord injury HM Alshayeb 1, JP Gilless 1, MW Greenwell 2, TM Mangold 2, A Showkat 1, JD Walton 2 and BM Wall 1,2 1 Department of Nephrology, University of Tennesse Health Science Center, Memphis, TN, USA and 2 Department of Nephrology, Veterans Affairs Medical Center, Memphis, TN, USA Study design: A retrospective analysis. Objectives: The objective of this study is to determine whether dipstick protein analysis (DSP) or random urine protein:creatinine ratios (UPC) are accurate in predicting clinical proteinuria in the chronic spinal cord injury (SCI) population. Methods: A retrospective analysis was performed in 219 veterans with SCI, comparing DSP and 24-h urine protein excretion. Sensitivity, specificity, predictive values (PV) and receiver operator characteristic (ROC) curves of DSP in predicting clinical proteinuria were calculated with and without correction for specific gravity (SG). A prospective study was also performed in 62 SCI patients, comparing the UPC and 24-h urines. Sensitivity, specificity, PV and ROC curves of UPC in predicting clinical proteinuria were calculated. Results: Any level of positive DSP had high specificity, but low sensitivity, for detecting the presence of clinical proteinuria. ROC curves of DSP for identifying clinical proteinuria yielded area under the curve of 0.749 (95% confidence interval 0.699 0.794), and adjustment for SG did not significantly improve accuracy. A UPC of o0.3 was sensitive with a high negative PV for ruling out clinical proteinuria, whereas a ratio 40.8 was specific with a high positive PV. A UPC between 0.3 0.8 had an intermediate sensitivity and specificity. Conclusion: Urine collections of 24-h are still needed in the chronic SCI population for accurate detection of clinically significant proteinuria. DSP may not reliably detect low-grade clinical proteinuria, whereas a UPC below 0.3 may be used to rule out clinical range proteinuria. (2012) 50, 153 158; doi:10.1038/sc.2011.89; published online 6 September 2011 Keywords: dipstick; proteinuria; protein; creatinine ratio Introduction Proteinuria is known to have both diagnostic and prognostic value in detection, confirmation and the monitoring of progression of renal disease. 1,2 Given the difficulty with 24-h urine collections, the National Kidney Foundation recommends measuring simple urine dipstick protein (DSP) for those at lower risk for kidney disease, or determining the random urine protein:creatinine ratio (UPC) for those at higher risk. 3 DSP is accurate in predicting clinical proteinuria in the general population, 4 and the use of the UPC to quantify proteinuria is considered accurate for normal individuals, pregnant women, patients with diabetes mellitus, renal transplant recipients, children with nephrotic syndrome 5 8 and patients with glomerulonephritis and impaired renal function. 9 Correspondence: Dr BM Wall, Division of Nephrology, Veterans Affairs Medical Center, 1030 Jefferson Ave, Memphis, TN 38104, USA E-mail: barry.wall@va.gov Received 2 May 2011; revised 16 June 2011; accepted 18 June 2011; published online 6 September 2011 Proteinuria is recognized as an independent risk factor for cardiovascular disease, 11 renal disease 9 and increased mortality in the general population. 11 The prevalence of clinical proteinuria (X0.5 g per day) in patients with chronic spinal cord injury (SCI) is greater than in the general population. 10 The presence of clinical proteinuria is associated with increased cardiovascular and non-cardiovascular mortality in the SCI population. 10 Protein excretion for 24-h is considered the gold standard for quantifying proteinuria in patients with chronic SCI; however, 24-h protein measurements have been shown to have significant variability on serial testing in these patients. 13 Chronic SCI patients also have clinical characteristics that may decrease the accuracy of DSP and UPC in detecting and quantifying proteinuria. These factors include dilute urine 4 and high rates of urinary tract inflammation, which may lead to increased levels of non-albuminuric proteins. 14,15 As urine dipsticks are more reactive to albumin than non-albumin proteins, 16 dipstick analysis may not be as sensitive in predicting total proteinuria in patients with

154 Proteinuria detection in chronic spinal cord chronic SCI. Additionally, patients with chronic SCI often have decreased muscle mass with decreased creatinine production and excretion, which may lead to falsely elevated UPC ratios. 17 The purpose of this study was to assess the accuracy of DSP and UPC in predicting clinical proteinuria in the SCI population. Patients and methods Patient and urine sample selection Computerized medical records of 219 patients with chronic SCI were reviewed at the Veterans Affairs Medical Center in Memphis, TN, USA. These patients had 24-h urine studies for both total protein excretion and creatinine clearance measurements as part of routine annual health maintenance. 18 Samples were included if a 24-h urine collection and random urinalysis were performed within 48 h of each other. No samples were collected during an active urinary tract infection. To reduce potential collection bias, no more than two samples were collected from an individual patient. This led to the inclusion of 339 samples for study. Data collected from the 24-h urine included creatinine concentration (mg dl 1 ), protein concentration (mg dl 1 ) and volume. Data collected from the dipstick urinalysis included specific gravity (SG) and protein (negative, trace, 1 þ,2þ,3þ ). A prospective study was also performed in 62 inpatients with chronic SCI to evaluate the accuracy of the UPC in predicting clinical proteinuria. An early morning spot urine sample for UPC and a 24-h urine collection were performed for each patient under the direct observation of the research team. UPC was calculated as urinary protein (mg dl 1 ) divided by urinary creatinine (mg dl 1 ). Clinical information obtained at the time of both studies included age, gender, ethnicity, type of injury, duration of injury and type of bladder management. Type of injury was defined as quadriplegia or paraplegia. Bladder management was one of four types: chronic indwelling Foley catheter, ileal conduit, intermittent catheterization or spontaneous voiding. Data and statistical analysis Levels of proteinuria of 24-h were used as the gold standard for defining the absence or presence of proteinuria. Clinical proteinuria was defined as X0.5 gm per day. 12 Sensitivity, specificity, positive predictive value ( þ PV), and negative PV ( PV) of DSP and UPC in predicting proteinuria were calculated. Receiver operator characteristic (ROC) curves were created for DSP and UPC as screening tests for clinical proteinuria. Area under the curve (AUC) was calculated and P-values were considered significant if o0.05. To assess the effect of urine concentration on the accuracy of DSP, a ROC curve was created using DSP adjusted for SG according to a previously published algorithm. 4 Simply, for clinical proteinuria (X0.5 gm per day), all DSP levels were considered positive except for (a) trace proteinuria with a SG 41.015 and (b) 1 þ proteinuria with a SG 41.025. Sensitivity, specificity, PVs and ROC curves of UPC in predicting clinical proteinuria were calculated. The correlation between 24-h protein and morning spot UPC was analyzed using the concordance correlation coefficient (r) and linear regression. The level of agreement between morning UPC and 24-h protein was also assessed using the Bland Altman method, 19 both before and after excluding patients with massive proteinuria (410 gm per day). Using this method, the mean difference between UPC and measured 24-h protein directly estimates the global bias. Bias represents the difference between an estimator s expectation and the true value of the parameter being estimated. The width of one s.d. of the mean difference between UPC and 24-h protein is an estimation of precision, defined as the closeness of agreement between independent test results obtained under stipulated conditions, with a large width indicating low precision. To determine the potential effect of low creatinine excretion on the level of agreement between morning UPC and 24-h protein, additional Bland Altman analysis was performed after categorizing the cohort by daily urine creatinine excretion rate (using 0.6 gm per day as a cut-off point). Statistical analysis was done using Med Calc Version 9.3.0.0 (Mariakerke, Belgium). Results Characteristics of the cohort Table 1 shows the general characteristics of the retrospective and prospective cohorts of patients that were used to evaluate DSP and UPC as predictors for clinical proteinuria. Table 1 Characteristic Clinical characteristics of the patient population DSP retrospective cohort UPC prospective cohort Mean age (years) 54±14 59±2 Ethnicity White 153 (70) 34 (55) Black 66 (30) 28 (45) Gender Male 218 (99.5) 62 (100) Female 1 (0.5) 0 (0) Type of injury Paraplegic 127 (58) 41 (66) Quadriplegic 92 (42) 21 (34) Injury duration (years) 21±14 20±2 Bladder management Chronic indwelling foley 99 (45) 39 (63) Ileal conduit 7 (3) 5 (7) Intermittent 26 (12) 9 (15) catheterization Spontaneous voiding 87 (40) 9 (15) Abbreviations: DSP, dipstick protein analysis; UPC, urine protein:creatinine ratios. Mean±s.d. or count with percentage of total in parentheses.

Proteinuria detection in chronic spinal cord 155 Table 2 Sensitivities, specificities and PV of DSP for clinical proteinuria 24-h protein Dipstick Sensitivity Specificity +PV PV X0.5 g per day Trace 52.7 (43.7 61.6) 95.7 (92.0 98.0) 88.3 76.7 X0.5 g per day 1+ 40.3 (31.8 49.3) 98.6 (95.9 99.7) 94.5 72.9 X0.5 g per day 2+ 21.7 (14.9 29.8) 100.0 (98.2 100.0) 100.0 67.5 X0.5 g per day 3+ 0.0 (0.0 2.8) 100.0 (98.2 100.0) 100 61.9 Abbreviations: DSP, dipstick protein analysis;, negative PV; +, positive PV; PV, predictive value. The majority of patients were male, Caucasian, and paraplegic. Most either used a chronic indwelling Foley catheter or spontaneously voided. DSP in predicting clinical proteinuria Table 2 shows the sensitivities, specificities and PVs of DSP for 24-h proteinuria of 0.5 gm per day. Overall, a positive DSP of any level had a high specificity and þ PV for the presence of X0.5 gm per day of proteinuria. However, the sensitivity and PV were low. The mean and median SG values for DSP measures were 1.011 and 1.010, respectively. The percentage of false negative samples was higher in the dilute urines. For example, in the 90 patients with negative dipsticks and a SG p1.005, 24 patients actually had clinical proteinuria. Negative and trace DSP failed to identify significant numbers of patients with clinical proteinuria. Figure 1 shows the ROC curve for DSP as a screening test for clinical proteinuria. The AUC was 0.75 (95% confidence interval (CI) 0.70 0.79, Po0.001). Adjusting DSP for concentrated urines (i.e. classifying trace protein with a SG of 1.020 or greater and 1 þ protein with a SG of 1.030, or greater as negative for clinical proteinuria) slightly improved the specificity of DSP for clinical proteinuria, but also worsened the sensitivity. The AUC decreased to 0.74 (95% CI 0.69 0.78, Po0.001) for the corrected dipstick (difference between AUC s ¼ 0.012, P ¼ 0.5). To evaluate the effect of dilute urine on the accuracy of DSP, a ROC curve was created for 0.5 g per day proteinuria, excluding urine specimens with asgofo1.010 The AUC of the ROC curve showed only minimal improvement to 0.78 (95% CI 0.72 0.84, Po0.001), secondary to improvement in the sensitivity of the dipstick. When both concentrated and dilute urines were excluded, there were also minimal improvements in accuracy. AUC for the ROC improved from 0.75 to 0.80 (95% CI 0.75 0.85, Po0.001 with difference between AUC s ¼ 0.05, P ¼ 0.5 and sensitivity improving from 52.7 to 65.5%). UPC in predicting clinical proteinuria Table 3 shows the sensitivity, specificity and PVs of UPC in predicting clinical proteinuria. The prevalence of clinical proteinuria in this cohort was 40.4%. A UPC ratio of o0.3 had a high sensitivity and high PV for excluding clinical proteinuria. A UPC ratio of 4 0.8 had a high specificity and high þ PV for detecting clinical proteinuria. A UPC between 0.3 and 0.8 had an intermediate sensitivity and specificity for clinical significant proteinuria. Figure 2 shows the ROC curve of UPC as a screening test for clinical proteinuria. The AUC was 0.75 (95% CI 0.62 0.85, Po0.001). Sensitivity 100 80 60 40 20 0 0 20 40 60 80 100 100-Specificity Figure 1 ROC curves for clinical proteinuria (0.5 g per day proteinuria), comparing DSP uncorrected (solid line) and corrected (dotted line) for SG. The curves nearly overlap, with an AUC of 0.749 (0.699 0.794, Po0.0001 compared with null hypothesis) for the uncorrected dipstick versus 0.737 (0.686 0.783, Po0.001) for the corrected dipstick (difference between AUC s ¼ 0.012, P ¼ 0.514). Table 3 Sensitivities, specificities and PVs of random UPC for clinical proteinuria UPC ratio Sensitivity (95% CI) Specificity (95% CI) +PV PV 0 0.09 100 (83.7 100) 5.13 (1.1 21.1) 44.8 100 0.1 0.19 100 (83.7 100) 26.92 (11.8 47.7) 51.4 100 0.2 0.29 93.75 (73.5 99.0) 41.3 (22.7 62.0) 56.2 90.0 0.3 0.34 90.0 (68.3 98.5) 53.8 (33.4 73.3) 60.1 87.5 0.35 0.44 86.6 (64.1 97.2) 59.0 (38.1 78.6) 61.3 85.2 0.45 0.54 80.0 (56.4 94) 66.4 (45.3 83.4) 64.7 81.3 0.55 0.64 67.5 (43.2 86.2) 76.9 (56.3 91.0) 69.3 75.5 0.65 0.79 51.6 (28.6 74.2) 85.9 (66.7 96.1) 73.8 69.8 0.80 0.89 47.5 (25.1 70.6) 92.3 (74.8 98.8) 82.6 69.6 0.90 0.99 37.5 (17.3 61.55) 92.3 (74 98.8) 78.9 65.7 1.00 1.49 23.8 (8.2 47.7) 93.3 (76.1 99.0) 73.2 61.3 1.50 1.99 12.5 (2.5 34.8) 96.2(80.3 99.4) 70.9 58.8 42.00 5.0 (1.7 24.5) 100 (86.7 100) 100 57.8 Abbreviations: CI, confidence intervals;, negative PV; +, positive PV; PV, predictive value; UPC, urine protein:creatinine ratios. There was a significant correlation between the UPC and the 24-h urine protein level (n ¼ 62, concordance correlation coefficient (r) ¼ 0.96, 95% CI 0.93 0.97, Po0.001), which is

156 Proteinuria detection in chronic spinal cord Sensitivity 100 80 60 40 20 UPC 0 0 20 40 60 80 100 100-Specificity Figure 2 ROC for UPC in detecting clinical proteinuria (0.5 g per day proteinuria). The best combination of sensitivity and specificity of UPC ratio for predicting clinical proteinuria occurs at an UPC cutoff point of 0.51, with sensitivity of 79.2% and specificity is 68.4% indicated by the box on ROC curve. AUC ¼ 0.75 (95% CI 0.624 0.852, Po0.0002). 24hr protein (Gm/24hr) 100 10 1 0.1 0.01 0.01 0.1 1 10 100 Prot/Cr ratio Figure 3 Scatter plot and linear regression for UPC versus 24-h proteinuria (n ¼ 62, concordance correlation coefficient (r) ¼ 0.96, 95% CI 0.93 0.97, Po0.001). 24hr protein (Gm/24hr) - Prot/Cr ratio 1.0 +1.96 SD 0.5 0.86 0.0-0.5-1.0-1.5-2.0 displayed by scatter plot in Figure 3. Excluding patients with 24-h urine protein 410 g per day (n ¼ 60), the concordance correlation coefficient (r) decreased to 0.45 (95% CI 0.23 0.64, Po0.001). The agreement between morning UPC and 24-h protein was assessed using the Bland Altman method. The difference between the mean value and its related 95% CI showed an agreement between the UPC and 24-h protein levels (the bias was 1.19, and the 95% limits of agreements were between ( 2.4 to 2.3). Exclusion of patients with massive proteinuria (X10 g per day) decreased the bias to 0.17 (95% limits of agreement 1.2 to 0.8; Figure 4). Although the agreement between the two methods improved after excluding patients with massive proteinuria (low bias and high precision) at levels of proteinuria o0.5 g per day, the level of agreement progressively decreased with increasing levels of proteinuria (increased bias and decreased precision; Figure 4). To determine the potential effect of low creatinine excretion on the level of agreement between morning UPC and 24-h protein, Bland Altman analysis was also performed after excluding samples with o0.6 g creatinine per day. Exclusion of these samples did not improve either the global bias or precision (mean 2 s.d. ¼ 2.4; mean þ 2 s.d. ¼ 2.6, Figure not shown), suggesting that the effect of low urine creatinine excretion on UPC was minimal. Discussion Mean -0.17-1.96 SD -1.20-2.5-0.0 0.5 1.0 1.5 2.0 2.5 3.0 AVERAGE of 24hr Protein (Gm/24hr) and Prot/Cr ratio Figure 4 Bland Altman plot comparing the difference between the 24-h urine protein (g per day) and the UPC ratio sample versus the mean of the two methods with massive proteinuria (410g per day) excluded. The dashed line represents the mean þ 2 s.d. The thick line represents the mean. The agreement between UPC and 24-h proteinuria is not uniform across the observed range of proteinuria. The agreement between the methods is quite good (low bias and high precision) at levels of proteinuria o0.5 g per day; whereas, the level of agreement progressively decreases with increasing levels of proteinuria (increased bias and decreased precision). Accurate determination of urinary protein excretion in patients with chronic SCI is needed, as clinical proteinuria (40.5 g per day) is predictive of cardiovascular, noncardiovascular and all-cause mortality. 10 The importance of proteinuria in the chronic SCI population is magnified by its higher prevalence rate, compared with the general population. 10 The optimal method of measuring proteinuria in chronic SCI patients remains unclear. The measurement of 24-h urine protein is inconvenient and subject to collection errors. Evidence suggests that approximately 12 15% of 24-h urine collections are excluded from analysis because of errors during collection. 6,12 In the general population, measuring the urine creatinine as a function of body mass is used for evaluating the adequacy of 24-h urine samples. A similar, standardized method is not available for the chronic SCI population in whom creatinine excretion is highly

Proteinuria detection in chronic spinal cord 157 variable, secondary to variable muscle mass. Benefits of 24-h collections include measurements of sodium and protein intake, and more accurate measurements of creatinine clearance in the chronic SCI population. 20 Given the difficulty and limitations of 24-h samples, the National Kidney Foundation recommends random urine testing for proteinuria. In the general population, DSP has been shown to be a sensitive, but rather nonspecific test for both clinical proteinuria and microalbuminuria. 4,5 In our study, the opposite is true for SCI patients in whom DSP is very specific, but not sensitive for the detection of clinical proteinuria. There are at least two possible explanations for the lack of sensitivity. The first is urine concentration. In the general population, the exclusion of concentrated urine samples, which may give falsely positive results, improves the specificity of DSP for clinical proteinuria. 4 However, the specificity of DSP for clinical proteinuria was quite high in our SCI cohort. Our population overall had many very dilute urines, which led to a higher false negative rate of identifying clinical proteinuria. The second possible explanation is the type of protein detected by the dipstick method versus the 24-h total urine protein. SCI patients have a high rate of urinary tract inflammation and chronic pyelonephritis, which may lead to increased levels of non-albuminuric proteins. 14,15 As urine dipsticks are more reactive to albumin than non-albumin protein, urine dipsticks may be less sensitive in predicting total proteinuria in patients with SCI. A UPC ratio of o0.3 had a high sensitivity and high PV for excluding clinical proteinuria, and a UPC ratio of 4 0.8 had a high specificity and high þ PV for detecting clinical proteinuria. UPC between 0.3 and 0.8, however, had an intermediate sensitivity and specificity with significant false negative and false positive results. ROC curves showed B25% chance the UPC will lead to misclassification of clinical proteinuria. Bland Altman analysis demonstrated excellent agreement between the UPC and 24-h proteinuria (low bias and high precision) at levels of proteinuria less than 0.5 g per day; however, global bias increased and precision decreased with progressive increments in proteinuria, thus, limiting the reliability of UPC for detecting clinical proteinuria. Exclusion of patients with reduced muscle mass, defined as urinary creatinine excretion o600 mg per day, did not improve the bias or precision of UPC, suggesting that reduced urinary creatinine excretion was not the primary reason for the discrepancies between UPC and 24-h proteinuria in detecting clinical range proteinuria. Given these limitations, UPC should not replace 24-h protein measurements for detecting clinically significant proteinuria in patients with SCI. Limitations of the current study include the inherent limitations of 24-h urine collections, which were used as the gold standard for quantifying proteinuria. In the prospective arm of the study, 24-h urine collections were performed under direct observation of the research team in an effort to minimize collection errors. The use of an all-male population and the single center study design may limit application to the general SCI population. Conclusion For the chronic SCI population, 24-h urine collections continue to be the preferred method for quantifying proteinuria. Routine dipstick urinalysis provides clinically relevant information for the SCI patient, but should not be used as the sole method to screen for clinical proteinuria, even after correction for SG. Spot UPC is of utility for ruling out clinical proteinuria at levels of o0.3 and in ruling in proteinuria at levels 40.8; however, intermediate levels (0.3 0.8) require confirmation with 24-h urine collections. Conflict of interest The authors declare no conflict of interest. References 1 Ruggenenti P, Perna A, Mosconi L, Pisoni R, Remuzzi G. Urinary protein excretion rate is the best independent predictor of ESRD in non-diabetic proteinuric chronic nephropathies. Kidney Int 1998; 535: 1209 1216. 2 The ACE Inhibitors in Diabetic Nephropathy Trial Group. Should all patients with type 1 diabetes mellitus and microalbuminuria receive angiotensin-converting enzyme inhibitors? Ann Intern Med 2001; 134: 370 379. 3 National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2006; 39: S1 266. 4 Constantainer M, Sehgal AR, Humbert L, Constantainer D, Arce L, Sedor JR. A dipstick protein and specific gravity algorithim accurately predicts pathological proteinuria. Am J Kidney Dis 2005; 45: 833 841. 5 Rodby RA, Rohode RD, Sharon Z, Pohl MA, Bain RP, Lewis EJ. The urine protein to creatinine ratio as a predictor of 24-hr protein execretion in type 1 diabetic patients with nephropathy: The collaborative study group. Am J Kidney Dis 1995; 26: 904 909. 6 Gaspari F, Perico N, Remuzzi G. Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis 2006; 47: 1 7. 7 Ramos JG, Martins-Costa SH, Mathias MM, Guerin YL, Barros EG. Urinary protein/creatinine ratio in hypertensive pregnant women. Hypertens Pregnancy 1999; 18: 209 218. 8 Dyson EE, Will EJ, Davison AM, O Malley AH, Shepherd HT, Jones RG. Use of the urinary protein creatinine index to assess proteinuria in renal transplant patients. Nephrol Dial Trans 1992; 7: 450 452. 9 Morales JV, Weber R, Wagner MB, Barros EJ. Is morning urinary protein/creatinine ratio a reliable estimator of 24 h proteinuria in patients with glomerulonephritis and different levels of renal function? J Nephrol 2004; 17: 666 672. 10 Greenwell MW, Mangold TM, Tolley EA, Wall BM. Kidney disease as a predictor of mortality in chronic spinal cord injury. Am J Kidney Dis 2007; 49: 383 393. 11 Hillege HL, Fidler V, Diercks GFH. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation 2002; 106: 1777 1782. 12 Shidham G, Hebert LA. Timed urine collections are not needed to measure urine protein excretion in clinical practice. Am J Kidney Dis 2006; 47: 8 14. 13 Sepahpanah F, Burns SP, Mcknight B, Yang CC. Role of creatinine as a screening test in persons with spinal cord injury. Arch Phys Med Rehab 2006; 87: 524 528. 14 Menon EB, Tan ES. Pyuria Index of infection in patients with spinal cord injuries. Br J Urol 1992; 69: 144 146. 15 Bagley RS, Center SA, Lewis RM. The effect of experimental cystitis and iatrogenic blood contamination on the urine

158 Proteinuria detection in chronic spinal cord protein /creatinine ratio in dog. J Vet Intern Med 1991; 5: 66 70. 16 Bowie L, Smith S, Gochman N. Characteristics of binding between reagent strip indicators and urinary proteins. Clin Chem 1977; 23: 128 130. 17 Abitol C, Zilleruelo G, Freundlich M, Strauss J. Quantification of proteinuria with urinary protein/creatinine ratio and random testing with dipstick in nephrotic children. J Pediatr 1990; 116: 102 109. 18 Department of Veterans Affairs. Spinal cord injury services, Part XXIV Veterans Health Administration Manual M-. Department of Veterans Affairs: Washington (DC), 1994. 19 Bland JM, Altman DG. Comparing methods of measurement: Why plotting difference against standard method is misleading. Lancet 1995; 346: 1085 1087. 20 Mohler JL, Barton SD, Bloutin R A, Cowen DL, Flanigan RC. The evaluation of creatinine clearance in spinal cord injury patients. J Urol 1986; 136: 366 369.