Vaccination with Attenuated Simian Immunodeficiency Virus by DNA Inoculation

Similar documents
Received 29 August 2002/Accepted 3 December 2002

ALTHOUGH disease develops within 10 years in

Viral Vectors In The Research Laboratory: Just How Safe Are They? Dawn P. Wooley, Ph.D., SM(NRM), RBP, CBSP

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA.

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

X/01/$ DOI: /JVI Copyright 2001, American Society for Microbiology. All Rights Reserved.

Micropathology Ltd. University of Warwick Science Park, Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ

JOURNAL OF VIROLOGY, Dec. 2000, p Vol. 74, No. 24. Copyright 2000, American Society for Microbiology. All Rights Reserved.

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR

Human Immunodeficiency Virus Type 1 Escapes from RNA Interference-Mediated Inhibition

DEBATE ON HIV ENVELOPE AS A T CELL IMMUNOGEN HAS BEEN GAG-GED

Received 4 December 2001/Accepted 29 April 2002

Understanding HIV. Transmitted/Founder Viruses. Brandon Keele SAIC-Frederick National Cancer Institute

Current Strategies in HIV-1 Vaccine Development Using Replication-Defective Adenovirus as a Case Study

Received 8 October 1997/Accepted 5 January 1998

GOVX-B11: A Clade B HIV Vaccine for the Developed World

Hepatitis B Antiviral Drug Development Multi-Marker Screening Assay

Macrophage Tropism and Cytopathicity of HIV-1 Variants Isolated Sequentially from a Long-Term Survivor Infected with nef-deleted Virus

A Novel Approach for Producing Lentiviruses That Are Limited to a Single Cycle of Infection

C. Jane Dale 1,2, Anne Zhao 1,2, Stephen L. Jones 3, David B. Boyle 4, Ian A. Ramshaw 5, Stephen J. Kent 1,2. Introduction

Trends in molecular diagnostics

Dox-Dependent SIVmac with Tetracycline-Inducible Promoter in the U3 Promoter Region

Supporting Information

JOURNAL OF VIROLOGY, Oct. 1999, p Vol. 73, No. 10. Copyright 1999, American Society for Microbiology. All Rights Reserved.

Viral Genetics. BIT 220 Chapter 16

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART

ADCC Develops Over Time during Persistent Infection with Live-Attenuated SIV and Is Associated with Complete Protection against SIV(mac)251 Challenge

Supporting Information

Antibody Dependent Cellular Cytotxic activity: Past and Future. Guido Ferrari, M.D. Duke University Medical Center

Supplementary information. MARCH8 inhibits HIV-1 infection by reducing virion incorporation of envelope glycoproteins

Diagnostic Methods of HBV and HDV infections

Protection afforded by live attenuated SIV is associated with rapid killing kinetics of CTLs

Clinical Significance of Human Immunodeficiency Virus Type 1 Replication Fitness

Molecular Diagnosis Future Directions

Supplementary Information. Supplementary Figure 1

Construction of a Doxycycline-Dependent Simian Immunodeficiency Virus Reveals a Nontranscriptional Function of Tat in Viral Replication

Treatment with IL-7 Prevents the Decline of Circulating CD4 + T Cells during the Acute Phase of SIV Infection in Rhesus Macaques

VIRAL TITER COUNTS. The best methods of measuring infectious lentiviral titer

HIV Diagnostic Testing

The Discovery of SIV and Development of Monkey Models for the Study of HIV/AIDS. Ronald C Desrosiers University of Miami Miller School of Medicine

Figure S1. Schematic presentation of genomic replication of idsiv after transfection and infection. After transfection of idsiv plasmid DNA into 293T

The humoral immune responses to IBV proteins.

Gene Vaccine Dr. Sina Soleimani

Supplementary Figure 1. SC35M polymerase activity in the presence of Bat or SC35M NP encoded from the phw2000 rescue plasmid.

VIROLOGY. Engineering Viral Genomes: Retrovirus Vectors

Retroviruses. ---The name retrovirus comes from the enzyme, reverse transcriptase.

Immunization with single-cycle SIV significantly reduces viral loads after an intravenous challenge with SIV(mac)239

Tel: ; Fax: ;

On an individual level. Time since infection. NEJM, April HIV-1 evolution in response to immune selection pressures

Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIV mac 239

INTERNATIONAL CONFERENCE ON HARMONISATION OF TECHNICAL REQUIREMENTS FOR REGISTRATION OF PHARMACEUTICALS FOR HUMAN USE. ICH Considerations

Subtype AE HIV-1 DNA and recombinant Fowlpoxvirus vaccines encoding five shared HIV-1 genes: safety and T cell immunogenicity in macaques

Early Emergence and Selection of a SIV-LTR C/EBP Site Variant in SIV-Infected Macaques That Increases Virus Infectivity

Longitudinal Studies of Neutralizing Antibody Responses to Rotavirus in Stools and Sera of Children following Severe Rotavirus Gastroenteritis

Nature Medicine: doi: /nm.4322

Vif Proteins of Human and Simian Immunodeficiency Viruses Require Cellular CBFβ to Degrade APOBEC3 Restriction Factors

Packaging and Abnormal Particle Morphology

Selectively Deleted In Vivo in the Absence of an Intact nef Gene

SUPPLEMENTARY INFORMATION. Divergent TLR7/9 signaling and type I interferon production distinguish

Human Immunodeficiency Virus

on January 7, 2019 by guest

Viral vaccines. Lec. 3 أ.د.فائزة عبد هللا مخلص

Vaccine-Induced T Cells Control Reversion of AIDS Virus Immune Escape Mutants

JVI Accepts, published online ahead of print on 7 March 2007 J. Virol. doi: /jvi

BIT 120. Copy of Cancer/HIV Lecture

DNA and Protein Vaccination Confers Protection Upon Mucosal Challenge with Heterologous SIVsmE660 (OA 10.04)

~Lentivirus production~

Pelagia Research Library. European Journal of Experimental Biology, 2015, 5(10):1-5

Nef functions in BLT mice to enhance HIV-1 replication and deplete CD4 + CD8 + thymocytes

Helper virus-free transfer of human immunodeficiency virus type 1 vectors

staining and flow cytometry

Supplementary Information. Novel lentiviral vectors with mutated reverse transcriptase for mrna delivery of TALE nucleases

CHAPTER 4 RESULTS. showed that all three replicates had similar growth trends (Figure 4.1) (p<0.05; p=0.0000)

A Multicistronic DNA Vaccine Induces Significant Protection against Tuberculosis in Mice and Offers Flexibility in the Expressed Antigen Repertoire.

Massive infection and loss of memory CD4 + T cells in multiple tissues during acute SIV infection

A Query by HIV. I. A query by HIV. II. Recursion

numbe r Done by Corrected by Doctor

Modulation of Different Human Immunodeficiency Virus Type 1 Nef Functions during Progression to AIDS

T Cells: Implications for HIV Vaccine Strategies

Decay characteristics of HIV-1- infected compartments during combination therapy

Lines of Defense. Immunology, Immune Response, and Immunological Testing. Immunology Terminology

EGFR shrna A: CCGGCGCAAGTGTAAGAAGTGCGAACTCGAGTTCGCACTTCTTACACTTGCG TTTTTG. EGFR shrna B: CCGGAGAATGTGGAATACCTAAGGCTCGAGCCTTAGGTATTCCACATTCTCTT TTTG

Efficacy of DNA and Fowlpox Virus Priming/Boosting Vaccines for Simian/Human Immunodeficiency Virus

JOURNAL OF VIROLOGY, Sept. 1999, p Vol. 73, No. 9. Copyright 1999, American Society for Microbiology. All Rights Reserved.

Micro 301 HIV/AIDS. Since its discovery 31 years ago 12/3/ Acquired Immunodeficiency Syndrome (AIDS) has killed >32 million people

Original Article. Kwofie TB, Miura T 1. Abstract. Introduction

HIV-1 p24 ELISA Pair Set Cat#: orb54951 (ELISA Manual)

Updated information and services can be found at:

Determination of the temporal pattern and importance of BALF1 expression in Epstein-Barr viral infection

Immunodeficiency. (2 of 2)

FENG LI, 1 CAROLINE LEROUX, 1 JODI K. CRAIGO, 1 SHEILA J. COOK, 2 CHARLES J. ISSEL, 2

Fayth K. Yoshimura, Ph.D. September 7, of 7 RETROVIRUSES. 2. HTLV-II causes hairy T-cell leukemia

Third line of Defense

Trends in vaccinology

Reassortment of influenza A virus genes linked to PB1 polymerase gene

Construction of a hepatocellular carcinoma cell line that stably expresses stathmin with a Ser25 phosphorylation site mutation

Fostering Clinical Development for HIV-1 Vaccine

Norgen s HIV proviral DNA PCR Kit was developed and validated to be used with the following PCR instruments: Qiagen Rotor-Gene Q BioRad icycler

Strategies for an HIV vaccine

Transcription:

JOURNAL OF VIROLOGY, Dec. 2001, p. 11930 11934 Vol. 75, No. 23 0022-538X/01/$04.00 0 DOI: 10.1128/JVI.75.23.11930 11934.2001 Copyright 2001, American Society for Microbiology. All Rights Reserved. Vaccination with Attenuated Simian Immunodeficiency Virus by DNA Inoculation STEPHEN J. KENT, 1,2 * C. JANE DALE, 1,2 SCOTT PREISS, 2 JOHN MILLS, 2 DANIELLA CAMPAGNA, 2 AND DAMIAN F. J. PURCELL 2 Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria 3010, 1 and Macfarlane Burnet Centre for Medical Research, Fairfield, Victoria, 3078, 2 Australia Received 2 July 2001/Accepted 30 August 2001 Delivering attenuated lentivirus vaccines as proviral DNA would be simple and inexpensive. Inoculation of macaques with wild-type simian immunodeficiency virus strain mac239 (SIV mac239 ) DNA or SIV mac239 DNA containing a single deletion in the 3 nef-long terminal repeat overlap region (nef/ltr) led to sustained SIV infections and AIDS. Injection of SIV mac239 DNA containing identical deletions in both the 5 LTR and 3 nef/ltr resulted in attenuated SIV infections and substantial protection against subsequent mucosal SIV mac251 challenge. nef-deletion-containing live-attenuated simian immunodeficiency virus (SIV) vaccines have been shown to be efficacious in macaques (3). However, a proportion of macaques and humans become immunodeficient following infection with nefdeletion-containing SIV or human immunodeficiency virus type 1 (HIV-1) strains (1, 4, 13). Should modified attenuated lentivirus vaccines eventually prove safe (17), delivering such viruses to large numbers of people in developing countries raises logistical problems, including quality control and coldchain issues. These difficulties would be overcome if an infection with an attenuated HIV-1 vaccine could be initiated via proviral plasmid DNA. Pathogenic lentiviral infection of cats following wild-type feline immunodeficiency virus DNA inoculation and of macaques following SIV mac239 DNA inoculation have been induced by the intramuscular administration of 50 to 500 g of DNA (7, 14, 16, 21). Attenuating deletions in the 5 long terminal repeat (LTR) (which drives the initial round of transcription) affect the initial expression of reporter genes in macaques and in human skin ex vivo (9) and could render the 5 -LTR-deletion-containing constructs noninfectious in vivo. The utility of proviral DNA in initiating an attenuated SIV infection was therefore studied in macaques. Proviral SIV constructs with either a single deletion in the 3 nef-ltr overlap region (nef/ltr) (SIV sbbc 3 ) analogous to the common deletion observed in HIV-1 strains isolated from the Sydney Blood Bank Cohort (SBBC) or an additional identical deletion in the 5 LTR (SIV sbbc 3 5 ) were engineered into a low-copy-number vector, pkp55, kindly provided by K. Peden (Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Md.) (Fig. 1). The distal half of the SIV mac239 provirus, 3 to the SphI site (position 6446, GenBank accession no. M33262), was cut with SphI and EcoRI from plasmid p239spe3 (contributed to the National Institutes of Health AIDS reagent repository by R. Desrosiers) and ligated into the unique sites of the pkp55 vector (5, 12). A 105-bp in-frame nef/ltr deletion from position 9657 that re- FIG. 1. SIV mac239 -based plasmids. Asterisks denote the 105-bp (35-amino-acid) deletion in the 3 nef/ltr of construct SIV sbbc 3. A further, identical deletion in the 5 LTR was made in SIV sbbc 3 5. The deletion in SIV nef/ltr is analogous to most of the shared nef/ltr sequence deletions present in HIV-1 strains found in the SBBC (4); amino acids common to Nef in both HIV-1 NL4-3 and SIV mac239 are noted in bold. * Corresponding author. Mailing address: Dept. of Microbiology and Immunology, University of Melbourne, Parkville, Vic. 3010, Australia. Phone: 61383449939. Fax: 61383443846. E-mail: skent@unimelb.edu.au. 11930

VOL. 75, 2001 NOTES 11931 FIG. 2. SIV infection of macaques by administration of SIV proviral DNA. Plasmids, doses, and routes (GG, epidermally via a gene gun; IM, intramuscularly) are noted in the key. (A) SIV antibody response by endpoint dilution. (B) Quantification of cell-associated SIV. The lowest numbers of PBMC required to recover SIV are shown. For some cultures (M11, weeks 3 and 5; M12, weeks 3, 5, 7, 10, and 14; M13, weeks 3 and 10; M15, week 7; M16, weeks 3 and 5), SIV was recovered from the lowest cell dilution assayed. (C) Plasma SIV RNA levels. Plasma was assayed for SIV RNA by bdna analysis, except M17 at weeks 10, 19, and 34 following inoculation and M18 at weeks 19 and 34 following inoculation, which were assayed by real-time RT-PCR. (D) CD4 lymphocyte proportions. Serial PBMC samples were assayed for the proportion of CD4 lymphocytes in the CD2 lymphocyte population, and these values were compared to mean preinoculation levels standardized to 100%. moves U3 sequences always changed in or deleted from HIV-1 strains from the SBBC (4, 6) was engineered using a Quick Change mutagenesis kit (Stratagene, La Jolla, Calif.) with the oligonucleotide min2f (CAGGAGGATGAGGAGCATTA TTACCCAGAAGAGTTTGGAAGC) and its reverse complement, min2r, to make plasmid pkp-siv-3 min2. The 5 half of SIV mac239 was cut from p239spsp5 with SphI and cloned into the SphI-linearized plasmids to make one plasmid with full-length SIV mac239 and one with a 3 nef/ltr deletion (psivsbbc 3). To make psivsbbc 5 3, the 5 LTR was deleted from position 194 of p239spsp5 using oligonucleotides min2f and min2r and cloned into pkp-siv-3 min2. The constructs were confirmed to be correct by cloning and sequencing. Transfection stocks of both wild-type and nef/ltrdeletion-containing SIV constructs grew equally well, as determined by a reverse transcriptase (RT) assay (19) in CEMx174 cells in vitro (data not shown). The nef/ltr-deletion-containing SIV sbbc constructs did not express detectable Nef protein by immunoblotting (data not shown). Eight pigtailed macaques were inoculated with wild-type or nef/ltr-deletion-containing SIV DNA constructs, delivered either intramuscularly (300 g) or epidermally via gene gun (only 15 g) (Fig. 2). All animals were shown to have seroconverted to HIV-2 antigens by Western blotting (not shown) and a particle agglutination assay (Serodia HIV-1/2; Fujirebio, Tokyo, Japan) (Fig. 2A). SIV was recovered from phytohemagglutinin- and interleukin-2-activated peripheral blood mononuclear cells (PBMC) of all inoculated animals by coculture with CEMx174 cells (Fig. 2B). The four SIV sbbc -inoculated animals required more input PBMC ( 10 4 ) to recover SIV than did the four animals receiving SIV mac239. Plasma SIV RNA was measured either by bdna analysis (Bayer Diagnostics, Emeryville, Calif.) or real-time RT-PCR as previously described (8). Both SIV RNA assays had a lower limit of detection of 1,500 copies/ml and had similar quantification levels. SIV mac239 DNA-inoculated macaques had higher peak levels of SIV RNA in plasma than SIV sbbc -inoculated macaques (Fig. 2C). SIV mac239 -inoculated animals maintained SIV RNA levels of 10 6 copies/ml and were euthanized at weeks 11, 19, 20, and 53, showing SIV-associated coagulopathy, septicemia, and weight loss (two animals) with a marked decline in peripheral CD4 lymphocytes measured by flow cytometry (11) (Fig. 2D). No attenuation of virulence was observed in the gene gun-inoculated animals despite the low dose of DNA administered. Macaques given the SIV sbbc plasmids had SIV RNA levels that fell below the detection threshold by week 7 following inoculation and remained low or stable in three of the four animals, which also had normal CD4 lymphocyte levels (Fig. 2C and D). However, SIV RNA levels in macaque M16, inoculated with SIV sbbc 3, rose to 4 10 5 copies/ml by week 46, and this animal subsequently had a decline in CD4 lymphocyte numbers and was euthanized with weight loss at week 61. To determine the cause of the loss of CD4 lymphocytes in M16, nested-pcr analysis of SIV DNA from lysed PBMC was performed using oligonucleotide primers from positions 9129 to 9148 and 10016 to 10036 for the first round and primers from positions 9191 to 9208 and 9872 to 9890 for the nested round. Nested PCR amplified wild-type size SIV nef/ltr from week 3 following SIV inoculation and thereafter (Fig. 3, panel

11932 NOTES J. VIROL. FIG. 3. PCR analysis of the SIV nef/ltr. (Panels a) Gel electrophoresis of PCR-amplified SIV proviral DNA isolated from macaque PBMC at various weeks following SIV plasmid DNA inoculation. As controls, nef/ltr PCR fragments were amplified from a control SIVmac239 plasmid bearing the wild-type (w.t.) sequence or the 105-bp SBBC strain deletion in SIV nef/ltr ( nef). A wild-type-sized PCR product obtained after 25 cycles of PCR is shown from PBMC of two representative macaques, M11 and M15, that were inoculated with wild-type SIVmac239 plasmid DNA. Animals M14, M17, and M18 were challenged with SIVmac251 intrarectally at 68 weeks (M14) or 34 weeks (M17 and M18), and lanes with results for samples taken at these times are labeled week 0 to the right of the vertical line. (Panels b) Southern blotting of nested-pcr products from M16, M14, M17, and M18 probed with an oligonucleotide located within the nef/ltr deletion. M16a). These wild-type-sized PCR fragments hybridized with a probe (oligonucleotide GTCATCCCACTGGGAAGTTTG AGCTG) internal to the nef/ltr deletion by Southern blotting, suggesting that a considerable wild-type sequence was present (Fig. 3, panel M16b). Additionally, M16, but not other SIVsbbc-inoculated animals, seroconverted to recombinant SIVmac239 Nef (supplied by AIDS reagent project, National Institute of Biological Standards and Control, Potters Bar, United Kingdom) by enzyme immunoassay (Fig. 4A). To determine if the attenuated SIV infections initiated by

VOL. 75, 2001 NOTES 11933 probe by Southern blotting and progressively became the dominant species (Fig. 3, panels M18). The two other SIV sbbc - inoculated macaques, M14 and M17, were protected from SIV mac251 challenge, as they maintained low SIV RNA levels, stable CD4 lymphocyte levels, and a continued predominance of the PCR band of the nef/ltr deletion construct (Fig. 5 and 3, panels M14 and M17). Although protection was observed in two of three vaccinated animals, the small sample size meant that the result did not reach statistical significance (two sided, P 0.40, Fisher s exact test). To assess potential correlates of immunity, PBMC from vaccinated animals were assessed for the production of gamma interferon (IFN- ) by ELISPOT (U-CyTech bv, Utrecht, The Netherlands) (2) in response to overnight stimulation with a 10- g/ml concentration of whole Aldrithiol-2-inactivated SIV mne or control microvesicles purified from the cell lines used to grow SIV mne (kindly supplied by J. Lifson, National Cancer Institute, Frederick, Md. [15]). Antigen-stimulated PBMC (2 10 5 /well) were incubated for 5hinanti-IFN- monoclonal antibody-coated ELISPOT plates, and spots were detected using labeled anti-biotin antibodies. The number of spot-forming cells in control wells was always 20/10 6 PBMC. Although the numbers of animals were small, PBMC from animals protected from SIV mac251 challenge (M14 and M17) had consistently high levels of production of IFN- in response to SIV antigen stimulation both prior to and following SIV mac251 challenge, which may have played a role in the FIG. 4. (A) SIV Nef-specific antibodies following SIV DNA inoculation of macaques. Antibodies were detected against whole recombinant SIV Nef by enzyme immunoassay. Wild-type SIV mac239 DNAinoculated animals M12 and M13 (closed symbols) had detectable anti-nef antibodies, but only monkey M16 of the SIV sbbc -inoculated animals developed anti-nef antibodies. O.D., optical density. (B) ELISPOT detection of SIV-specific IFN- production by PBMC from SIV sbbc -vaccinated macaques prior to, and following, SIV mac251 challenge. proviral DNA inoculation could protect simians from a pathogenic challenge, the remaining three SIV sbbc -inoculated animals and three naïve controls were challenged intrarectally with a stock of highly infectious SIV mac251 (20; R. Pal, submitted for publication). All control animals were shown to have seroconverted by particle agglutination assay and Western blotting (not shown). SIV was recovered by coculture from 10 4 or fewer of their PBMC (not shown), and their peak SIV RNA levels were high ( 10 7 copies/ml) (Fig. 5A). One control animal (M20) developed diarrhea and weight loss and was euthanized 3 weeks after infection. The other two control animals (M19 and M22) had a progressive decline in CD4 T cells over a 32-week period (Fig. 5B). All three macaques vaccinated with SIV sbbc strains via DNA injection were protected from the high peak level of SIV RNA observed in the control animals 1 to 3 weeks following SIV mac251 challenge (Fig. 5A). However, progressively higher SIV RNA levels were detected in M18 over the first 11 weeks following SIV mac251 challenge and subsequently had a progressive decline in CD4 lymphocytes (Fig. 5). PCR of PBMC isolated from M18 following challenge demonstrated a wild-type-sized nef/ltr band that was shown to hybridize with an internal FIG. 5. Virologic and immunologic outcome of SIV mac251 challenge of SIV sbbc -inoculated macaques and controls. (A) Plasma SIV RNA levels as measured by real-time RT-PCR. (B) CD4 lymphocyte numbers are percentages of prechallenge counts.

11934 NOTES J. VIROL. protective immunity observed (Fig. 4B). The rise in T-cell responses following challenge most likely reflects the nonsterilizing immunity and is consistent with the transient detection of wild-type-sized SIV DNA in M17 early on following challenge (Fig. 3), as observed in previous studies (10, 11). In summary, we showed that attenuated SIV infections capable of stimulating SIV-specific T- and B-cell responses and protecting a proportion of monkeys against a virulent challenge can be initiated easily and reliably with inoculation of as little as 15 g of proviral DNA. If live attenuated HIV vaccine strategies are ultimately proven to be safe (e.g., with the use of genes capable of turning replication on or off, as shown by Marzio et al. [17]), they could be delivered in the field using proviral DNA solutions rather than virus suspensions. Our studies also demonstrate that attenuating LTR mutations need to be engineered into both 5 and 3 proviral LTRs to prevent a rapid reversion to wild-type virus during in vivo replication, as detected in macaque M16. Although live attenuated lentiviral vaccines are currently insufficiently attenuated for use in humans (18), should current protein- and vector-based HIV-1 vaccines prove ineffective in clinical trials, our studies suggest practical and economical methods for developing and delivering attenuated lentivirus vaccines. We acknowledge A. Joy, R. Sydenham, S. Lee, N. Deacon, D. McPhee, S. Crowe, M. Law, A. Solomon, P. Cameron, and S. Lewin for providing excellent technical assistance and advice. This study was supported by the International AIDS Vaccine Initiative, the Macfarlane Burnet Centre Research Fund, the National Centre for HIV Virology Research (J.M.), and Commonwealth AIDS Research Grants of Australia 956043 (S.J.K.) and 111700 (D.F.J.P.). REFERENCES 1. Baba, T. W., Y. S. Jeong, D. Pennick, R. Bronson, M. F. Greene, and R. M. Ruprecht. 1995. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 267:1820 1825. 2. Dale, C. J., A. Zhao, S. L. Jones, D. B. Boyle, I. A. Ramshaw, and S. J. Kent. 2000. Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination of macaques with a recombinant fowlpoxvirus co-expressing interferon-gamma. J. Med. Primatol. 29:240 247. 3. Daniel, M. D., F. Kirchhoff, S. C. Czajak, P. K. Sehgal, and R. C. Desrosiers. 1992. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258:1938 1941. 4. Deacon, N. J., A. Tsykin, A. Solomon, K. Smith, M. Ludford-Menting, D. J. Hooker, D. A. McPhee, A. L. Greenway, A. Ellett, C. Chatfield, V. A. Lawson, S. Crowe, A. Maerz, S. Sonza, J. Learmont, J. S. Sullivan, A. Cunningham, D. Dwyer, D. Dowton, and J. Mills. 1995. Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988 991. 5. Gibbs, J. S., D. A. Regier, and R. C. Desrosiers. 1994. Construction and in vitro properties of SIVmac mutants with deletions in nonessential genes. AIDS Res. Hum. Retrovir. 10:333 342. 6. Greenway, A. L., J. Mills, D. Rhodes, N. J. Deacon, and D. A. McPhee. 1998. Serological detection of attenuated HIV-1 variants with nef gene deletions. AIDS 12:555 561. 7. Ilyinskii, P. O., M. A. Simon, S. C. Czajak, A. A. Lackner, and R. C. Desrosiers. 1997. Induction of AIDS by simian immunodeficiency virus lacking NF- B and SP1 binding elements. J. Virol. 71:1880 1887. 8. Jin, X., D. E. Bauer, S. E. Tuttleton, S. Lewin, A. Gettie, J. Blanchard, C. E. Irwin, J. T. Safrit, J. Mittler, L. Weinberger, L. G. Kostrikis, L. Zhang, A. S. Perelson, and D. D. Ho. 1999. Dramatic rise in plasma viremia after CD8 T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189:991 998. 9. Kent, S. J., P. U. Cameron, J. C. Reece, P. Thomson, and D. F. Purcell. 2001. Attenuated and wild type HIV-1 infections and long terminal repeat mediated gene expression from plasmids delivered by gene gun to human skin ex vivo and macaques in vivo. Virology 287:71 78. 10. Kent, S. J., S.-L. Hu, L. Corey, W. R. Morton, and P. D. Greenberg. 1996. Detection of simian immunodeficiency virus (SIV)-specific CD8 T cells in macaques protected from SIV challenge by prior SIV subunit vaccination. J. Virol. 70:4941 4947. 11. Kent, S. J., A. Zhao, S. J. Best, J. D. Chandler, D. B. Boyle, and I. A. Ramshaw. 1998. Enhanced T-cell immunogenicity and protective efficacy of a human immunodeficiency virus type 1 vaccine regimen consisting of consecutive priming with DNA and boosting with recombinant fowlpox virus. J. Virol. 72:10180 10188. 12. Kestler, H. W., D. J. Ringler, K. Mori, D. L. Panicali, P. K. Sehgal, M. D. Daniel, and R. C. Desrosiers. 1991. Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651 662. 13. Learmont, J. C., A. F. Geczy, J. Mills, L. J. Ashton, C. H. Raynes-Greenow, R. J. Garsia, W. B. Dyer, L. McIntyre, R. B. Oelrichs, D. I. Rhodes, N. J. Deacon, J. S. Sullivan, D. A. McPhee, S. Crowe, A. E. Solomon, C. Chatfield, I. R. Cooke, S. Blasdall, and H. Kuipers. 1999. Immunologic and virologic status after 14 to 18 years of infection with an attenuated strain of HIV-1 a report from the Sydney Blood Bank Cohort. N. Engl. J. Med. 340:1715 1722. 14. Letvin, N. L., C. I. Lord, N. W. King, M. S. Wyand, K. V. Myrick, and W. A. Haseltine. 1991. Risks of handling HIV. Nature 349:573. 15. Lifson, J. D., J. L. Rossio, R. Arnaout, L. Li, T. L. Parks, D. K. Schneider, R. F. Kiser, V. J. Coalter, G. Walsh, R. J. Imming, B. Fisher, B. M. Flynn, N. Bischofberger, M. Piatak, Jr., V. M. Hirsch, M. A. Nowak, and D. Wodarz. 2000. Containment of simian immunodeficiency virus infection: cellular immune responses and protection from rechallenge following transient postinoculation antiretroviral treatment. J. Virol. 74:2584 2593. 16. Liska, V., A. H. Khimani, R. Hofmann-Lehmann, A. N. Fink, J. Vlasak, and R. M. Ruprecht. 1999. Viremia and AIDS in rhesus macaques after intramuscular inoculation of plasmid DNA encoding full-length SIVmac239. AIDS Res. Hum. Retrovir. 15:445 450. 17. Marzio, G., K. Verhoef, M. Vink, and B. Berkhout. 2001. In vitro evolution of a highly replicating, doxycycline-dependent HIV for applications in vaccine studies. Proc. Natl. Acad. Sci. USA 98:6342 6347. 18. Mills, J., R. Desrosiers, E. Rud, and N. Almond. 2000. Live attenuated HIV vaccines: a proposal for further research and development. AIDS Res. Hum. Retrovir. 16:1453 1461. 19. Purcell, D. F. J., and M. A. Martin. 1993. Alternative splicing of human immunodeficiency virus type 1 mrna modulates viral protein expression, replication, and infectivity. J. Virol. 67:6365 6378. 20. Romano, J. W., R. N. Shurtliff, E. Dobratz, A. Gibson, K. Hickman, P. D. Markham, and R. Pal. 2000. Quantitative evaluation of simian immunodeficiency virus infection using NASBA technology. J. Virol. Methods 86:61 70. 21. Sparger, E. E., H. Louie, A. M. Ziomeck, and P. A. Luciw. 1997. Infection of cats by injection with DNA of a feline immunodeficiency virus molecular clone. Virology 238:157 160.