BCH 4053 Spring 2001 Chapter 7 Lecture Notes

Similar documents
CARBOHYDRATES (SUGARS)

Carbohydrates. Chapter 12

Chapter-8 Saccharide Chemistry

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1

24.1 Introduction to Carbohydrates

I (CH 2 O) n or H - C - OH I

Chem 263 Nov 22, Carbohydrates (also known as sugars or saccharides) See Handout

Number of Carbohydrate Units

CHAPTER 27 CARBOHYDRATES SOLUTIONS TO REVIEW QUESTIONS

Carbohydrates CHAPTER SUMMARY

Chemistry 110. Bettelheim, Brown, Campbell & Farrell. Ninth Edition. Introduction to General, Organic and Biochemistry Chapter 20 Carbohydrates

CHAPTER 23. Carbohydrates

Carbohydrates. Learning Objective

Dr. Nafith Abu Tarboush. Rana N. Talj

A Getting-It-On Review and Self-Test. . Carbohydrates are

Carbohydrates 1. Steven E. Massey, Ph.D. Assistant Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras

Questions- Carbohydrates. A. The following structure is D-sorbose. (Questions 1 7) CH 2 OH C = O H C OH HO C H H C OH

Carbohydrates hydrates of carbon: general formula C n (H 2 O) n. Polymers: large molecules made up of repeating smaller units (monomer)

CLASS 11th. Biomolecules

Carbohydrates Learning Objectives

Carbohydrates. Green plants turn H 2 O, CO 2, and sunlight into carbohydrates.

MahaAbuAjamieh. BahaaNajjar. MamoonAhram

Carbohydrates. What are they? What do cells do with carbs? Where do carbs come from? O) n. Formula = (CH 2

Dr. Basima Sadiq Ahmed PhD. Clinical biochemist

Topic 4 - #2 Carbohydrates Topic 2

Chapter 23: Carbohydrates hydrates of carbon: general formula C n (H 2 O) n. Polymers: large molecules made up of repeating smaller units (monomer)

Anomeric carbon Erythritol is achiral because of a mirror plane in the molecule and therefore, the product is optically inactive.

Chapter 20 Carbohydrates Chapter 20

Chapter 16: Carbohydrates

HW #9: 21.36, 21.52, 21.54, 21.56, 21.62, 21.68, 21.70, 21.76, 21.82, 21.88, 21.94, Carbohydrates

2. Structural e.g. bacterial cell walls, cellulose. 3. Information e.g. signals on proteins and membranes.

Chapter 27 Carbohydrates

I. Carbohydrates Overview A. Carbohydrates are a class of biomolecules which have a variety of functions. 1. energy

You know from previous lectures that carbonyl react with all kinds of nucleophiles. Hydration and hemiacetal formation are typical examples.

Carbohydrates 26 SUCROSE

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

!"#$%&'()*+(!,-./012-,345(

Farah Al-Khaled. Razi Kittaneh. Mohammad Omari

STRUCTURE OF MONOSACCHARIDES

Chapter 7 Carbohydrates

Chem 263 Apr 11, 2017

Polymers: large molecules made up of repeating smaller units (monomer) peptides and proteins (Chapter 25) nucleic acids (Chapter 26)

Long time ago, people who sacrifice their sleep, family, food, laughter, and other joys of life were called SAINTS. But now, they are called STUDENTS!

Chapter 22 Carbohydrates

Nafith Abu Tarboush DDS, MSc, PhD

Biochemistry: A Short Course

Sheet #10 Dr. Mamoun Ahram Sec 1,2,3 15/07/2014. Carbohydrates 2

Chapter 7 Overview. Carbohydrates

Carbohydrates. Dr. Mamoun Ahram Summer,

Carbohydrate Structure

CARBOHYDRATES (H 2. Empirical formula: C x. O) y

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates

BIOMOLECULES & SPECTROSCOPY TABLE OF CONTENTS S.NO. TOPIC PAGE NO. i) Carbohydrates B3. ii) Proteins & Nucleic Acids.

Welcome to Class 7. Class 7: Outline and Objectives. Introductory Biochemistry

Chapter 8 - Carbohydrates. 2. Structural e.g. bacterial cell walls, cellulose. 3. Information e.g. signals on proteins and membranes.

Review from last lecture

2/25/2015. Chapter 6. Carbohydrates. Outline. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates. 6.1 Classes of Carbohydrates

Pharmacognosy- 1 PHG 222. Prof. Dr. Amani S. Awaad

UNIT 4. CARBOHYDRATES

2.2: Sugars and Polysaccharides François Baneyx Department of Chemical Engineering, University of Washington

Dr. Entedhar Carbohydrates Carbohydrates are carbon compounds that have aldehyde (C-H=0) or ketone (C=O) moiety and comprises polyhyroxyl alcohol

among the most important organic compounds in the living organisms;

Lecture Notes Chem 51C S. King. Chapter 28 Carbohydrates. Starch, Glycogen and cellulose are all polymers of glucose.

Introduction to Carbohydrates

Chapter 1. Chemistry of Life - Advanced TABLE 1.2: title

Chemistry 1120 Exam 2 Study Guide

Carbohydrates. Monosaccharides

Nafith Abu Tarboush DDS, MSc, PhD

Chapter 24: Carbohydrates

Carbohydrate Chemistry

Carbohydrates - General Description

Chemistry 107 Exam 3 Study Guide

Chapter 11. Learning objectives: Structure and function of monosaccharides, polysaccharide, glycoproteins lectins.

Classification of Carbohydrates. monosaccharide disaccharide oligosaccharide polysaccharide

Chemistry 1050 Exam 3 Study Guide

Dr. Mahendra P. Bhatt (BMLT, MS-Ph.D., Post-doctorate) Associate Professor Clinical Biochemistry

Carbohydrates: structure and Function. Important. 436 Notes Original slides. 438 notes Extra information

Chapter 11: Carbohydrates

What are Carbohydrates? Aldoses and Ketoses

Carbohydrates. Chapter 18

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

B.sc. III Chemistry Paper b. Submited by :- Dr. Sangeeta Mehtani Associate Professor Deptt. Of Chemistry PGGCG, sec11 Chd

Part I => CARBS and LIPIDS. 1.2 Monosaccharides 1.2a Stereochemistry 1.2b Derivatives

CARBOHYDRATES PART I

Basic Biochemistry. Classes of Biomolecules

Carbohydrates - Chemical Structure

Chem 263 Nov 21, 2013

IntroducKon to Carbohydrates

Organic Chemistry III

Definition of a Carbohydrate

Name LastName Student ID

Carbohydrates. Dr. Diala Abu-Hassan, DDS, PhD All images were taken from Campbell textbook except where noted

1. Denaturation changes which of the following protein structure(s)?

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0

Lecture 2 Carbohydrates

Biochemistry lecturer Bio- chemical Eng. Zahraa Abdulhussein Mousa. Bio.Eng Zahraa A.A. Mousa

Module-04: Food carbohydrates: Monosaccharides and Oligosaccharides

CHAPTER 7 Carbohydrates and Glycobiology. Key topics about carbohydrates

IntroducKon to Carbohydrates

Chapter 11 Lecture Notes: Carbohydrates

Transcription:

BC 4053 Spring 2001 Chapter 7 Lecture Notes 1 Chapter 7 Carbohydrates 2 Carbohydrates: Nomenclature ydrates of carbon General formula (C 2 ) n (simple sugars) or C x ( 2 0) y Monosaccharides (simple sugars) Aldoses and ketoses Sugar derivatives Sugar acids, sugar alcohols, deoxy sugars, sugar esters, amino sugars, glycosides ligosaccharides Polysaccharides 3 Monosaccharides Carbon chain, 1 oxygen for each carbon ne oxygen is carbonyl, rest are alcohols Aldose carbonyl on carbon-1 (aldehyde) Ketose carbonyl on carbon-2 (ketone) Number of carbon atoms can vary Triose, tetrose, pentose, hexose, heptose Chapter 7, page 1

4 Monosaccharides, stereochemistry Chiral carbons n-2 for aldoses (trioses have one, tetroses two, etc) n-3 for ketoses (tetroses have one, pentoses two, etc) Fischer projection D correlates with d-glyceraldehyde L correlates with l-glyceraldehyde See Figure 7.1 5 Stereochemistry, con t. Number of isomers = 2 n where n = number of chiral centers Trioses Tetroses Pentoses exoses Aldoses n isomers 1 2 2 4 3 8 4 16 Ketoses n isomers 0 1 1 2 2 4 3 8 6 Monosaccharide, nomenclature Sugar class refers to the penultimate (n-1) carbon configuration D sugar if n-1 position has D configuration L sugar if n-1 position has L configuration Isomers at other positions distinguished by different names See Figure 7.2 for aldoses, 7.3 for ketoses Chapter 7, page 2

7 Monosaccharide, nomenclature, con t. Learn the following structures: Trioses: all Tetroses: all Pentoses: ribose, ribulose, xylulose exoses: glucose, mannose, galactose, fructose 8 Some stereochemical terms Enantiomers, mirror image isomers Configuration at every chiral carbon is different See Figure 7.4 Diastereomers, isomers with one or more configuration differences that are not enantiomers Epimers, isomers that differ only at one chiral center 9 Acetals and Ketals Aldehydes can react with alcohols to form hemiacetals and acetals Ketones can react with alcohols to form hemiketals and ketals R R C + R' R C R' hemiacetal + R C acetal + R' C R" + R' R C R" R C R" R' R' hemiketal ketal R' R' The aldehyde and hemiacetal are in equilibrium, and depend on the concentration of the alcohol. eating with acid and excess alcohol can cause dehydration between the alcohol and the hemiacetal to occur to form an acetal, which is stable at room temperature under neutral conditions. Breaking the acetal linkage requires heating with acid and water. The same conditions apply to the formation of hemiketals and ketals. Chapter 7, page 3

10 Cyclic structures and anomeric forms Cyclization to form hemiacetal or hemiketal introduces an additional chiral carbon, called the anomeric carbon Equilibrium favors the cyclic form Isomers distinguished by prefix alpha or beta Isomers at the anomeric carbon are called anomers (They are also epimers and diastereomers) Common ring structures contain five or six atoms Five atoms = furanose ring (from furan) Six atoms = pyranose ring (from pyran) See Figure 7.5 for glucose Sugars can form cyclic hemiacetals and hemiketals. Because the alcohol group involved is in the same molecule, the equilibrium mixture lies toward the cyclic structure. 11 Fischer Projection of ring structure Fischer projections of glucose anomers C C C 2 C 2 alpha -D-glucopyranose beta=d -glucopyra nose 12 aworth Projection of ring structure aworth projections of glucose anomers C 2 C 2 alpha-d-glucopyranose beta-d-glucopyranose Chapter 7, page 4

13 14 Chair conformation of pyranose rings Chair conformation of glucose anomers alpha-d-glucopyranose beta-d-glucopyra nose 3-D Structures of some Monosaccharides Alpha-D-glucopyranose Beta-D-glucopyranose Beta-D-fructofuranose Beta-D-ribofuranose (See External Links on the class web page for links to these structures). Note that for beta- D-glucose. All non-hydrogen atoms on the ring are in the equatorial position. That makes beta glucose more stable than alpha glucose, and the equilibrium mixture of the two contains more beta than alpha. Note we most commonly find glucose and other aldohexoses in the pyranose ring form, while fructose, a keto hexose, is found in the furanose ring form, and ribose, an aldopentose, is found in the furanose ring form. The free sugars can exist as a mixture of ring forms, but the structures we encounter as metabolic intermediates are usually bound to phosphate and thus are locked into these ring forms. owever, note in A Deeper Look on page 224 that honey contains a mixture of fructose ring forms in addition to some glucose, both produced by the hydrolysis of sucrose. 15 Mutarotation emiacetals are in equilibrium with the open chain form. See Figure 7.5 ne anomer dissolved in water will equilibrate to a mixture of the two anomers Because the optical rotation of the solution changes as the anomers equilibrate, the phenomenon is called mutarotation. Chapter 7, page 5

16 Monosaccharide Derivatives Sugar acids from glucose (See Figure 7.10) gluconic acid (C-1), glucuronic acid (C-6), glucaric acid (C-1 and C-6) Sugar alcohols (See Figure 7.11) glucitol(sorbitol), mannitol, ribitol, xylitol, glycerol Myo-inositol with closed carbon ring Deoxy sugars (See Figure 7.12) 2-deoxyribose (DNA constituent) rhamnose, fucose xidation at C-1 is relatively easy for sugars with a free anomeric carbon (I.e. a hemiacetal or hemiketal) with oxidizing agents such as Cu +2 and Ag +. Such sugars are referred to as reducing sugars. 17 Monosaccharide Derivatives, con t. Sugar esters (See Figure 7.13) Glucose-1-phosphate, ATP Amino sugars exosamines (See Figure 7.14) Muramic acid and sialic acid (See Figure 7.15) Glycosides full acetals or ketals (See Figures 7.16 and 7.17) Alcohols attached to the anomeric carbon Attached alcohol called the aglycone For most sugar intermediates in metabolism the sugar residue is attached to phosphate in an ester linkage, or some derivative of phosphate. Free amino sugars are very toxic, and so the amine group is usually acetylated with an acetyl (C 3 C-) group, though sometimes one finds a glycolyl (C 2 C-) group instead for sialic acid. A sugar glycoside is no longer in equilibrium with the open chain aldehyde or ketone form of the sugar, and is therefore no longer as easily oxidized as the free sugar. Such sugars are therefore referred to as non-reducing sugars. Chapter 7, page 6

18 19 Disaccharides Glycosides in which the aglycone alcohol is an group from another monosaccharide. If only one anomeric carbon involved, we have a reducing end (the sugar with the free anomeric carbon) and a nonreducing end (the end with the full acetal or ketal at the anomeric carbon). Common examples (See Figure 7.18) Maltose, isomaltose, cellobiose (glucose-glucose) Lactose (galactose-beta -1,4-glucose) Sucrose (glucose-alpha-1,2-fructose) NN REDUCING!b ligosaccharides A variety found free in nature (See Figure 7.19 for a few examples) Components of antibiotics where there is more complex organic aglycone (See Figure 7.20) Component residues of glycoproteins and glycolipids (we will discuss later). Maltose is the repeating unit of starch and glycogen by the action of the enzyme amylase. Cellobiose is the repeating unit of cellulose, and can be obtained from acid hydrolysis of cellulose. Lactose is milk sugar, formed by the interaction of a galactosyltransferase and lactalbumin in milk. To be digested, it must be broken down by an enzyme called lactase, and individuals lacking this enzyme have lactose intolerance. Presumably this problem led to the development of fermentation processes to produce yogurt in which the lactose is hydrolyzed by micorbial action.sucrose is a major sugar produced by plants during photosynthesis. It is both an alphaglucoside and a beta-fructoside, and since both anomeric carbons are involved in the linkage, it is a nonreducing sugar. 20 Polysaccharides Also known as glycans. omopolysaccharides polymer of one sugar glucans polymers of glucose mannans polymers of mannose thers eteropolysaccharides more than one sugar in polymer chain Chapter 7, page 7

21 omopolysaccharides Storage polysaccharides Starch (Plants) (See Figure 7.21) Amylose (alpha 1,4 glucose links) Amylopectin (alpha 1,4 glucose links withapha 1,6 branches every 12-30 residues Glycogen (Animals) Similar to amylopectin, but alpha 1,6 branches every 8-12 residues Dextrans(Yeast and Bacteria) Alpha 1,6 glucose polymer, with branches at 2, 3, or 4 depending on species Amylose forms a blue complex with iodine. The iodine fits into the hydrophobic center of the amylose helix. See Figure 7.22. 22 omopolysaccharides, con t. Structural polysaccharides Cellulose (beta 1,4 glucose polymer) the most abundant natural polymer in the world Compare stereochemistry of alphaand betalinkage (Figure 7.26) Sheet structure of cellulose (Figure 7.27) Animals cannot digest cellulose Chitin (beta 1,4 N-acetyl glucosamine polymer) Structurally analogous to cellulose Structural polymer for insects Alginates Beta 1,4mannuronate and alpha 1,4 poly glucuronate (See Figure 7.21) 23 eteropolysaccharides Agarose from marine and red algae mixture called agar. Alternating D-galactose and 3,6 anhydro-lgalactose (See Figure 7.31) Glycosaminoglycans Repeating disaccharides in which one unit is an amino sugar, and one or both contain either a carboxyl or a sulfonate group. (See Figure 7.33) eparin,yaluronate, chondroitin-4-sulfate, Chondroitin-6- sulfate, Dermatansulfate, Keratansulfate Chapter 7, page 8