LCMS Vitamin D3 Method development

Similar documents
A Novel Platform of On-line Sample Pre-treatment and LC/MS/MS Analysis for Screening and Quantitation of Illicit Drugs in Urine

Vitamin D3 and related compounds by ESI and APCI

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

LC-MS/MS analysis of Chlorates in Milk and Whey Powder using the Agilent 6470 QQQ

Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition

All stocks and calibration levels were prepared in water: methanol (50:50) v/v to cover range of all steroid concentrations (refer Table 1).

Determination of Unbound Urinary Amino Acids Incorporated with Creatinine Normalization by LC-MS/MS Method with CLAM-2000 Online Sample Pre-treatment

Determination of Amantadine Residues in Chicken by LCMS-8040

Highly sensitive simultaneous quantitative analysis of estrone and equilin from plasma using LC/MS/MS

A FORENSIC TOXICOLOGY METHOD FOR THE DETERMINATION OF DESOMORPHINE, HEROIN, METHADONE, BUPRENORPHINE AND METABOLITES IN URINE USING LC/MS QQQ

Fully automated sensitive determination of immunosuppressant drugs in whole blood, using high quality internal standardization

Fully Automated Online Sample Preparation AND Quantification of Amiodarone from Whole Blood using CLAM-LC-MS/MS

Integration of steroids analysis in serum using LC-MS/MS with full-automated sample preparation

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

Quantitative Analysis of Opiates in Urine Using RRHT LC/MS/MS. Application. Authors. Introduction. Abstract. Forensics

Reduced Ion Suppression and Improved LC/MS Sensitivity with Agilent Bond Elut Plexa

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Dr. Erin E. Chambers Waters Corporation. Presented by Dr. Diego Rodriguez Cabaleiro Waters Europe Waters Corporation 1

Separation and Quantitation of Oxysterol Compounds Using LC-MS/MS. Liquid Chromatography Mass Spectrometry SSI-LCMS-082

LC/MS/MS Separation of Cholesterol and Related Sterols in Plasma on an Agilent InfinityLab Poroshell 120 EC C18 Column

Performance of an ultra low elution volume 96-well plate

Comparison of Biotage Extrahera vs. Manual Sample Processing Using a Vacuum Manifold

LCMS-8030 Application Report. Steroids: Testosterone, Progesterone, Estradiol, Ethinylestradiol

Comprehensive Study of SLE as a Sample. Preparation Tool for Bioanalysis

Analysis of Pesticides (II) Metribuzin & their metabolites in Rice Jun Yonekubo, Nihon Waters, JAPAN

Development of a Bioanalytical Method for Quantification of Amyloid Beta Peptides in Cerebrospinal Fluid

Extraction of 25-hydroxy Vitamin D from Serum Using ISOLUTE. PLD+ Prior to LC-MS/MS Analysis

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

Detection, Confirmation, and Quantification of Chloramphenicol in Honey, Shrimp and Chicken Using the Agilent 6410 LC/MS Triple Quadrupole

Analyze Barbiturates in Urine with Agilent 6430 LC/MS/MS and Poroshell 120 EC-C18

Author. Introduction. Small Molecule Pharmaceuticals & Generics

Agilent Clinical LC/MS: Review of Established LC-MS QQQ Clinical Research Applications. dr. Jan Srbek, HPST. Page 1

Simultaneous Quantitative Analysis of Total Catecholamines and Metanephrines in Urine Using 500 MG CLEAN UP CCX2 and LC-MS/MS

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

Paul D. Rainville Ph.D. Health Sciences Group Waters Corporation Waters Corporation 1

Title: Pharmacokinetics of daikenchuto, a traditional Japanese medicine (Kampo) after. single oral administration to healthy Japanese volunteers

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

Analysis of HMF by HPLC

Key Advantages of Comprehensive Cannabis Analysis

Identification of Steroids in Water by Ion Trap LC/MS/MS Application

Analysis of Vitamins Using an SFC/UHPLC Hybrid System with a Triple Quadrupole LC/MS for Quantification

Ultra High Performance Liquid Chromatograph. Nexera X2 C196-E079

Simultaneous Analysis of Intact Human Insulin and Five Analogs in Human Plasma Using μelution SPE and a CORTECS UPLC Column

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis

Simultaneous Quantitative Analysis of Total Catecholamines and Metanephrines in Urine Using CLEAN UP CCX2 and LC-MS/MS

Ultrafast Analysis of Benzodiazepines in Urine by the Agilent RapidFire High-Throughput Triple Quadrupole Mass Spectrometry System

Edgar Naegele. Abstract

Separation of Polyphenols by Comprehensive 2D-LC and Molecular Formula Determination by Coupling to Accurate Mass Measurement

Development and Validation of a Simultaneous HPLC Method for Quantification of Amlodipine Besylate and Metoprolol Tartrate in Tablets

Cannabinoid Quantitation Using an Agilent 6430 LC/MS/MS

Extraction of Aflatoxin M1 From Infant Formula Using ISOLUTE Myco SPE Columns prior to LC-MS/MS Analysis

Automated Purification and Analytical Reinjection of a Small Molecule Drug, Probenecid, on a Gilson LC/MS Dual Function System

Extraction of Synthetic and Naturally Occurring Cannabinoids in Urine Using SPE and LC-MS/MS

Quantitative Analysis of Amphetamine-Type Drugs by Extractive Benzoylation and LC/MS/MS. Application. Introduction. Authors. Abstract.

Mycotoxin Analysis in Peanut Butter Using Captiva EMR Lipid Cleanup and LC/MS/MS

Application Note LCMS-108 Quantitation of benzodiazepines and Z-drugs in serum with the EVOQ TM LC triple quadrupole mass spectrometer

Fast quantitative Forensic Analysis of THC and its Metabolites in Biological Samples using Captiva EMR- Lipid and LC/MSMS

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

application Natural Food Colorants Analysis of Natural Food Colorants by Electrospray and Atmospheric Pressure Chemical Ionization LC/MS

Agilent 1260 Infinity Analytical SFC System

Extraction of Multiple Mycotoxins From Grain Using ISOLUTE Myco prior to LC-MS/MS Analysis

Analysis of Cholesterol-Lowering Drugs (Statins) Using Dried Matrix Spot Technology

Chiral Multicolumn Method Development on the Agilent 1260 Infinity II SFC System

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

2D-LC as an Automated Desalting Tool for MSD Analysis

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Two-Dimensional LC/MS/MS to Reduce Ion Suppression in the Determination of Cannabinoids in Blood Plasma

Matrix-induced Signal Enhancement of Propamocarb in LC-MS/MS

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Protein Precipitation for Biological Fluid Samples Using Agilent Captiva EMR Lipid 96-Well Plates

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Identification and Quantification of Psychedelic Phenethylamine 2C Series using SPE and LC-MS/MS

Quantitative Determination of Drugs of Abuse in Human Plasma and Serum by LC/MS/MS Using Agilent Captiva EMR Lipid Cleanup

Liquid Chromatograph Mass Spectrometer LCMS-8040 C146-E188E

Lipidomic Analysis by UPLC-QTOF MS

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

Application Note. Author. Abstract. Introduction. Food Safety

Authors. Abstract. Forensic Toxicology. Irina Dioumaeva, John M. Hughes Agilent Technologies, Inc.

O O H. Robert S. Plumb and Paul D. Rainville Waters Corporation, Milford, MA, U.S. INTRODUCTION EXPERIMENTAL. LC /MS conditions

Dienes Derivatization MaxSpec Kit

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

Comprehensive Two-Dimensional HPLC and Informative Data Processing for Pharmaceuticals and Lipids

Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase

Phospholipid characterization by a TQ-MS data based identification scheme

Finnur Freyr Eiríksson

Food Analysis Applications with Triple Quadrupole LC/MS and TOF LC/MS

Mass-Based Purification of Natural Product Impurities Using an Agilent 1260 Infinity II Preparative LC/MSD System

Determination of Multi-Residue Tetracyclines and their Metabolites in Milk by High Performance Liquid Chromatography - Tandem Mass Spectrometry

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

LC/MS/MS Analysis of Metabolites of Synthetic Cannabinoids JWH-018 and JWH-073 in Urine

Efficient Quantitative Analysis of THC and Metabolites in Human Plasma Using Agilent Captiva EMR Lipid and LC-MS/MS

Simultaneous Determination of Prescription and Designer Benzodiazepines in Urine and Blood by SPE and LC-MS/MS

Profiling of Endogenous Metabolites Using Time-of-Flight LC/MS with Ion Pair Reverse Phase Chromatography

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

Surviving Matrix Effects Experiments. Grace van der Gugten St. Paul s Hospital, Vancouver, BC, Canada

SUPPLEMENTARY DATA. Materials and Methods

Transcription:

LCMS-85 Vitamin D3 Method development

Background Vitamin D3 Analysis is in demand in SAP region especially in Singapore and India Clinical Diagnostics and Clinical Research is demanding this application 25-OH Vit D3 Diagnotics 1,25 Di-OH Biomarker for many types of cancers hence more in research

Collaborative efforts The collaborator has an Agilent 646 and are disappointed with the frequency of maintenance The customer collaborated with Agilent (using the 649) for the last 9 months without any success in achieving their desired sensitivity of 5 ppt in plasma, therefore SAP offered an LCMS-85 trial Standards, IS and plasma blank were provided by the customer

Objectives and Experimental Conditions 5. Analytical Conditions: LC Conditions Column Flow Rate Mobile Phase Elution Mode Shim-pack FC-ODS (75mm x 2mm, 3 μm).5 ml/min A : Water with.1% Formic Acid B : Methanol with.1% Formic acid Gradient elution, LC program 8~1 minute Oven Temperature 45 ºC Injection Volume 5 & 5 ul MS and Interface Conditions Interface APCI MS Mode Positive MRM Block Temperature 2 ºC DL Temperature 2 ºC Nebulizing Gas Flow Nitrogen, 2.5 L/min Drying Gas Flow Nitrogen, 5 L/min 4

MRM Optimization MRM optimization result of 25-hydroxyl-vitamin D3 and its d6 internal standard Compound MRM Pause time Dwell Time Q1 Pre Bias CE Q3 Pre Bias 41.3 > 383.3 2 8-2 -11-14 25-OH-VD3 41.3 > 365.1 2 8-2 -12-26 41.3 > 17 2 8-12 -25-21 47.4 > 389.5 3 8-21 -11-28 25-OH-VD3-d6 47.4 > 371.3 3 8-2 -13-27 MRM optimization result of 1,25-dihydroxyl-vitamin D3 and its d3 internal standard Compound MRM Pause time Dwell Time Q1 Pre Bias CE Q3 Pre Bias 399.3 > 381.3 2 8-2 -13-14 1,25-diOH-VD3 399.3 > 157 2 8-2 -29-17 399.3 > 15 2 8-22 -44-11 1,25-diOH- 42.3 > 383.3 2 8-2 -15-27 VD3-d3 42.3 > 366.3 2 8-2 -12-18 5

25-hydroxyl vitamin D3 in Neat Solution Single std: VD3-1OH,.2 ppb (6) Single std: VD3-1OH, 1.56 ppb (13) 4 3 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 2 15 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 2 1 1 5. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 5 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 4 3 Single std: VD3-1OH,.39 ppb (9) 3 2 Single std: VD3-1OH, 3.13 ppb (15) 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 2 1 1. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 75 5 Single std: VD3-1OH,.78 ppb (11) 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 75 5 Single std: VD3-1OH, 6.25 ppb (17) 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 25 25. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 6

25-hydroxylvitamin D3 in Neat Solution Single std: VD3-1OH, 12.5 ppb (19) Single std: VD3-1OH, 1 ppb (25) 15 125 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 125 1 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 1 75 5 75 5 25 25. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min Single std: VD3-1OH, 25 ppb (21) Single std: VD3-1OH, 2 ppb (27) 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 3 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 25 25 2 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 2 15 15 1 1 5 5. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 5 4 3 2 1 Single std: VD3-1OH, 5 ppb (23) 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 6 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25.. 1. 2. 3. 4. 5. 6. 7. min 7

25-hydroxyl VD3 + IS (d6) in neat solution Batch: C:\LabSolutions\Data\11213_VitaminD3\APCI\13113 Zhan\1 Dec VD3-1OH\VD3 met-batch1dec-12 MeOH DP.lcb Method: C:\LabSolutions\Data\11213_VitaminD3\APCI\13113 Zhan\1 Dec VD3-1OH\VDs_FC-ODS75mm_14 DP.lcm Single std: VD3-1OH:.2,.39,.78, 1.56, 3.13, 6.25, 12.5, 25, 5, 1 and 2 ppb (11 point), two injection each Injection volume: 5 ul FC-ODS, 75 mm x 2 mm, 3 um MA: 7% B, MeOH with.1 FA Data file: from C:\LabSolutions\Data\11213_VitaminD3\APCI\13113 Zhan\1 Dec VD3-1OH\VD3-1OH_6.lcd to C:\LabSolutions\Data\11213_VitaminD3\APCI\13113 Zhan\1 Dec VD3-1OH\VD3-1OH_27.lcd Area Ratio 4 3 2 1. 1. 2. 3. Conc. Ratio Internal standard calibration curve of 25- dihydroxyl vitamin D3 in neat solution,.2 ppb ~ 2 ppb; IS 5 ppb 8

7. Results (3) blank serum + IS (d6) File 84 (repeat), ppb + IS 5 ppb in Serum 1 75 5 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 75 5 File 21, ppb + IS ppb in serum 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 25 25. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 6 5 4 3 2 1 2:47.4>389.5(+) CE: -11. 2:47.4>371.3(+) CE: -13. -D6 2:47.4>389.5(+) CE: -11. 4 2:47.4>371.3(+) CE: -13. 3 2 1 1. 2. 3. 4. 5. 6. 7. min Quan: 7.81 ppb 1. 2. 3. 4. 5. 6. 7. min Conclusion: The above results indicate that the serum blank contains 25-OH VD3 already!!! 9

25-hydroxyl VD3 + IS(d6) in Serum File 24,.2 ppb + IS 5 ppb in serum File 5,.2 ppb + IS 5 ppb in neat solu 5 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 25-OHVD3 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 125 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 1 25-OHVD3 75 25 5 25. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 3 2:47.4>389.5(+) CE: -11. 2:47.4>371.3(+) CE: -13. -D6 25-OHVD3-d6 (IS) 4 3 2:47.4>389.5(+) CE: -11. 2:47.4>371.3(+) CE: -13. -D6 25-OHVD3-d6 (IS) 2 2 1 1 1. 2. 3. 4. 5. 6. 7. min 1. 2. 3. 4. 5. 6. 7. min.2 ppb 25-OHVD3 + 5 ppb d6 (IS) in Serum.2 ppb 25-OHVD3 + 5 ppb -d3 (IS) in solvent Note: Blank serum contains 25-OH VD3 1

25-hydroxyl VD3 + IS(d6) in Serum File 3, 1.56 ppb + IS 5 ppb in serum 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 75 5 25 25-OHVD3. 1. 2. 3. 4. 5. 6. 7. min 25 2 15 1 5 File 56, 1.56 ppb + IS 5 ppb in neat solu 1:OHVD3 and epimer 41.3>383.3(+) CE: -11. 1:OHVD3 and epimer 41.3>365.1(+) CE: -12. 1:OHVD3 and epimer 41.3>17.(+) CE: -25. 25-OHVD3. 1. 2. 3. 4. 5. 6. 7. min 4 3 2:47.4>389.5(+) CE: -11. 2:47.4>371.3(+) CE: -13. -D6 25-OHVD3-d6 (IS) 5 4 3 2:47.4>389.5(+) CE: -11. 2:47.4>371.3(+) CE: -13. -D6 25-OHVD3-d6 (IS) 2 2 1 1 1. 2. 3. 4. 5. 6. 7. min 1. 2. 3. 4. 5. 6. 7. min 1.56 ppb 25-OHVD3 + 5 ppb d6 (IS) in Serum 1.56 ppb 25-OHVD3 + 5 ppb -d3 (IS) in solvent Note: Blank serum contains 25-OH VD3 11

1,25 di-oh VitaminD3

7. Results (1) 1,25-dihydroxylvitamin D3 1:OH2D3 399.3>381.3(+) CE: -13. 4 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. 3 2 1 4 3 2 1 75 5 Single std: VD3-2OH, 12.5 ppt (4). 1. 2. 3. 4. 5. 6. 7. min Single std: VD3-2OH, 25 ppt (43) 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. VD3-di-OH VD3-di-OH. 1. 2. 3. 4. 5. 6. 7. min Single std: VD3-2OH, 5 ppt (45) 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. VD3-di-OH 15 125 1 75 5 25 3 25 2 15 1 5 5 4 3 Single std: VD3-2OH, 1 ppt (47) 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44.. 1. 2. 3. 4. 5. 6. 7. min Single std: VD3-2OH, 2 ppt (49) 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. VD3-di-OH. 1. 2. 3. 4. 5. 6. 7. min Single std: VD3-2OH, 4 ppt (51) 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. VD3-di-OH VD3-di-OH 25 2 1. 1. 2. 3. 4. 5. 6. 7. min. 1. 2. 3. 4. 5. 6. 7. min 13

di-hydroxyl VD3 + IS(d3) in neat solution Area Ratio 12.5 1. 7.5 5. 2.5...5 1. 1.5 2. 2.5 3. 3.5 Conc. Ratio Internal standard calibration curve of 1,25- dihydroxyl vitamin D3 in neat solution, 22.7 ppt ~ 727.3 ppt; IS 181.8 ppt 14

1,25 di-hydroxyl VD3 + IS(d3) 75 5 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. OH2-VD3 Di-OHVD3 4 3 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 1:OH2D3 399.3>15.(+) CE: -44. OH2-VD3 Di-OHVD3 2 25 1. 2.5 5. 7.5 1. min. 1. 2. 3. 4. 5. 6. 7. min 2:OH2D3-D6 42.3>383.3(+) CE: -15. 125 2:OH2D3-D6 42.3>366.3(+) CE: -12. 1 75 OH2-VD3-D3 Di-OHVD3-d3 (IS) 6 5 4 2:OH2D3-D6 42.3>383.3(+) CE: -15. 2:OH2D3-D6 42.3>366.3(+) CE: -12. OH2-VD3-D3 Di-OHVD3-d3 (IS) 5 3 2 25 1 2.5 5. 7.5 1. min 1. 2. 3. 4. 5. 6. 7. min 363.6 ppt Di-OHVD3 + 181.8 ppt -d3 (IS) in Serum 363.6 ppt Di-OHVD3 + 181.8 ppt -d3 (IS) in solvent 1 D LC/MS/MS method faced the problem of a serious interference

Advantage of 2-D LC Previous work revealed that with the APCI interface using MeOH-water-Formic acid mobile phase, the best sensitivity for standards in neat solution is 12.5 ppt (5 ul). The sensitivity in serum is far from the required concentration. The main problem iss peak interference in the MRM transition 399>281 at the low ppt level in serum. It is not possible to solve this peak interference problem by changing LC conditions.

2D-LC/MS/MS method 1:OH2D3 399.3>381.3(+) CE: -13. 1:OH2D3 399.3>157.(+) CE: -29. 5 1:OH2D3 399.3>15.(+) CE: -44. 4 3 OH2-VD3 2 1. 2.5 5. 7.5 1. min 7 2:OH2D3-D6 42.3>383.3(+) CE: -15. 2:OH2D3-D6 42.3>366.3(+) CE: -12. 6 5 4 3 2 1 OH2-VD3-D3 2.5 5. 7.5 1. min Precise peak cut (<2 ul) in 1 st D separation Transfer to 2 nd separation and analysis

2D-LC/MS/MS system for precise peakcut in 1 st D and transfer to 2 nd D Pump A Mixer Auto sampler RP column Trapping loop 2 ul Switching Valve 2 5 1 3 Detector Pump B Pump C Mixer Switching Valve 1 5 1 3 2 nd Column Valve (2) = Valve (1) = Pump D Step 1: 1 st D column: sample loading & separation 2 nd D column: ready

2D-LC/MS/MS system for precise peakcut in 1 st D and transfer to 2 nd D Pump A Mixer Auto sampler RP column Trapping loop 2 ul Switching Valve 2 5 1 3 Detector Pump B Pump C Mixer Switching Valve 1 5 1 3 2 nd Column Valve (2) = Valve (1) = 1 Pump D Step 2: 1 st D column: peak-cut at RT (<2 ul) by time program 2 nd D column: ready

2D-LC/MS/MS system for precise peakcut in 1 st D and transfer to 2 nd D Pump A Mixer Trapping loop 2 ul Auto sampler 1st RP column 75 mm x 2 mm 5 Switching Valve 2 1 3 Detector Pump B Pump C Mixer Switching Valve 1 5 1 3 2 nd RP Column 5 mm x 2 mm Valve (1) = Valve (2) = Pump D Step 3: 1 st D column: washing & equilibration 2 nd D column: analysis

Advantage of 2-D LC

1,25-dihydroxylvitamin D3, 12.5 ppt 5 45 4 35 3 25 2 1:399.3>381.3(+) 1:399.3>157.(+) 12.5 ppt x 1 ul In neat solution 22.627 45 4 35 3 25 2 15 1 1:399.3>381.3(+) 1:399.3>157.(+) 22.627 15 5 1 5 21. 22. 23. 24. Area: 3414. 5. 1. 15. 2. 1:399.3>381.3(+) 4 1:399.3>157.(+) 35 3 25 2 12.5 ppt x 1 ul In serum 1 75 5 1:399.3>381.3(+) 1:399.3>157.(+) 22.644 15 25 1 5 22.644 21. 22. 23. 24. Area: 3957