Sponsored document from Microbes and Infection / Institut Pasteur

Similar documents
2. Innate immunity 2013

Innate immunity. Abul K. Abbas University of California San Francisco. FOCiS

Toll-like Receptors (TLRs): Biology, Pathology and Therapeutics

Time course of immune response

Innate Immunity & Inflammation

Medical Virology Immunology. Dr. Sameer Naji, MB, BCh, PhD (UK) Head of Basic Medical Sciences Dept. Faculty of Medicine The Hashemite University

Soluble TNFRp75 regulates host protective immunity against Mycobacterium tuberculosis

Supplementary Figures

Review Article Pattern Recognition Receptors and Cytokines in Mycobacterium tuberculosis Infection The Double-Edged Sword?

Immune receptors Y Y. Multiple immune responses CLR TLR NLR ITAM RLR. C-type lectin. ITAM: Immunoreceptor Tyrosine-based Activation Motif

Allergy and Immunology Review Corner: Chapter 13 of Immunology IV: Clinical Applications in Health and Disease, by Joseph A. Bellanti, MD.

Structure and Function of Antigen Recognition Molecules

and the Working Group from the EMBO-AIDS Related Mycoses Workshop Institute of Infectious Disease and Molecular Medicine, University of Cape Town,

Immune response to pathogens

Supplementary Material

Host recognition of fungal pathogens

Host-Pathogen Interactions in Tuberculosis

number Done by Corrected by Doctor Mousa Al-Abbadi

ACTIVATION AND EFFECTOR FUNCTIONS OF CELL-MEDIATED IMMUNITY AND NK CELLS. Choompone Sakonwasun, MD (Hons), FRCPT

SIGNIFICANT REDUCTION OF GRANULOMAS IN Nrf2-DEFICIENT MICE INFECTED WITH MYCOBACTERIUM TUBERCULOSIS

Innate Immunity. Chapter 3. Connection Between Innate and Adaptive Immunity. Know Differences and Provide Examples. Antimicrobial peptide psoriasin

Introduction to Immune System

Adaptive Immunity to Bacteria. T cell subsets

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Experiment #1 TARGET Mouse Model Group. Report prepared by Paul Converse, Ph.D. and Eric Nuermberger, M.D. March 1, 2006

Research Article Cytokines as Biomarkers in the Diagnosis of MDR TB Cases

Chapter 3 The Induced Responses of Innate Immunity

JPEMS Nantes, Basic Immunology INNATE IMMUNITY

Lecture on Innate Immunity and Inflammation

Technical Bulletin No. 172

Innate immune regulation of T-helper (Th) cell homeostasis in the intestine

Analysis of mycobacteria-specific CD4+ T cell cytokine responses and memory differentiation in HIV patients and healthy controls

FOR OPTIMAL GUT HEALTH KEMIN.COM/GUTHEALTH

Cell Mediated Immunity CELL MEDIATED IMMUNITY. Basic Elements of Cell Mediated Immunity (CMI) Antibody-dependent cell-mediated cytotoxicity (ADCC)

General Overview of Immunology. Kimberly S. Schluns, Ph.D. Associate Professor Department of Immunology UT MD Anderson Cancer Center

ACTIVATION OF T LYMPHOCYTES AND CELL MEDIATED IMMUNITY

TCR, MHC and coreceptors

How the Innate Immune System Profiles Pathogens

TB Intensive San Antonio, Texas December 1-3, 2010

Exosomes function in antigen presentation during an in vivo Mycobacterium tuberculosis infection

Determinants of Immunogenicity and Tolerance. Abul K. Abbas, MD Department of Pathology University of California San Francisco

Effector T Cells and

Chapter 10 (pages ): Differentiation and Functions of CD4+ Effector T Cells Prepared by Kristen Dazy, MD, Scripps Clinic Medical Group

Innate Immunity: (I) Molecules & (II) Cells. Part II: Cells (aka the Sentinels)

Innate Immunity II. Integration. Lindsay Nicholson Advanced Immunology L2

What is the immune system? Types of Immunity. Pasteur and rabies vaccine. Historical Role of smallpox. Recognition Response

Medical Bacteriology- lecture 13. Mycobacterium Actinomycetes

Immunology Part II. Innate Immunity. 18. April 2018, Ruhr-Universität Bochum Marcus Peters,

Index. Note: Page numbers of article titles are in boldface type.

THE IMPACT OF IMMUNE DISTURBANCES ON THE FAILURE OF ANTITUBERCULOSIS TREATMENT

Cell-mediated Immunity

Pathogens and the immune system

Yolanda González, Claudia Carranza, Marco Iñiguez, Martha Torres, Raul Quintana, Alvaro Osornio, Carol Gardner, Srijata Sarkar, and Stephan Schwander

Effector mechanisms of cell-mediated immunity: Properties of effector, memory and regulatory T cells

Tuberculosis Intensive

Identifying Biologic Targets to Attenuate or Eliminate Asthma Exacerbations

Tuberculosis Pathogenesis

Role of Innate Immunity in Control of Adaptive Immunity

Immune response to infection

The Adaptive Immune Responses

Role of iron in invasive fungal infections

Chapter 24 The Immune System

Adaptive immune responses: T cell-mediated immunity

CD4+ T Helper T Cells, and their Cytokines in Immune Defense and Disease

T Cell Effector Mechanisms I: B cell Help & DTH

Question 1. Kupffer cells, microglial cells and osteoclasts are all examples of what type of immune system cell?

1. The scavenger receptor, CD36, functions as a coreceptor for which TLR? a. TLR ½ b. TLR 3 c. TLR 4 d. TLR 2/6

IMO-8400, a novel TLR7, TLR8 and TLR9 antagonist, psoriasis

Fluid movement in capillaries. Not all fluid is reclaimed at the venous end of the capillaries; that is the job of the lymphatic system

Innate Immunity. Hathairat Thananchai, DPhil Department of Microbiology Faculty of Medicine Chiang Mai University 2 August 2016

Accepted Manuscript. Innate immune cells regulate oncoimmunity and cancer development. Ai-Ping Bai, Yuan Guo

Immunologically Induced and Elicited Local

Chapter 13: Cytokines

Identification of Microbes

MODULE ONE" TB Basic Science" Treatment Action Group TB/HIV Advocacy Toolkit

Clinical Basis of the Immune Response and the Complement Cascade

Perspective in novel TB vaccine development Mohamed Ridha BARBOUCHE M.D., Ph.D. Department of Immunology Institut Pasteur de Tunis

Chapter 35 Active Reading Guide The Immune System

A NOVEL PHARMACODYNAMIC MODEL FOR TREATMENT OF TUBERCULOSIS USING DAYS TO POSITIVITY IN AUTOMATED LIQUID MYCOBACTERIAL CULTURE

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

Candida albicans and Candida parapsilosis Induce Different T-Cell Responses in Human Peripheral Blood Mononuclear Cells

Felix Yarovinsky. Department of Immunology, UT Southwestern Medical Center. Innate immune defense to Toxoplasma gondii

Supplemental Information. Gut Microbiota Promotes Hematopoiesis to Control Bacterial Infection. Cell Host & Microbe, Volume 15

Activation of inflammatory response by fungal cell wall components and toxins

Nishino, Tomoya; Fukushima, Chizu; Asthma and Immunology, 113, 2, (201

Medical Bacteriology- Lecture 10. Mycobacterium. Actinomycetes. Nocardia

Scott Abrams, Ph.D. Professor of Oncology, x4375 Kuby Immunology SEVENTH EDITION

anys. Reinfection vs. Reactivation Is this the question?

Immunology Lecture 4. Clinical Relevance of the Immune System

IMMUNE RESPONSE TO INFECTIOUS DISEASES

Unit 5 The Human Immune Response to Infection

Defense mechanism against pathogens

Innate Immunity to Mycobacterium tuberculosis

Role of Dectin-1 in the innate immune response of rat corneal epithelial cells to Aspergillus fumigatus

11/25/2017. THE IMMUNE SYSTEM Chapter 43 IMMUNITY INNATE IMMUNITY EXAMPLE IN INSECTS BARRIER DEFENSES INNATE IMMUNITY OF VERTEBRATES

Microbiology 204: Cellular and Molecular Immunology

Acquired Immunity Cells are initially and require before they can work Responds to individual microbes

Immunology: an overview Lecture

Prof. Ibtesam Kamel Afifi Professor of Medical Microbiology & Immunology

Transcription:

Sponsored document from Microbes and Infection / Institut Pasteur The Syk/CARD9-coupled receptor Dectin-1 is not required for host resistance to Mycobacterium tuberculosis in mice Mohlopheni J. Marakalala a, Reto Guler a,b, Lungile Matika a, Graeme Murray c, Muazzam Jacobs a, Frank Brombacher a,b, Antonio Gigliotti Rothfuchs d,e, Alan Sher e, and Gordon D. Brown a,f, a Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, South Africa b International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa c Section of Translational Medicine, Division of Applied Medicine, University of Aberdeen, UK d Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, USA e Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Sweden f Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, UK Abstract There is interest in identifying the pattern recognition receptors involved in initiating protective or non-protective host responses to Mycobacterium tuberculosis (Mtb). Here we explored the role of the Syk/CARD9-coupled receptor, Dectin-1, using an aerosol model of Mtb infection in wild-type and Dectin-1 deficient mice. We observed a reduction in pulmonary bacilli burdens in the Dectin-1 deficient animals, but this did not correlate with significant changes in pulmonary pathology, cytokine levels or ability of these animals to survive the infection. Thus Dectin-1 makes a minor contribution to susceptibility to Mtb infections in mice. Keywords C-type lectin receptors; Syk; CARD9; Dectin-1; Pulmonary disease; Inflammation Of all the human diseases resulting from bacterial infection, tuberculosis (TB) remains the deadliest, killing about 1.6 million people a year globally [1]. Host control of Mtb relies heavily on the activation of interferon-γ (IFN-γ)-producing CD4 + T cells, and cytokines involved in the development of T H 1 responses, such as IL-12, are critical for the control of infections with this pathogen [2]. Conversely, suppressive cytokines such as IL-10 negatively regulate macrophage function during mycobacterial infection, although they may be required for limiting inflammation associated pathology [3]. Â 2011 Elsevier Masson SAS. Corresponding author. Section of Immunology and Infection, Division of Applied Medicine, Institute of Medical Sciences, Foresterhill, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom. gordon.brown@abdn.ac.uk. This document was posted here by permission of the publisher. At the time of deposit, it included all changes made during peer review, copyediting, and publishing. The U.S. National Library of Medicine is responsible for all links within the document and for incorporating any publisher-supplied amendments or retractions issued subsequently. The published journal article, guaranteed to be such by Elsevier, is available for free, on ScienceDirect.

Marakalala et al. Page 2 The initiation of these responses in the naïve host relies on pattern recognition receptors (PRRs), including several Toll-like (TLRs) and C-type lectin receptors (CLR) [4]. Of particular interest are the CLRs which induce intracellular signalling through the Syk/ CARD9 pathway, which was recently shown to be essential for the control of Mtb [5]. Two CLRs which signal via this pathway have been shown to recognise mycobacteria, and include Mincle, which binds mycobacterial cord factor [6,7], and Dectin-1, whose mycobacterial ligand is unknown [8]. Dectin-1 is traditionally associated with the recognition of fungi, but this receptor has also been implicated in anti-mycobacterial immunity. Dectin-1 is highly expressed on alveolar macrophages [8], and can be induced by Mtb on airway epithelial cells [9], and in vitro studies have demonstrated a contribution of this receptor in mycobacterial uptake, induction of the respiratory burst, and the production of cytokines, including IL-6, IL-12 and IL-17 [10 13]. To explore the role of Dectin-1 in the host response to pulmonary TB, we aerosol inhalated 10 to 14 week-old female 129/Sv wild-type and Clec7a -/- mice (generated on a pure 129/Sv background [14]) with ±100 CFU of Mycobacterium tuberculosis H37Rv using an inhalation exposure system (Glas-Col, Terre Haute, IN, model no:099 A4212). The infective dose was verified by determining the bacterial loads in the lungs of test mice 24 h after infection, and the remaining animals were subsequently characterised at 2 and 4 months post-infection. We first examined the pulmonary bacilli burdens, by weighing and homogenizing all the lobes of the right lung (i.e. anterior, posterior middle and post-caval lobes) in saline containing 0.04% Tween 80, and plating serial dilutions of the homogenates onto Middlebrook 7H10 agar enriched with 10% OADC, incubating at 37 C and counting colonies after 21 days. We found that the bacilli burdens had increased logarithmically from the initial infecting dose and had plateaued, as expected (Fig. 1A) [2]. In comparison to the wild-type animals, however, we observed a significant and reproducible reduction in the CFU in the lungs of the Dectin-1 deficient mice at both time points. Thus the presence of Dectin-1 appeared to contribute to disease susceptibility. We also explored the effect of Dectin-1 deficiency on pulmonary pathology. Histological sections of the left lung lobes, stained with haemotoxylin and eosin (H&E), from both the wild-type and Dectin-1 / mice showed similar histological features of pneumonia, consisting of bronchocentric inflammatory infiltrates composed predominantly of lymphocytes and macrophages (Fig. 1B and data not shown). These inflammatory infiltrates extensively involved the alveolated lung tissue, and the alveoli contained numerous foamy macrophages (data not shown). Furthermore, automated morphometric analysis of four serial sections per lung, using a Nikon microscope eclipse 90i and NIS-Elements BR 3.1 9 (Nikon), revealed no difference in the size of the inflammatory lesions in the lungs of wildtype and Dectin-1 / animals, at both time points (Fig. 1C). These results therefore suggest that the differences in the bacterial burdens do not result in gross histological changes in the lung. To attempt to determine the underlying reasons for the differences in bacterial burdens, we next examined the expression of pulmonary cytokines in lung homogenates by ELISA (BD Biosciences and R&D Systems), focussing specifically on those cytokines that have previously been shown to be influenced by Dectin-1, including TNF, IL-12, IL-6, IL-17 and IL-10 [8,15]. Although a small increase in the levels of TNF in the Dectin-1 / mice at 2 months was detected, this increase was not observed at 4 months (Fig. 1D). There were no significant differences between wild-type and Dectin-1 deficient animals in the production of any of the other cytokines tested (Fig. 1D). These data therefore suggest that there are no

Marakalala et al. Page 3 major changes in the ability of the Dectin-1 deficient animals to induce the production of cytokines during infection with Mtb. Finally, to explore the effect of Dectin-1 deficiency on survival of mice during pulmonary tuberculosis, we infected wild-type and Dectin-1 deficient mice with 100 CFU of Mycobacterium tuberculosis H37Rv and monitored survival of the animals over a period of 150 days (Fig. 1E). Mice displaying 20% weight loss were considered moribund and killed, and about 50% of all mice succumbed during the course of the experiment, but we observed no significant alterations in the rate of mortality between wild-type and Dectin-1 deficient animals. This suggests that Dectin-1 does not influence long term survival during infection with M. tuberculosis. Previous studies have suggested that Dectin-1 may play a protective role in antimycobacterial immunity, as this receptor has been shown to contribute to the induction of protective inflammatory cytokines, including IL-12, by macrophages and dendritic cells in vitro [11 13]. Surprisingly, our results suggest that Dectin-1 may contribute to disease susceptibility, as Dectin-1 deficient mice had reproducibly lower bacilli burdens, when compared to wild-type animals. On the other hand, these reduced bacterial burdens did not correlate with substantial changes in pathology, cytokine production or ability to resist infection. Our data does not provide conclusive answers to the cause of the reduced bacterial burdens observed in the Dectin-1 deficient mice, but a contributing factor could be alterations in the production of cytokines, particularly TNF and IL-10. Although not significant, there was a tendency towards lower IL-10 levels at both 2 and 4 months. Indeed, in two of the three experiments (which are all pooled in Fig. 1D), we observed significantly less IL-10 at 2 months (p = 0.027 and p = 0.036, data not shown) in the lungs of the Dectin-1 deficient animals. Given that Dectin-1 can induce IL-10 [8], and the importance of IL-10 in controlling pathogen clearance [3,5], the reductions in the levels of this cytokine may be a factor contributing to the reduced bacterial burdens seen in the Dectin-1 deficient animals. Similarly, the higher levels of TNF (at least at 2 months) may also contribute to Mtb clearance, but in this case it is unclear how Dectin-1 deficiency could lead to such increases, given that this receptor normally stimulates the production of this cytokine [8]. Signalling from Dectin-1 using purified β-glucan as an adjuvant has been shown to drive the development of Th1 and Th17 adaptive immunity, raising the possibility that this receptor is involved in the development of these responses during Mtb infection. [16]. However, we observed no differences in the levels of pulmonary IFNγ or IL-17 in the knockout mice at both 2 or 4 months, suggesting that the development of adaptive immunity is unaffected by Dectin-1 deficiency. Similar results were also observed in these mice during infection with Candida albicans, where the main receptor driving adaptive responses was found to be Dectin-2 [17,18]. Indeed, Mincle has recently been shown to be capable of promoting Th1 and Th17 responses to Mtb, and may therefore be the primary receptor promoting the development of adaptive immunity during infection [6,7] In summary, we have addressed the role of Dectin-1 in the control of Mtb in vivo, and conclude that although Dectin-1 contributes to susceptibility, this receptor plays only a minor role in anti-mycobacterial immunity. Determining the mycobacterial ligand recognised by Dectin-1 and the mechanisms underlying the decreased pulmonary bacterial burdens in the receptor deficient mice are issues which need to be addressed in the future. References 1. World Health OrganizationFact sheet no. 1042007Geneva

Marakalala et al. Page 4 2. CooperA.M.KhaderS.A.The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosisimmunol. Rev.226200819120419161425 3. RedfordP.S.BoonstraA.ReadS.PittJ.GrahamC.StavropoulosE.BancroftG.J.O GarraA.Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lungeur. J. Immunol.2010 4. SchäferM.J.WilkinsonR.J.BrownG.D.Non-Opsonic recognition of Mycobacterium tuberculosis by phagocytesj. Innate Immun.1200823124320375581 5. DorhoiA.DeselC.YeremeevV.PradlL.BrinkmannV.MollenkopfH.J.HankeK.GrossO.RulandJ.Kaufm anns.h.the adaptor molecule CARD9 is essential for tuberculosis controlj. Exp. Med. 207201077779220351059 6. SchoenenH.BodendorferB.HitchensK.ManzaneroS.WerninghausK.NimmerjahnF.AggerE.M.Stenge rs.andersenp.rulandj.browng.d.wellsc.langr.cutting edge: mincle is essential for recognition and adjuvanticity of the mycobacterial cord factor and its synthetic analog trehalose-dibehenatej. Immunol.18420102756276020164423 7. IshikawaE.IshikawaT.MoritaY.S.ToyonagaK.YamadaH.TakeuchiO.KinoshitaT.AkiraS.YoshikaiY. YamasakiS.Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin minclej. Exp. Med.20620092879288820008526 8. ReidD.M.GowN.A.BrownG.D.Pattern recognition: recent insights from Dectin-1Curr. Opin. Immunol.212009303719223162 9. LeeH.M.YukJ.M.ShinD.M.JoE.K.Dectin-1 is inducible and plays an essential role for mycobacteriainduced innate immune responses in airway epithelial cellsj. Clin. Immunol. 29200979580519633936 10. van de VeerdonkF.L.TeirlinckA.C.KleinnijenhuisJ.KullbergB.J.van CrevelR.van der MeerJ.W.JoostenL.A.NeteaM.G.Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1J. Leukoc. Biol.2010 11. RothfuchsA.G.BaficaA.FengC.G.EgenJ.G.WilliamsD.L.BrownG.D.SherA.Dectin-1 interaction with Mycobacterium tuberculosis leads to enhanced IL-12p40 production by splenic dendritic cellsj. Immunol.17920073463347117785780 12. ShinD.M.YangC.S.YukJ.M.LeeJ.Y.KimK.H.ShinS.J.TakaharaK.LeeS.J.JoE.K.Mycobacterium abscessus activates the macrophage innate immune response via a physical and functional interaction between TLR2 and dectin-1cell. Microbiol.1020081608162118373632 13. YadavM.SchoreyJ.S.The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteriablood10820063168317516825490 14. TaylorP.R.TsoniS.V.WillmentJ.A.DennehyK.M.RosasM.FindonH.HaynesK.SteeleC.BottoM.Gord ons.browng.d.dectin-1 is required for beta-glucan recognition and control of fungal infectionnat. Immunol.82007313817159984 15. BrownG.D.Dectin-1: a signalling non-tlr pattern-recognition receptornat. Rev. Immunol. 62006334316341139 16. LeibundGut- LandmannS.GrossO.RobinsonM.J.OsorioF.SlackE.C.TsoniS.V.SchweighofferE.TybulewiczV.Bro wng.d.rulandj.reis e SousaC.Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17Nat. Immunology8200763063817450144 17. RobinsonM.J.OsorioF.RosasM.FreitasR.P.SchweighofferE.GrossO.VerbeekJ.S.RulandJ.Tybulewi czv.browng.d.moital.f.taylorp.r.reis e SousaC.Dectin-2 is a Syk-coupled pattern recognition receptor crucial for Th17 responses to fungal infectionj. Experimental Medicine206200920372051 18. SaijoS.IkedaS.YamabeK.KakutaS.IshigameH.AkitsuA.FujikadoN.KusakaT.KuboS.ChungS.H.Ko matsur.miuran.adachiy.ohnon.shibuyak.yamamoton.kawakamik.yamasakis.saitot.akiras.

Marakalala et al. Page 5 Acknowledgments IwakuraY.Dectin-2 recognition of alpha-mannans and induction of Th17 cell differentiation is essential for host defense against Candida albicansimmunity32201068169120493731 We acknowledge the excellent technical assistance from Lizette Fick, Nasiema Allie, Mark Barkhuizen, and Faried Abbass. This work was supported in part by the National Research Foundation, Medical Research Council of South Africa, Claude Leon Foundation, the University of Cape Town, and the Wellcome Trust for funding. MJM is an NRF Innovation postdoctoral Fellow.

Marakalala et al. Page 6 Fig. 1. Dectin-1 deficiency leads to a reduction in pulmonary bacilli loads, but no significant changes in pulmonary pathology, cytokine levels or ability of these animals to survive infection with Mycobacterium tuberculosis (Mtb). Wild-type (black symbols) and Dectin-1 / (white symbols) mice (n = 4 8 animals per group) were infected with 100 CFU of Mtb H37Rv and at 2 and 4 months post-infection, lungs were analyzed for bacterial burdens (A), histopathology (H&E staining at 2 months, B), lesion size (2 months, C) and selected cytokines (D), as indicated. Shown are data pooled from at least two independent experiments and indicate the results from individual animals (A), or mean ± SEM (C, D). Differences between the means of experimental and control group were analyzed with twotailed student s t-test. (E) Wild-type and Dectin-1 / mice (n = 10 per group) were infected with 100 CFU of Mtb and survival was monitored for 150 days., p < 0.05; ns, not significant. Survival data were analyzed with the log rank test.