Molecular Imaging of NET

Similar documents
How to optimize diagnostic nuclear techniques?

Somatostatin receptor agonists and antagonists Melpomeni Fani

Ga68 Imaging. Roland HUSTINX Division of Nuclear Medicine and Oncologic Imaging Centre Hospitalier Universitaire de Liège Belgium

NET εντέρου Τι νεότερο/ Νέες μελέτες. Μαντώ Νικολαΐδη παθολόγος-ογκολόγος ΜΗΤΕΡΑ

Peptide Receptor Radionuclide Therapy (PRRT) of NET

EXOCRINE: 93% Acinar Cells Duct Cells. ENDOCRINE: 5% Alpha Cells Beta Cells Delta Cells Others

Peptide Receptor Radionuclide Therapy using 177 Lu octreotate

Lu-DOTATATE PRRT dosimetry:

Cutting Edge Treatment of Neuroendocrine Tumors

Cutting Edge Treatment of Neuroendocrine Tumors

Preclinical imaging and therapy. Marion de Jong

Review of Gastrointestinal Carcinoid Tumors: Latest Therapies

Imaging of Neuroendocrine Metastases

Neuroendocrine Tumour Theranostics

Tumori Neuroendocrini - Imaging perioperatorio. Annibale Versari Medicina Nucleare, Az.Osp. S.Maria Nuova-IRCCS - Reggio Emilia

Theranostics in Nuclear Medicine

MEDICAL POLICY SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)

Tracer development for detection and characterization of neuroendocrine tumors with PET Neels, Olivier Christiaan

Gastrointestinal Neuroendocrine Tumors: A Closer Look at the Characteristics of These Diverse Tumors

Session 6 NEW TECHNIQUES IN RADIATION TREATMENT. Chairman : Françoise MORNEX

MEDICAL POLICY EFFECTIVE DATE: 06/21/07 REVISED DATE: 05/14/08, 04/16/09, 03/18/10, 03/17/11, 03/15/12, 02/21/13, 02/20/14, 02/19/15

Neuroendocrine Tumors Positron Emission Tomography (PET) Imaging and Peptide Receptor Radionuclide Therapy

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

Radioisotopes for staging and follow-up of prostate cancer. F. Scopinaro

Case Report. Ameya D. Puranik, MD, FEBNM; Harshad R. Kulkarni, MD; Aviral Singh, MD; Richard P. Baum, MD, PhD ABSTRACT

Ronald C. Walker, MD, Prof of Radiology Vanderbilt University Medical Center Nashville, TN. Ga-DOTATATE PET/CT imaging Initial Vanderbilt experience

Dr. Sandip Basu Radiation Medicine Center (BARC) Tata Memorial Centre Annexe, Parel, Mumbai

Neuroendocrine Tumors: Just the Basics. George Fisher, MD PhD

New imaging techniques: let there be light. Felix M. Mottaghy Department of Nuclear Medicine University Hospital KU Leuven

RADIOPHARMACEUTICALS IN ENDOCRINE IMAGING

A New Proposal for Metabolic Classification of NENs Stefano Severi IRST Meldola Italy

Physical Bases : Which Isotopes?

Specialised Services Policy CP66: 68-gallium DOTA- peptide scanning for the Management of Neuroendocrine Tumours (NETs)

Tumor markers. Chromogranin A. Analyte Information

THERANOSTICS MOLEKULARE BILDGEBUNG MITTELS PET/CT

Lu 177-Dotatate (Lutathera) Therapy Information

EXOCRINE: 93% Acinar Cells Duct Cells. ENDOCRINE: 5% Alpha Cells Beta Cells Delta Cells Others

Theragnostics Neuroendocrine and Prostate Cancer

NET und NEC. Endoscopic and oncologic therapy

Lutetium-DOTA TATE Treatment of inoperable GEP NETs

Nuclear medicine studies of the digestiv system. Zámbó Katalin Department of Nuclear Medicine

OPTIMISING OUTCOMES IN GASTROINTESTINAL NEUROENDOCRINE TUMOURS

MEDICAL MANAGEMENT OF METASTATIC GEP-NET

Objective. Assessment Question. I. Theranostics II. Classic Theranostic Agent

The PET-NET Study 2016 CNETS Grant Award

Tracer development for detection and characterization of neuroendocrine tumors with PET Neels, Olivier Christiaan

FMU-ICRP Workshop on Radiological Protection in Medicine Current Status in Radionuclide Therapy Tuesday, October 3, 2017 Makoto Hosono, MD PhD Kindai

Rodney J Hicks, MD, FRACP, FAAHMS, the Peter MaCallum Cancer Centre, Melbourne, Australia

Imaging Pancreatic Neuroendocrine Tumors (PNETs): CT, MRI, EUS, Nuclear

PSMA PET SCANNING AND THERANOSTICS IN PROSTATE CANCER KEVIN TRACEY, MD, FRCPC PRECISION DIAGNSOTIC IMAGING REGIONAL PET/CT CENTRE

MEDICAL POLICY SUBJECT: PEPTIDE RECEPTOR RADIONUCLIDE THERAPY (PRRT)

PEPTIDE RECEPTOR RADIONUCLIDE THERAPY HOW, WHY AND WHEN

Chapter 23 Clinical Efficacy of PET/CT Using

Quantitative Theranostics in Nuclear Medicine

DOTATOC PET/CT: a prospective study of 59 patients with

Understanding Biological Activity to Inform Drug Development

Nuclear Medicine in Oncology

Systemic Therapy for Pheos/Paras: Somatostatin analogues, small molecules, immunotherapy and other novel approaches in the works.

GI CARCINOID Dr Mussawar Iqbal Consultant Oncologist Hull and East Yorkshire Hospitals NHS Trust

Neuroendocrine Tumors

Dosimetry in Nuclear Medicine Therapies

SCOPE TODAYS SESSION. Case 1: Case 2. Basic Theory Stuff: Heavy Stuff. Basic Questions. Basic Questions

Index. Note: Page numbers of article titles are in boldface type.

Peptide Receptor Radio-Nuclide Therapy (PRRNT) as a Novel, Rationale Option of Care for Metastatic NETs

THERANOSTICS clinical aimshots in surgical warfare against well-differentiated neuroendocrine neoplasms

Molecular Imaging Guided Therapy: The Perfect Storm. David M Schuster, MD Emory University Department of Radiology Atlanta, GA

Chapter 10. Summary, conclusions and future perspectives

Indications of PET/CT in oncology

Pancreatic Neuroendocrine Tumours

False-Positive Somatostatin Receptor Scintigraphy: Really?

PRRT in Management of NETs. Ioannis Karfis, MD PhD Assistant Head of Clinic Nuclear Medicine Dept IJB, Brussels

TRACTAMENT ONCOLÒGIC DELS TUMORS NEUROENDOCRINS METASTÀSICS

Octreotide LAR in neuroendocrine tumours a summary of the experience

NeuroEndocrine Tumors Diagnostic and therapeutic challenges: introduction

Dr Sneha Shah Tata Memorial Hospital, Mumbai.

SARCOPHAGINE CHELATORS AND COPPER ISOTOPES FOR IMAGING AND THERAPY

Diagnosing and monitoring NET

Nuclear Medicine Visits Neuroendocrine Tumors

NEUROENDOCRINE TUMORS: CHOOSING APPROPRIATE IMAGING METHODS

Surgical Therapy of GEP-NET: An Overview

Nuclear Medicine: Basics to therapy

Gallium-68-DOTA-NOC PET/CT of Patients With Gastroenteropancreatic Neuroendocrine Tumors: A Prospective Single-Center Study

Nuclear Medicine in Australia. Shaun Jenkinson

Hot of the press. Γρηγόριος Καλτσάς MD FRCP Καθηγητής Παθολογίας Ενδοκρινολογίας ΕΚΠΑ

Neuroendocrine Tumours If you don t suspect it you can t detect it! Dr JWS Devar HPB Surgeon University of Witwatersrand E-AHPBA CHBAH & WDGMC

Austin Radiological Association Ga-68 NETSPOT (Ga-68 dotatate)

Case Presentation. Marianne Ellen Pavel. Charité University Medicine Berlin. ESMO Preceptorship on GI Neuroendocrine Tumors

Targeted Radionuclide Therapy with 90 Y-DOTATOC in Patients with Neuroendocrine Tumors

William F. Young, Jr., MD, MSc Professor of Medicine, Mayo Clinic, Rochester, MN USA

Imaging Pancreatic Neuroendocrine Tumors (PNETs): CT, MRI, EUS, Nuclear

Management of Neuroendocrine Tumors

Strategies in the Management of Neuroendocrine Tumors. Dr. Jean Maroun Dr. Elena Tsvetkova

Color Codes Pathology and Genetics Medicine and Clinical Pathology Surgery Imaging

Nuclear oncology using SPECT and PET is able to show

Case Report Metastatic Insulinoma Managed with Radiolabeled Somatostatin Analog

Radionuclide Therapy: History, Present and Future Promise. History of Radionuclide (RN) Therapy. History of RN Therapy 8/2/2017

Tumor Imaging in Nuclear Medicine: Current Status and

Principles of nuclear metabolic imaging. Prof. Dr. Alex Maes AZ Groeninge Kortrijk and KULeuven Belgium

Dosimetry and radiobiology for Peptide Receptor Radionuclide Therapy

Therapy: An introduction Prof John Buscombe

Transcription:

Molecular Imaging of NET Prof. Dr. Christophe Deroose Nuclear Medicine - University Hospitals Leuven (UZ Leuven) Department of Imaging & Pathology KU Leuven Leuven Cancer Institute (LKI) Leuven, Belgium International Course on THERANOSTICS AND MOLECULAR RADIOTHERAPY Tuesday October 3 rd 2017

Radiopharmaceutical: diagnostic For molecular imaging (diagnosis) Radionuclide: Emits radiation upon decay. The radiation can be detected by the nuclear medicine cameras Vector: Is responsible for a specific interaction with the target (receptor, transporter, enzyme, )

Molecular targets for GEP-NET imaging Receptor-based 99m Tc-DMSA Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Serotonin pathway Catecholamine pathway IMT Nucleus LAT1 amino acid transporter Noradrenaline transporter NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine Metabolic tracers 123 I-MIBG 18 F-FDG CCK receptor VIP receptor GLP1 receptor Adapted from Koopmans, Crit Rev Oncol Hematol, 2009; 71(3):199-213

MOLECULAR IMAGING IN NET SOMATOSTATIN RECEPTOR IMAGING

Receptor-based 99m Tc-DMSA Peptide Receptors Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Serotonin pathway Catecholamine pathway IMT Nucleus LAT1 amino acid transporter Noradrenaline transporter NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine CCK receptor VIP receptor 123 I-MIBG 18 F-FDG GLP1 receptor Adapted from Koopmans, Crit Rev Oncol Hematol, 2009; 71(3):199-213

Somatostatin Receptor (SSTR) Seven transmembrane G-coupled receptor Six human subtypes SSTR1 SSTR2 (2A & 2B) SSTR3 SSTR4 SSTR5 Function secretions Endocrine Exocrine Cell growth Apoptosis Vector Receptor Internalise upon agonist binding / recycle Weckbecker, 2003, Nat Rev Drug Disc; 2(12):999-1017 Waser, 2009, J Nucl Med; 50(6):936-41

Overexpression of SSTR subtypes on NET 48% 86% 87% 50% cytoplasmic staining SSTR1 SSTR3 SSTR5 membrane bound SSTR2A 46% N=34 NET LN+ NET ileum pnet Kaemmerer, 2011, Eur J Nucl Med Mol Imaging; 38(9):1659-68

GEP-NET SSTR overexpressing tumortypes NET Carcinoid: Thymus Bronchus Esophagus Stomach Small bowel Appendix Large bowel Unkown primary Pancreatic NET Gastrinoma Insulinoma Glucagonoma VIPoma ACTHoma Somatostinoma Non-functioning Other tumour entities Medullary thyroid carcinoma Neuroblastoma Pheochromocytoma Paraganglioma Small-cell lung cancer Pituitary gland tumours Merkel cell tumours Menigeoma Renal cell carcinoma GIST

The somatostatin receptor as a molecular target in NET Overexpression correlates with differentiation status No correlation with hormonal function of tumor SSTR target of pharmacological and radionuclide therapy SRS as predictive marker

PET Diagnostic agents for SSR Radionuclide 111 Indium 99m Technetium 68 Gallium 18 Fluorine 64 Copper Chelator DTPA DOTA NOTA HYNIC Somatostatin analogue Octreotide Tyr 3 -octreotide Tyr 3 -octreotate Naph-octreotide DIAGNOSTIC COMBINATIONS: 111 In-DTPA-octreotide (pentetreotide) (Octreoscan ) SPECT 68 Ga-DOTA,Tyr 3 -octreotide ( 68 Ga-DOTATOC) 68 Ga-DOTA,Tyr 3 -octreotate ( 68 Ga-DOTATATE) 68 Ga-DOTA, [Phe 1-1-Nal 3 ]-octreotide) ( 68 Ga-DOTANOC)

Vector molecule for SSTR Somatostatin: plasma T 1/2 ~1 to 3 min Chemical modification needed Somatostatin (SS14), 14 amino acids Octreotide, 8 amino acids Trp Lys Phe-Phe-Asn-Lys-Cys-Gly-Ala-H Thr- Phe-Thr- Ser-Cys-OH Trp Lys Phe-Cys- D Phe-H Thr- Cys-Thr(ol) T 1/2 ~ 90 min Tyr 3 -Octreotide, 8 amino acids (TOC) Tyr 3 -Octreoate, 8 amino acids (TATE) Trp Lys Tyr-Cys- D Phe-H Thr- Cys-Thr(ol) Trp Lys Naϕ-Cys- D Phe-H Thr- Cys-Thr(ol) Trp Lys Tyr-Cys- D Phe-H Thr- Cys-Thr Naphtalene 3 -Octreotide, 8 amino acids (NOC)

Radioisotope Indium-111 Indium-111 ( 111 In) Gamma-emitter (also Auger) Cyclotron product p,2n reaction of cadmium Cd-112 Metal

Radioisotope Gallium-68 Gallium-68 ( 68 Ga) Positron emitter Generator product (germanium-68) No cyclotron needed for production ( 18 F) Metal

Affinity profiles (IC 50 in nm) of SS analogues for human SSTR Very high High Moderate Low PAN 2,5 2 SSTR1 SSTR2 SSTR3 SSTR4 SSTR5 2,5 2 2,3,5 Ga-DOTA-NOC >10,000 1.9 ± 0,4 40 ± 5.8 260± 74 7.2± 1.6 Wild, 2005, Eur J Nucl Med Mol Imaging; 32(6):724-724 Reubi, Eur J Nucl Med 2000;27(3): 273-82

68 Ga-DOTATOC: normal biodistribution SUV: 0-7 SUV: 0-16 High uptake: Spleen Adrenals Pituitary gland Kidney Bladder Moderate: Liver Pancreas (head/uncinate process) Bowel Inflammatory LN Low: Lung Brain Muscle

68 Ga-DOTATOC normal biodistribution: adrenal

68 Ga-DOTATOC PET/CT is highly MIP sensitive for small tumors MEN 1 Smallest lesion is 10 mm, but it is hotter than the spleen! Transverse Transverse CT & Fusion

68 Ga-DOTATATE: detection of small lesions LN: SUV max 8.5 7 mm LN: SUV max 4.5 4 mm LN: SUV max 35 Liver M+

Contribution of SSTR radionuclide imaging Sensitive and specific detection of tumoral lesions, including very small lesions (G1&G2): Diagnosis of NET in cases of clinical suspicion lesion on morphological imaging hormonal symptoms serum chromogranin A Pre-operative staging Post-operative staging Suspicion of recurrence Advanced therapy planning: liver surgery, debulking, SIRT, liver Tx, Molecular characterization of tumoral lesions: Predictive biomaker for cold somatostatin analogue (SSA) treatment Predictive biomaker for peptide receptor radionuclide therapy (PRRT)

2012 ESMO guidelines for NET management Öberg, 2012, Ann Oncol; Suppl 7:vii 124-30

ENETS Guidelines Si-NET: SRS only if gallium-68 not available! In the search for a primary tumor, cross-sectional imaging with CT and/or MRI should be followed by 68 Ga-DOTATOC PET in combination with native or preferably 3-phase contrast-enhanced CT (functional imaging) or if not available SRS SPECT/CT. Niederle, 2016, Neuroendocrinology; 2016;103(2):125-38.

SRS ( 111 In-Pentetreotide) detects more NET lesions than FDG or MIBG n=96 SRS > FDG >MIBG Liver MIBG FDG Binderup, 2010, J Nucl Med; 51(5):704-12

N=96 SRS ( 111 In-Pentetreotide) has higher sensitivity for NET than FDG or MIBG All NET subtypes, except colonic (FDG> 111 In-Pentetreotide) Total Sensitivity SRS: 89% MIBG: 52% FDG: 58% For Ki67 >2% and 2%-15%, but not for >15% (FDG> 111 In-Pentetreotide) 41% of grade 1 patients are positive on FDG! Binderup, 2010, J Nucl Med; 51(5):704-12

Semi-quantitative determination of SSR expression with 111 In-pentetreotide Krenning scale Visual comparison of uptake in tumor versus normal organs I II III IV < Liver = Liver > Liver Most intense Krenning, Somatostatin receptor scintigraphy. In: Nuclear medicine annual. 1995:1-5

PFS PFS Cold somatostatin analogues can slow tumor growth in SSTR scintigraphy + patients PROMID SSTR scintigraphy CLARINET in 73/85 patients (86%) Inclusion criterium: target Positive: 63/85 (74%; 86% w. scan) lesion grade 2 or higher on SSTR scintigraphy Negative:10/85 (12%; 14% w. scan) (Krenning scale) Unknown12/85 (14%) 100% SSTR positive HR: 0.34 HR: 0.47 Rinke, 2009, J Clin Oncol; 2009;27:4656-4663 Caplin ME, 2014, New Engl J Med; 371:224-233.

SUV of 68 Ga-DOTATOC predicts probability of PRRT response in NETs SUV max SUV max : 26.4 SUV max : 16.5 Sens: 68% Spec: 95% Sens: 95% Spec: 60% Responding Lesions Non- Responding Lesions Kratochwil C, 2014, Mol Imaging Biol; 17:313-16

NETTER-1 Metastatic NET (midgut) RECIST progression on fixed dose SSA Ki67 <20% (Gr 1/2) SRS + (G2-4) all lesions Adequate GFR, blood, liver No prior PRRT Stratification : Fixed dose SSA: <6 months vs >6 months SRS uptake score 229 116 1 PRRT 177 Lu-DOTATATE 4 x 7.4GBq; interval 8±1w 30 mg Octreotide LAR/4w 113 60 mg Octreotide LAR/4w 1 1 ary end: PFS 2 ary end: ORR, TTP, OS, DoR, PFS 2

NETTER-1: Prespecified subgroup analysis Strosberg, Van Cutsem, et al., New England Journal of Medicine; 376(2):125-135

SRS: 68 Ga-peptide PET is superior to conventional scintigraphy ( 111 In-Pentetreotide) Comparison 111 In-Pentetreotide, 68 Ga-DOTATOC, CT (n=84) Sensitivity: 68 Ga-DOTATOC 97% 111 In-Pentetreotide 52% CT 61% Better performance for small lesions in LN and bone Gabriel, 2007, J Nucl Med; 48(4):508-18 Comparison 111 In-Pentetreotide, 68 Ga-DOTATOC, CT (n=27) Sensitivity: 68 Ga-DOTATOC 100% 111 In-Pentetreotide 66% CT or MRI 73% 68 Ga-DOTATOC finds more lesions in lung and bones Buchmann, 2007, Eur J Nucl Med Mol Imaging;34(10):1617-26 2007

Gabriel, 2007, J Nucl Med; 48(4):508-18; Buchmann, 2007, Eur J Nucl Med Mol Imaging;34(10):1617-26; Srirajaskanthan, 2010, J Nucl Med; 51:875-82; Van Binnebeek Deroose, 2016 Eur Radiol; 26(3):900-9; Deppen, 2016, J Nucl Med; 57: 708-14; Sadowski, 2016, J Clin Oncol; 34(6): 588-96; Morgat, 2016, Eur J Nucl Med Mol Imaging; 43:1258-66 Comparison of 68 Ga-DOTA-peptide PET vs. 111 In-pentetreotide Author Year n 68 Ga- Peptide Level (Patient /lesion) Sensitivity 111 Inpentetreotide Sensitivity 68 Gapeptide Δ Sens Gabriel 2007 84 -TOC Patient 52.0% 97.0% 45.0% Buchmann 2007 27 -TOC Region 66.0% 100.0% 34.0% Srirajaskanthan 2010 51 -TATE Lesion 11.9% 74.3% 62.4% Van Binnebeek 2016 53 -TOC Lesion 60.0% 99.9% 39.9% Deppen 2016 78 -TATE Patient 72.0% 96.0% 24.0% Sadowski 2016 131 -TATE Lesion 30.9% 95.1% 64.2% Morgat* 2016 19 -TOC Lesion 20.0% 76.0% 56.0% *: MEN-1 TOTAL 443 Range 12-72% 74-100% 24-62%

Comparison of 68 Ga-DOTATATE PET/CT vs. 111 Inpentetreotide SPECT: largest series on record Comparison 111 In-Pentetreotide, 68 Ga-DOTATATE, CT (n=131) Sensitivity: 68 Ga-DOTATATE 95.1% 111 In-Pentetreotide SPEC/CT 30.9% CT 45.3% 68 Ga-DOTATATE PET/CT induced change in management in 43 of 131 patients (32.8%) In patients with carcinoid symptoms and negative biochemical testing: 68 Ga-DOTATATE PET/CT: positive in 65.2% 40% of these were anatomic imaging and 111 In-pentetreotide SPECT/CT negative Sadowski, 2016, J Clin Oncol; 34(6): 588-96

68 Ga-DOTATOC 68 Ga-DOTATATE n=40 Lesions detected: SUV max 68 Ga-DOTATOC: 262 20.4 ± 14.7 68 Ga-DOTATATE: 254 (97%) 16.0 ± 10.8 Poeppel, 2011, J Nucl Med, 52(12):1864-70

Very similar findings in 68 Ga-DOTATOC vs 68 Ga-DOTATATE 68 Ga-DOTATOC DOTATO 68 Ga-DOTATATE Poeppel, 2011, J Nucl Med, 52(12):1864-70

68 Ga-DOTANOC vs 68 Ga-DOTATATE Normal Biodistribution Metastatic NET 68 Ga-DOTANOC 68 Ga-DOTATATE 68 Ga-DOTANOC 68 Ga-DOTATATE Kabasakal, 2012, Eur J Nucl Med Mol Imaging;39(8):1271-7

Clinical impact of 68 Ga-DOTA-peptide PET/CT vs 111 In-Pentretreotide Detection of smaller lesions Detection of lesions with only light to moderate SSR expression Detection of more lesions No change in therapy Change in therapy in substantial fraction of patients e.g.: Additional liver metastases change in liver directed therapy Extra-hepatic metastases (refrain from SIRS, refrain from livertx) One stop shop 90 minutes door to door, including diagnostic CT ( 111 In-pentetreotide: 2 day procedure) Be careful with direct comparison between 111 Inpentetreotide and 68 Ga-DOTA-peptide PET More lesions does not necessarily mean clinical progression!

Differential binding of SSTR agonists SSTR Agonist and antagonists GDP GTP GTP GTP Activated receptor state Bound to GDP Inactivated receptor state Bound to GTP Based on Ginj, 2006, Proc Natl Acad Sci U S A.;103(44):16436-41

Differential binding of SSTR agonists and antagonists SSTR Agonist SSTR Antagonist GDP GDP GTP GTP GTP Activated receptor state Bound to GDP Inactivated receptor state Bound to GTP Based on Ginj, 2006, Proc Natl Acad Sci U S A.;103(44):16436-41

Differential binding of SSTR agonists and antagonists SSTR Agonist SSTR Antagonist GDP GDP Lysosome Nucleus Lysosome Nucleus Internalisation No Internalisation Activated receptor state GDP GTP GTP GTP Inactivated receptor state Based on Ginj, 2006, Proc Natl Acad Sci U S A.;103(44):16436-41

Imaging somatostatin receptor expression with SSTR antagonists 111 In-pentetreotide (Octreoscan ) (Agonist) 111 In-DOTA-BASS (Antagonist) Wild, 2011, J Nucl Med; 52(9):1412-7

MIP CORONAL Pitfall: increased physiological uptake in pancreatic head and uncinate process No Whipple without cytological or morphological imaging confirmation

Pitfall: SSR expression on meningeoma ( 68 Ga-DOTATATE) Pancreatic head!

Pitfall: inflammatory uptake in degenerative osteoarthritis ( 68 Ga-DOTATATE)

Pitfall: Accesorry spleen and probable intrapancreatic accessory spleen on 68 Ga-DOTATOC

Peptide Receptors Glucagon-like Receptor-based peptide 1 receptor (GLP-1R) 99m Tc-DMSA Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Serotonin pathway Catecholamine pathway IMT Nucleus LAT1 amino acid transporter Noradrenaline transporter NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine CCK receptor VIP receptor 123 I-MIBG 18 F-FDG GLP1 receptor Adapted from Koopmans, Crit Rev Oncol Hematol, 2009; 71(3):199-213

Glucagon-like peptide 1 receptor (GLP-1R) ligands for SPECT Receptors for glucagon-like peptide 1 (GLP-1) are highly overexpressed in almost all insulinomas [Lys 40 (Ahx-DTPA- 111 In)NH 2 ]exendin-4 pre-clinically validated tracer (RIP-Tag mouse model) HE Autoradiography Blocked Autoradiography Reubi, 2003, Eur J Nucl Med Mol Imaging;30(5):781-93 Korner, 2007, J Nucl Med;48(5):736-43 Wild, 2006, J Nucl Med;47(12):2025-33 Mouse SPECT/CT 100 nmol/l GLP

Glucagon-like peptide 1 receptor (GLP-1R) ligands for SPECT 4 h PI 4 days PI SPECT/CT Man, 64 year Neuroglycopenia Endogenous hyperinsulinism T/B:5.8 T/B:13.4 Tumor Autoradiography Control Autoradiography SPECT/CT: small nodule between the duodenum and the superior mesenteric artery Wild, 2008, New Engl J Med; 359(7):766-8

Glucagon-like peptide 1 receptors (GLP-1R) ligands for PET ( 68 Ga-DOTA-exendin-4) PET SPECT Antwi Wild, 2015, J Nucl Med;56:1075 1078

MOLECULAR IMAGING IN NET 18 F-FDG

Glucose Metabolism 18 F-FDG 99m Tc-DMSA Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Nucleus LAT1 amino acid transporter Noradrenaline transporter Serotonin pathway Catecholamine pathway IMT NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine CCK receptor VIP receptor 123 I-MIBG 18 F-FDG GLP1 receptor Adapted from Koopmans, Crit Rev Oncol/Hem, 2009

HIGH SSTR expression LOW LOW 18 F-FDG HIGH INDOLENT AGRESSIVE MORE Differentiation LESS LOW Ki67 index HIGH LOW Mitoses HIGH LOW Biological aggressiveness HIGH GOOD Patient prognosis POOR

2-[ 18 F]fluoro-2-deoxy-D-glucose vs. D-Glucose FDG F Glucose FDG = Glucose Transported by GLUT receptors Brain Myocardium Skeletal muscle Tumoral cells Inflammatory cells (activated neutrophils, macrofages) Bowel (small intestine, colon) Phosphorylation by hexokinase FDG Glucose No isomerisation by phosphohexose isomerase No substrate for SGLT (active renal tubular transporter) renal clearance

Contribution of 18 F-FDG PET(/CT) imaging for GEP-NETs Sensitive detection of tumoral lesions, including small lesions (G3): Staging Suspicion of recurrence Restaging Therapy monitoring Molecular characterization of tumoral lesions: Prognostic biomaker Guidance for (re-)biopsy incase of clinical/morphological progression.

N=96 SRS ( 111 In-Pentetreotide) has higher sensitivity for NET than FDG or MIBG All NET subtypes, except colonic (FDG> 111 In-Pentetreotide) Total Sensitivity SRS: 89% MIBG: 52% FDG: 58% For Ki67 >2% and 2%-15%, but not for >15% (FDG> 111 In-Pentetreotide) 41% of grade 1 patients are positive on FDG! Binderup, 2010, J Nucl Med; 51(5):704-12

18 F-FDG PET detects patients with poor prognosis PFS OS FDG - FDG - FDG + FDG + Hazard Ratio: 9.4 Hazard Ratio: 10.3 N=98 Sensitivity for FDG: 58% Determines biological properties Binderup, 2010, Clin Cancer Res;16(3):978-85

Metabolic grading of NET with 18 F-FDG T/L:Tumor/Liver Ezzidin, 2014, J Nucl Med;55(8):1260-6

Metabolic grading of NET with 18 F-FDG mg1 mg2 mg3 Ki67:10% Ki67:1% Ki67:20% Ezzidin, 2014, J Nucl Med;55(8):1260-6

Metabolic grading of NET with 18 F-FDG Pathological grading Metabolic grading Ezzidin, 2014, J Nucl Med;55(8):1260-6

Radiolabelled Neurotransmitter Precursors 99m Tc-DMSA Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Serotonin pathway Catecholamine pathway IMT Nucleus LAT1 amino acid transporter Noradrenaline transporter NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine CCK receptor VIP receptor 123 I-MIBG 18 F-FDG GLP1 receptor Adapted from Koopmans, Crit Rev Oncol Hematol, 2009; 71(3):199-213

18 F-FDOPA: 6-L- 18 F-Fluorodihydroxyphenylalanine Jager, JNM 2008

18 F-DOPA metabolism

Diagnostic accuracy of 18 F-DOPA 18 F-DOPA Planar SRS PET/CT 18 F-DOPA biodistribution: striatum, kidney, ureter, bladder Koopmans, Lancet Oncol, 2006

Diagnostic accuracy of 18 F-DOPA in patients with carcinoid tumors: lesion base Sensitivity for all studied sites is better for 18 F-DOPA than SRS or than CT, except for lung (55% vs. 64% SRS+CT) Parameter 18 F-DOPA SRS CT SRS+CT Sensitivity 96% 46% 54% 65% 95% CI (95-98%) (43-50%) (51-58%) (62-69%) Koopmans, Lancet Oncol, 2006

18 F-DOPA: normal biodistribution Carbidopa pretreatment Major uptake in kidneys ureter bladder Minor uptake in striatum myocardium liver muscles Note absence of pancreatic uptake Jager, JNM 2008

18 F-DOPA: pathological uptake in NET Carbidopa pretreatment Carcinoid in several locations abdomen liver mediastinum Intense uptake Detection of small lesions Absence of pancreatic uptake. Jager, JNM 2008

18 F-DOPA: pathological uptake in pancreatic islet NET Carbidopa pretreatment Primary malignant islet cell tumor located in tail of pancreas (blue arrow) Several liver metastases (red arrows) Jager, JNM 2008

11 C-5-HTP, a serotonergic metabolic tracer for NET CT SRS 18 F-DOPA 11 C-5-HTP 11 C-HTP>> 18 F-DOPA>SRS=CT 11 C-HTP= 18 F-DOPA>SRS 18 F-DOPA PET/CT SRS 18 F-DOPA 11 C-5-HTP Koopmans, JCO 2008

11 C-5-HTP, a serotonergic metabolic tracer for NET Technique Sensitivity 95% CI CT 68% 63-74 SRS ( 111 In-Octreotide) N=294 lesions 46% 40-52 SRS + CT 77% 72-82 18 F-DOPA 41% 36-47 18 F-DOPA + CT 80% 75-85 11 C-5-HTP 67% 62-73 11 C-5-HTP + CT 96% 93-98 Koopmans, JCO 2008

Radiolabeled Catecholamines 99m Tc-DMSA Peptide receptors Passive diffusion Active transport Receptor/ligand internalisation 18 F-DOPA 11 C-5-HTP Phosphate metabolism Lysosome Serotonin pathway Catecholamine pathway IMT Nucleus LAT1 amino acid transporter Noradrenaline transporter NaPi co-transporter GLUT glucose transporter 123 I-IMT Secretory vesicle Secretory vesicle VMAT transporter Somatostatin receptor Glucose metabolism Bombesin receptor 18 F-Dopamine CCK receptor VIP receptor 123 I-MIBG 18 F-FDG GLP1 receptor Adapted from Koopmans, Crit Rev Oncol Hematol, 2009; 71(3):199-213

meta-iodobenzylguanidine OH OH H C C NH 2 H C N C NH OH H H H H NH 2 noradrenaline I MIBG University of Michigan Medical School, 1980 Guanethidine derivative Mimicks Norepinephrine (NE) 131 I or 123 I label Uptake: (a) Active (type I) (b) Passive neuroendocrine tumors

Catecholamine radiopharmaceuticals 131 I-MIBG: Low specific activity Physically infavourable characteristics for imaging 123 I-MIBG: High specific activity Physically more favourable Photon energy: 159 kev vs 364 kev T1/2: 13 hours vs 192 hours No beta emission -> reduced dosimetry, increased sensitivity, allows SPECT Negative: Cost 124 I-MIBG: PET imaging

Cellular uptake of MIBG - General Cytoplasmic structures 1 3 2 4 ATP dependent Reserpine sensitive 5 1: Uptake 1, 2: Passive diffusion, 3: Intracellular transport 4: Storage in granules, 5: Release from cell.

Cellular uptake of MIBG - NET Norepinephrin transporter (abbreviation: NET) Cytoplasmic structures 1 3 2 4 ATP dependent Reserpine sensitive 5 1: Uptake 1, 2: Passive diffusion, 3: Intracellular transport 4: Storage in granules, 5: Release from cell.

Sensitivity of MIBG for NET Koopmans, Crit Rev Oncol/Hem, 2009 Binderup, JNM, 2010

Outcomee Toxicity N=31 Ezzidin S. et al., J Nucl Med, 2013; 54:2032-8

18 F-FDG Take Home Messages SSTR scintigraphy or PET Sensitivity > 90% compared to conventional techniques Is part of standard management in a large fraction of NET patients Time of diagnosis During follow-up First choice in patients with grade 1 or 2 NET Can be useful in isolated tumor marker rise (chromogranin, 5-HIAA) 111 In-Pentetreotide: not gold standard (use of SPECT/CT strongly advised) 68 Ga-DOTA-peptides are the best tracers, should be used when available Pitfalls: uncinate process, other tumors (e.g. meningeoma), spleen, inflammation Antagonists next step First choice in patients with grade 3 NET for determination of tumor extent Offers prognostic information in patients with grade 1 or 2 NET Metabolic grading in metastatic patients? 18 F-DOPA/ 11 C-5-HTP/ 18 F-Dopamine: other techniques inconclusive

Take Home messages SSR as theranostic target FDG is gold standard for NET G3 and has prognostic value in G1/2 SSR imaging, preferentially with PET, is current gold standard for NET (G1/2) imaging SSR expression can be (semi-)quantitatively scored Predictive value for cold SSA treatment (Clarinet > Promid) Very strong predictive value for SSR-targeting radionuclide treatment (PRRT) GLP-1 PET ligands best imaging agents for benign insulinoma Other tracers (18F-DOPA/11C-5-HTP/18F-Dopamine) can be considered to localize (biochemicaly) suspected NET (e.g. ACTH producing tumor).

Henry N. Wagner Jr 1927-2012 Forefather of Nuclear Medicine The future of nuclear medicine is PET. and Therapy

Questions? Leuven City Hall