Cutting instruments. Instruments

Similar documents
Preclinical Dentistry. I. Dental Caries Non carious lesions: trauma, erosion. abrasion, wedge shaped defects. Lenka Roubalíková

Lec. 3-4 Dr. Saif Alarab Clinical Technique for Class I Amalgam Restorations The outline form

CLASS II AMALGAM RESTORATIONS. Amalgam restorations that restore one or both of the proximal surfaces of the tooth

CLASS II AMALGAM RESTORATION 36MO

ASSIGNMENT 16. Book Assignment: Operative Dentistry, pages 16-1 to 16-33

Preclinical Dentistry. I. Dental Caries. defects. Lenka Roubalíková. 1

CLASS II CAVITY PREPARATION CHARACTERISTICS OF AN IDEAL CLASS II

DENTAL CARIES CARACTERISTICS, HANDPIECES, HAND INSTRUMENTS, (USED IN PHANTOM LAB) HYSTOPATHOLOGY. BURS. 3rd year, 1st semester

Essentials of. Dental Assisting. Edition 6. Debbie S. Robinson Doni L. Bird

Jet Carbides. Enduring esthetics. Effortless efficiency. Precisely.

Indications The selection of amalgam as a restorative material for class V cavity should involve the following considerations:

Dr.Zainab. second. step): The. proximal

Lecture 2 Maxillary central incisor

ORTHODONTIC BANDING AND CEMENTATION. Materials

Principles of Periodontal Instrumentation. Periodontology I - 4th year 23/2/2012 Dr. Murad Shaqman

روپ قداص رتکد ناشخرد یاھدادعتسا رتفد

International Dentist Program (IDP) Admissions Cycle Bench Test Guidelines

Part II National Board Review Operative Dentistry. Module 3D General Questions Answers in BOLD (usually the first answer)

Implant Maintenance HYGIENE INSTRUMENTS. IMPLA-MATE Universal Curette/Langer 1-2. IMPLA-MATE Universal Curette/Langer 3-4

Preparation and making fillings Class V., III., IV.

Amalgam restoration of posterior proximal cavities with deep and concave gingival outlines

Stainless Steel Crowns

Restorative Dentistry for the Primary Dentition. References : pinkham, chapter 21

HOW TO USE THIS BOOK. The instruments in this guide are not to scale, and during photography some colours may have been altered.

KaVo Kerr Carbides Comprehensive Portfolio of Operative, Trimming & Finishing and Specialty Carbides

,5 mm mm

BOCL-01: Bonding Materials Checklist

Central Incisor DR.Ahmed Al-Jobory B.D.S.,M.Sc. Conservative Department

Elevators. elevators:- There are three major components of the elevator are:-

DENTAL MATERIALS STUDY GUIDE

Class I Cavity Preparation. Alaa Sabrah, BDS, MSD, PhD Nov,

PLATE 1. Outline Form

UDELL DENTAL LABORATORY Instructions for Use PREAT Precision Attachments

PEER Surgical Ltd. Dental Instruments.

PH-04A: Clinical Photography Production Checklist With A Small Camera

DENTATUS PROFIN DIRECTIONAL SYSTEM

griplite s 6 instruments

Chapter 14. Anatomy and Function of a Table Top Gag 14 RODENT DENTISTRY. Adjusting the Gag for use. How to assemble the Table Top Gag

A Systematic Technique for Carving Amalgam and Composite Restorations

Award Matrix HPVC Dental Consumables

1. Rotosonic burs have 6 sides with non-cutting edge and will not injure soft and hard tissue.

CARIES STABILIZATION AND TEMPORARY RESTORATION

Pulpal Protection: bases, liners, sealers, caries control Module D: Pulp capping-caries control

M. Molitor REMOVAL OF ORTHODONTIC BANDS AND CEMENT REMOVAL WITH A HAND INSTRUMENT

Advance Dental Simulation Module on Crown Preparation

Advancing the Art of Freehand Cosmetic Contouring

IFURH0017.V04 NOV2017 INSTRUCTIONS FOR USE CLINICAL PROCEDURE

For the Perfect Class V and All Cervical Area Gingival Margins when Placing Direct Composites, Create an Injection Molding Matrix

FS MTS. Micro Periodontal Tissue Scissors

Tungsten Carbide Catalog1

Metal-Free Restorations PROCEDURES FOR POSTERIOR DIRECT & SEMI-DIRECT COMPOSITE RESTORATIONS D I D I E R D I E T S C H I. For.

Contouring vs. Orthodontics. Contouring to Eliminate Fractures and Enhance Proportions

Hands-on Posterior Tooth Preparation. Practical Skills Courses, SWL, 25/11/2016

Full Arch Hygiene Protocol

Hex-Lock Abutment System. Restorative Manual

LMArte. Sculpt masterpieces

Clinical report. Drs Paul and Alexandre MIARA and F. CONNOLLY COMPOSITE POSTERIOR FILLINGS. How to control. layering? 8 - Dentoscope n 124

Use and description of endodontic instruments

PROPORTION GAUGE T-BAR TIP

Operative dentistry. Lec: 10. Zinc oxide eugenol (ZOE):

أ.م. هدى عباس عبد اهلل CROWN AND BRIDGE جامعة تكريت كلية. Lec. (2) طب االسنان

NATIONAL EXAMINING BOARD FOR DENTAL NURSES

2. Gap closure and replacement of the missing tooth 35 with directly modelled bridge region 34-36

Scaler Periodontal Curette Explorer Root Planing Check Scaler Sharpening Product Periodontal Probe Resin Color Probe Medicine Applicator

Lec11 يجافخلا معنملاذبع د 0 Dental Amalgam:- Advantages:- Disadvantages:- Composition: -

SURVEYING OF REMOVABLE PARITAL DENTURES FEB, 11, 2015

4766 Research Dr. San Antonio, TX insightdentalsystems.com

Invisible Retainer with Single-Tooth Pontic Fabrication Technique (Multi-Tooth Pontic Procedure also available)

A SIMPLIFIED INSTRUMENTATION APPROACH TO ULTRASONIC DEBRIDEMENT Hands On Workshop

Dispensary Kit Inventory

Ceramic Based Aesthetic CAD/CAM Restorative

Principles of. By: Dr. Ahmad Rabah

KaVo SONICflex Tips KaVo SONICflex tips

Fundamental & Preventive Curvatures of Teeth and Tooth Development. Lecture Three Chapter 15 Continued; Chapter 6 (parts) Dr. Margaret L.

Filling materials are used to replace missing parts of the tooth.

The width of the MCXL step bur is 1.4 mm wide and has a blunt end. As the bur approaches the inside of

Dr.Adel F.Ibraheem Partial Veneer Crown(Three quarter crown) Three quarter (¾ )crown: Uses: Indications ---- For posterior teeth ;

Direct composite restorations for large posterior cavities extended range of applications for high-performance materials

Invisible Retainer with Multi-Tooth Pontic Fabrication Technique (Single-Tooth Pontic Procedure also available)

Anisotropy of Tensile Strengths of Bovine Dentin Regarding Dentinal Tubule Orientation and Location

Kois Dento-Facial Analyzer System Instructions

Jordi Manauta. Shadeguides Composite onlays. Page 1 of Apr 2012

Dowel restorations Treatment with a post and core

Introduction to Layering with Filtek Supreme Plus Universal Restorative. Filtek. Supreme Plus Universal Restorative

CEREC 3D Preparation Guideline

PERMANENT MANDIBULAR INCISORS

A Step-by-Step Approach to

Note: The short arm of the BLPG tip is of the same length and measurement as the long arm of the T-bar and the Inline tip.

Protemp Crown Temporization Material

Top Finisher System Instructions for Use

Set for tunneling technique, consisting of 1/3 washtray, tunneling instruments # 1 upper jaw, # 2 lower jaw, # 3 upper / lower jaw combination

Efficient Bonding Protocol for the Insignia Custom Bracket System

TUBES, LINGUAL ATTACHMENTS AND BANDS. tportho.com cosmeticbraces.com. POD_TPOC_04_Tubes_Linguals_Bands_2017, Rev. 1

Device Technical File

CAREFULLY READ ALL INSTRUCTIONS PRIOR TO USE

Parallel-Axis Gear Terminology

DH220 Dental Materials

Acknowledgments Introduction p. 1 Objectives p. 1 Goals p. 2 History of Dental Materials p. 3 The Oral Environment p. 4 Characteristics of the Ideal

DENTAL ASST: DENTAL SCIENCE II (721)

Transcription:

Instruments أﻧﺲ اﻟﻌﺒﯿﺪي. د The removal and shaping of tooth structure are essential aspects of restorative dentistry. Initially this was a difficult process accomplished entirely by the use of - Hand instruments. - Rotary, powered cutting instruments. Hand instruments Black organized not only the classification of cavity but the naming and the numbering of hand instruments. For many years, carbon steel was the primary material used in hand instruments because they were harder and maintained sharpness better than stainless steel. Stainless steel is now the preferred material because stainless steel instruments remain bright with steam or dry heat sterilization, and because the properties of stainless steel have improved by incorporating a significant amount of chromium imparts corrosion resistance and carbon imparts hardness. Hand instruments used in operative dentistry may be categorized as: cutting instruments and non cutting instruments. Cutting instruments These instruments are used to cut hard or soft tissue of the mouth. Hand cutting instruments are composed of three parts: handle, shank and blade (Fig 1). For non cutting instrument; the part corresponding to the blade is termed the nib or working end. Fig. (1) Double-ended instrument illustrating three component parts of hand instruments: blade (a), shank (b), and handle (c) 1

The blade or nib; is the working end of the instrument and is connected to the shank. Some instruments have a blade on both ends of the handle and are known as double ended instruments. The blades have many designs and sizes, depending on the function they are to perform. Shank serves to connect the handle to the blade of the instrument. The shank may be straight, monoangle(with one angle), biangle (with two angles), triangle (three angles), or quadangle (four angles) as in Fig(3&4&5). The term contra-angle refers to shank in which two or more angles are present. The angles in the shank are important to keep the blade edge within 1-2 mm to the long axis of the instruments. This is a basic factor to concentrate the force onto the blade for balancing the instrument during use and prevent its rotation Handle is the part that is grasped by the operator hand while he is using the instrument. Operative cutting instrument formula Cutting instruments have numeric formula describing the dimensions and angles of the working ends. These are placed on the handles using a code of three to four numbers separated by dashes or spaces (e.g. 10-85-8-14) as in Fig. (2). The first number indicates the width of the blade or primary cutting edge in tenths of a millimeter (0.1 mm) (e.g. 10=1.0mm). The second number of a four number code indicates the primary cutting edge angle measured from a line parallel to the long axis of the instruments handle in clockwise centigrades (angle expressed as a percent of 360 degrees). If the edge is locally perpendicular to the blade then this number is normally omitted resulting in a three numbers code. The third number (second number in three numbers code) indicates the blade length in millimeters (1.0mm). The forth number (third number in three number code) indicates the blade angle relative to the long axis of the handle in clockwise centigrades. In Fig (3&4&5) some of the cutting instruments with their formulas indicated 2

Fig. (2) Instrument shank and blade design (with primary cutting edge positioned close to handle axis to produce balance). The complete instrument formula (four numbers) is expressed as the blade width (1) in 0.1-mm increments, cutting edge angle (2) in centigrades, blade length (3) in millimeters, and blade angle (4) in centigrades. Examples of the cutting instruments are: 1. Chisel: - either has a straight shank or with slight angle, and the blade has bevel only on one side of the edge. Its cutting edge is perpendicular to the axis of the handle. The chisels are used for cutting enamel and dentin with pushing motion. (Fig. 3 A) 2. Hoe: - It is like chisel with cutting edge is perpendicular to the axis of the handle (Fig 3C), however its blade has a greater angle from the long axis of the handle than does that of the chisel. It has the same uses of the chisel. 3. Hatchet: - also called enamel hatchet. The cutting edge of the hatchet is parallel to the long axis of the handle and beveled only from one side (Fig. 4 A). It is used for cutting enamel and dentin and comes as right or left types for using on opposite sides of the cavity. 3

4. Gingival margin trimmer: - This instrument is used for beveling of the gingival enamel margin of proximo-occlusal preparations. Also it is using for beveling of axiopulpal line angle of two surface preparation as in class II cavities. It is similar in design to the hatchet, except the blade is curved, and cutting edge is at an angle (other than perpendicular) to the long axis of the blade (Fig. 4, B and C). It is made as right and left types. Also it is made so a right and left pair is either a mesial pair or a distal pair. When the second number in the formula it 90 to 100, the pair is used on the distal gingival margin. When this number is 85 to 75, the pair is used to bevel the mesial margin. 5. Spoon excavator:- The blade is curved and the cutting edge at the end of the blade is in the form of a semicircle. This gives the instrument an outer convexity and inner concaving that makes it looks like a spoon Fig. (5). Like the hatchet the cutting edge at the end of the blade is parallel to the handle, therefore there are left cutting and right cutting spoons. The shank of some spoons holds a small circular (disk blade) or claw like blade at its end. The disk blade is known as a discoid, where the claw like blade is termed a cleoid (Fig 6, A and B). Fig. (3) Examples of hand instruments called chisels (with corresponding instrument formulas). A, Straight (12-7-0). B, Wedelstaedt (11'/2-15-3). C, Bin-angle (107-8). 4

Fig.(4) Examples of hand cutting instruments (with corresponding instrument formulas). A, Enamel hatchet (10-7-14). B, Gingival margin trimmer (12 1/2-100-7-14). C, Gingival margin trimmer (12'/2-75-7-14). Fig. (5) Examples of hand instruments called spoon excavators (with corresponding instrument formulas). A, Binangle spoon (13-7-14). B, Triple-angle spoon (13-7-14). C, Spoon (15-7-14). 5

Fig. (6) Examples of other hand instruments for cutting (spoons) 1st picture is Cleoid blade. 2nd picture is Discoid blade carving amalgam. Hand instrument grasping 1. Pen grasp: - as implies, it is similar to that used in holding a pen. Pads of the thumb, index and middle fingers hold the instrument, while the tip of the ring finger, or tips of ring and little fingers, is placed on a nearby tooth surface of the same arch as arrest. The palm of the hard generally is facing away from the operator. (Fig 7, B) 2. Inverted pen grasp: - the finger position are the same as of pen grasp, but the hand is rotated so that the palm more toward the operator. This grasping is used mostly for preparing of upper teeth with indirect viewing technique. (Fig 7, C) 3. Palm and thumb grasp: - the handle of the instrument is placed in the palm of the hand and grasped by all fingers, while the thumb is free of the instrument and used for resting on a nearby tooth of the same arch (Fig 7, D). * A proper instrument grasp must include a firm rest to steady the hand during operating procedures. The closer the rest areas are to the operating area, the more reliable they are. A B C D Fig.(7) Instrument grasping A, grasping of ordinary pen. B, pen grasping of hand instrument with correct position of middle finger is near the "topside" of the instrument for good control and cutting pressure. The rest is tip(s) of ring finger (ring and little fingers) on tooth (teeth) of same arch. C, Inverted pen grasp, palm faces more toward operator. D, Palm-and-thumb grasp. This grasp has limited use, such as preparing incisal retention in a Class III preparation on a maxillary incisor. The rest is tip of thumb on tooth in same arch. 6

Non cutting instruments: In these instruments the blade is replaced by a nib or point. These are divided according to function into:- I. Diagnostic instruments:- These are basic instruments that will be needed during each appointment for diagnosis and treatment (Fig. 8), including. 1- Mirror:- used for indirect visualization of any tooth surface that cannot be seen by the eye, also reflection of light into the area being examined or treated. The mirror also served as a retractor of soft tissue (tongue, cheek and lip) to aid access and visualization. 2- Probe or explorer:- pointed instruments used to feel tooth surface for irregularities and to determine the hardness of exposed dentin and caries detection. Probes have different shapes either sickle, straight or angled as appear in Fig. (8). 3- Tweezer or cotton forceps:- used for aiding the operator to carrying small items to the mouth of the patient. Fig. (8) Diagnostic instruments (from left to right) showing tweezer, mirror, and three types of probes (straight, angled, and sickle). II. Plastic instruments:or plastic filling instrument are used to carry and shape tooth colored restorative material such as composite resin and glass ionomer, or for packing temporary filling material inside unfilled cavies preparation, or for placing of basing and lining material into the cavities. In past these instruments are made of plastic, but now are available in either hard plastic or metal. Ash 6 is one of plastic instrument similar to carver but the margin of its working end is not sharp (Fig. 9B). Ash 49 is double ended instrument with cylindrical nibs and rounded ends (Fig.9A). Dycal applicator is small hand instrument with small round nib used for mixing and placing dycal lining material in the cavity (Fig.9C). Cement spatula: - it is used for mixing variety of material which required mixing (such as cement or temporary filling material) on glass or on a paper pad (Fig.9 D). Fig. (9), some of plastic instrument. A, ash49 B,ash6 C,dycal applicator D, cement spatula. 7

III. Amalgam instruments:those instruments used to place dental amalgam, and to a certain extent, resin composite restorative material. 1- Condensers:- condensers are used to compress the amalgam into all areas of the prepared cavity. The working end or nib of the condenser is usually round with flat end (face), but also the nibs may have different shapes as triangular, rectangular or diamond shape ends (Fig.10). Condenser may also be used to place resin composite material by pushing or patting into the prepared cavity. 2- Burnisher:- burnishers have different nib shapes which may be round, oral or rounded cone shapes (Fig. 11), also with different sizes. Burnishers are used for several functions such as; burnishing of the amalgam on the margins of the cavity, and also smoothing of the carved amalgam surface. Burnishers also used for shaping metal matrix band to have more desirable contours for restoration. Other uses of the burnishers are to bend cast gold restoration (inlay or onlay) near the margin of the prepared cavity to narrow the gap between gold and the tooth. 3- Carver:- carvers are used to shape amalgam or resin composites (tooth colored) material after they have been placed in the tooth preparations. Carvers have many shapes but usually the nibs are flat with sharp margins for carving as in Fig. (12). 4- Amalgam carrier:- used to carry the amalgam and place into the prepared cavities. Fig (10) Different shapes of condensers. Fig. (11) Different types of burnishers A,round B,oval C,rounded cone shape. Fig. (12) Different shapes of amalgam carvers. 8

Rotary instruments:handpieces:two basic types of handpieces, the straight handpiece and contra angle handpiece. The straight is used more frequently for laboratory work, while contra angle used in the mouth. The contra angle handpiece are classified according to their speed of rotation into:low speed handpiece:- these handpiece have atypical free running speed range from 500 to 15,000 rpm (revolution per minute). High speed handpiece: - have a free running speed above 160,000 rpm and some have speed up to 500,000 rpm. High speed techniques are generally preferred for cutting enamel and dentin. Penetration through enamel and extension of the cavities outline are more efficient at high speed. Small diameter burs should be used in the high speed handpiece. High speed generates considerable heat during cutting, even with small diameter burs and should be used with water coolant and high efficiency evacuation. Low speed contra angle handpiece, with round bur rotating slowly, are used for removal of carious dentin. Also low speed handpiece may be used with different bur shapes to finish the prepared cavity (e.g. rounding of sharp edges, or flatting of the floor), and used in finishing and polishing of restorations. Burs:A group of instruments that can turn on an axis with different speed of rotation to perform different types of work. The characteristics of this work are either cutting, abrasive, finishing or polishing. Burs used for cutting are manufactured from different materials, which may be stainless steel, carbide or diamond. Each bur consist of three parts: shank, neck, and head (Fig. 13). Shank is the part that fit into the handpiece, accepts the rotation motion from handpiece, and which the bur is locked inside the handpiece head. Neck is the part of the bur that connects the head to the shank. Head is the working part of the bur which contains the cutting edges or points, and burs are classified according to the shapes of their heads. The burs have hundreds of shapes and sizes. The basic bur shapes are round, inverted cone or fissure burs. Fig. (14). Round bur: the head is spherical so it is used for initial entry into the tooth, preparation of retentive holes or for removal of caries dentin. Inverted cone bur: the head is a cone shape with the apex of cone directed toward the bur shank. This bur is used for flatting the floor of the cavity, increasing the depth of cavity or for providing undercuts in cavities preparation. Straight fissure bur: - is an elongated cylindrical head bur used for obtaining the outline form of the cavity and to cut walls, floor, or margins of the cavity. 9

Fig. (13) Normal designation of three parts of rotary cutting instruments. Fig.(14) Basic bur head shapes. 10