Two Active Compounds From Caesalpinia sappan L. In Combination With Cisplatin Synergistically Induce Apoptosis And Cell Cycle Arrest On WiDr Cells

Similar documents
Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

Devi Nisa Hidayati 2, Riris Istighfari Jenie 1, Edy Meiyanto 1* Abstract INTRODUCTION

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

The Safety of Areca Seed Ethanolic Extract as Potential Chemopreventive Agent is Proven by Acute Toxicity Test

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

RESEARCH ARTICLE. Herwandhani Putri 1, Riris Istighfari Jenie 1, Sri Handayani 1,2, Ria Fajarwati Kastian 1, Edy Meiyanto 1 * Abstract.

PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Enhanced Anti-cancer Efficacy in MCF-7 Breast Cancer Cells by Combined Drugs of Metformin and Sodium Salicylate

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

Synergistic Combination of Ciplukan (Physalis angulata) Herbs Ethanolic Extract and Doxorubicin on T47D Breast Cancer Cells

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Molecular biology :- Cancer genetics lecture 11

Montri Punyatong 1, Puntipa Pongpiachan 2 *, Petai Pongpiachan 2 Dumnern Karladee 3 and Samlee Mankhetkorn 4 ABSTRACT

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

The effect of elemene reversing the multidurg resistance of A549/DDP lung cancer cells

The Annexin V Apoptosis Assay

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

Supporting Information

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

PROFESSIONAL EXPERIENCE

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Research Article. Cytotoxic activities of chloroform extract from leaves of Polyalthia glauca (Hassk.) Boerl. on HeLa cell line

ELUCIDATION OF ANTICANCER MECHANSIMS OF ISOLATED PHYTO- CONSTITUENTS

C-Phycocyanin (C-PC) is a n«sjfc&c- waefc-jduble phycobiliprotein. pigment isolated from Spirulina platensis. This water- soluble protein pigment is

Laili Nailul Muna 1,2 and Riris Istighfari Jenie 1,2* Abstract INTRODUCTION

Roihatul Mutiah 1, Aty widyawaruyanti 2, Sukardiman Sukardiman 2* ABSTRACT ARTICLE INFO

Research Article Ginseng Extract Enhances Anti-cancer Effect of Cytarabine on Human Acute Leukemia Cells

Anti-Aging Activity Of Cucurbita moschata Ethanolic Extract Towards NIH3T3 Fibroblast Cells Induced By Doxorubicin

Potential of a Chalcone Derivate Compound as Cancer Chemoprevention in Breast Cancer

Focus Application. Compound-Induced Cytotoxicity

Overview of methodology, tools and reagents for evaluating cell proliferation and invasion using multicellular tumor spheroids.

Table S1. New colony formation 7 days after stimulation with doxo and VCR in JURKAT cells

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

Deregulation of signal transduction and cell cycle in Cancer

- 1 - Cell types Monocytes THP-1 cells Macrophages. LPS Treatment time (Hour) IL-6 level (pg/ml)

RESEARCH ARTICLE. Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines

Necroptosis-Inducing Rhenium(V) Oxo Complexes

Ethanolic extract of Moringa oleifera increased cytotoxic effect of doxorubicin on HeLa cancer cells

A Thai Herbal Recipe Induces Apoptosis in T47D Human Breast Cancer Cell Line

Supplementary Materials and Methods

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

Ginsenoside metabolite compound K enhances the efficacy of cisplatin in lung cancer cells

Supplementary Figures

p47 negatively regulates IKK activation by inducing the lysosomal degradation of polyubiquitinated NEMO

MOLECULAR MEDICINE REPORTS 14: , 2016

Focus Application. Compound-Induced Cytotoxicity

Autophagy induction by low-dose cisplatin: The role of p53 in autophagy

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

RayBio Annexin V-FITC Apoptosis Detection Kit

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Interest in any of the products, request or order them at Bio-Connect Diagnostics.

Johannes F Fahrmann and W Elaine Hardman *

Cytotoxic and Apoptotic-inducing Effect of Fraction Containing Brazilein from Caesalpinia sappan L. and Cisplatin on T47D Cell Lines

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

p53 and Apoptosis: Master Guardian and Executioner Part 2

Plate-Based Assay Methods for the Assessment of Cellular Health

PARP Inhibition Restores Extrinsic Apoptotic Sensitivity in Glioblastoma

Fang Cheng Wong, Chern Chiuh Woo, Annie Hsu, Benny Kwong Huat Tan* Abstract. Introduction

Supporting Information

Besar Penelitian dan Pengembangan Tanaman Obat dan Obat Tradisional, Kementerian Kesehatan Republik Indonesia, Tawangmangu

Characterization and significance of MUC1 and c-myc expression in elderly patients with papillary thyroid carcinoma

Supplementary Figure 1

Department of General Surgery, The Third People s Hospital of Dalian, Dalian Medical University, Dalian, Liaoning, China,

CANCER THERAPEUTICS: A NOVEL APPROACH

Oncolytic virus strategy

Effect of ST2825 on the proliferation and apoptosis of human hepatocellular carcinoma cells

To determine the effect of over-expression and/or ligand activation of. PPAR / on cell cycle, cell lines were cultured as described above until ~80%

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.7, No.2, pp ,

I Antonio Cilla Tatay PhD Postdoctoral researcher

Cancer: Brief Introduction. First stage: Mutations in genes progressively accumulate so that there is unrestrained cell proliferation

Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy

Chapter 7: Modes of Cell Death

Cellometer Image Cytometry for Cell Cycle Analysis

Description of Supplementary Files. File Name: Supplementary Information Description: Supplementary Figures and Supplementary Tables

Bithionol inhibits ovarian cancer cell growth In Vitro - studies on mechanism(s) of action

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

Combination of Doxorubicin and Areca Ethanolic Extract Induces Apoptosis by Increasing Caspase-3 Level on Breast Cancer (T47D) Cells

Ursolic Acid Enhances Doxorubicin Cytotoxicity on MCF-7 Cells Mediated by G2/M Arrest

Supporting Information. Light-enhanced hypoxia-response of conjugated polymer nanocarrier. for successive synergistic photodynamic and chemo-therapy

Annexin V-FITC Apoptosis Detection Kit

For the rapid, sensitive and accurate measurement of apoptosis in various samples.

CELL CYCLE REGULATION AND CANCER. Cellular Reproduction II

Response and resistance to BRAF inhibitors in melanoma

HDAC1 Inhibitor Screening Assay Kit

Original Article Berberine and chemotherapeutic drugs synergistically inhibits cell proliferation and migration of breast cancer cells

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Doxorubicin Induces Lamellipodia Formation and Cell Migration

CytoSelect Tumor- Endothelium Adhesion Assay

Quercetin Regulates Sestrin 2-AMPK-mTOR Signaling Pathway and Induces Apoptosis via Increased Intracellular ROS in HCT116 Colon Cancer Cells

Chapter 1: Curcumin is excellent compound for various medicinal usages

Apoptosis Oncogenes. Srbová Martina

Investigation of ERCC1 and ERCC2 gene polymorphisms and response to chemotherapy and overall survival in osteosarcoma

Detection of Apoptosis in Primary Cells by Annexin V Binding Using the Agilent 2100 Bioanalyzer. Application Note

Contents. Preface XV Acknowledgments XXI List of Abbreviations XXIII About the Companion Website XXIX

Introduction to pathology lecture 5/ Cell injury apoptosis. Dr H Awad 2017/18

Supporting Information. FADD regulates NF-кB activation and promotes ubiquitination of cflip L to induce. apoptosis

Transcription:

Advanced Pharmaceutical Bulletin Adv Pharm Bull, 2017, 7(3), 375-380 doi: 10.15171/apb.2017.045 http://apb.tbzmed.ac.ir Research Article Two Active Compounds From Caesalpinia sappan L. In Combination With Cisplatin Synergistically Induce Apoptosis And Cell Cycle Arrest On WiDr Cells Sri Handayani 1,2, Ratna Asmah Susidarti 2, Riris Istighfari Jenie 2, Edy Meiyanto 2 * 1 Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Serpong, Indonesia. 2 Cancer Chemoprevention Research Center, Faculty of Pharmacy,Universitas Gadjah Mada, Yogyakarta, Indonesia. Article History: Received: 2 September 2016 Revised: 17 July 2017 Accepted: 19 July 2017 epublished: 25 September 2017 Keywords: Brazilin Brazilein Caesalpinia sappan, L. Cisplatin Synergistic effect WiDr cells Abstract Purpose: The aim of this study is to observe the synergistic effect of two active compounds of secang, brazilin and brazilein, combined with cisplatin on WiDr colon cancer cells. Methods: Cytotoxic activities of brazilin (Bi) and brazilein (Be) in single and in combination with cisplatin (Cisp) were examined by MTT assay. Synergistic effect was analyzed by combination index (CI) parameter. Apoptosis and cell cycle profiles were observed by using flow cytometry. Results: The result of MTT assay showed that IC 50 value of brazilin and brazilein on WiDr cancer cells were 41 µm and 52 µm respectively. The combination of ½ IC 50 of Bi-Cisp reduced cells viability up to 64% and showed synergistic effect with CI value less than 1 (CI = 0.8). The combinations of ½ IC 50 of Be-Cisp also reduced cells viability up to 78% and showed synergistic effect (CI=0.65). Combination of Bi-Cisp and Be-Cisp induced apoptosis higher than the single treatments. Further analysis on the cell cycle progression showed that single treatment of ½ IC 50 of Be and Bi induced S-phase and G2/M-phase accumulation, while combination of Be-Cisp and Bi-Cisp enhanced S-phase accumulation. Conclusion: Both combination of Bi-Cisp and Be-Cisp showed synergistic effect on WiDr cells through induction of apoptosis and halted the cell cycle progression, thus, WiDr cells growth were significantly reduced. Introduction Some of colorectal cancer (CRC) cases are associated with poor survival because of p53 mutation. 1 The p53 gene is a tumor suppressor and the key regulator of DNA damage responses. This gene plays a role on tumor suppression processes including cell cycle arrest and apoptosis. 2 Mutation in p53 gene leading to the loss of wild-type p53 activity is frequently detected in many different tumor types. 3 Enhancing of invasiveness, attenuating of apoptosis and increasing of genomic instability are generally occurred after mutation of p53. 4 The p53-mutant cancer may not be treated with the same agent as p53 wild type cancer. Surgery, chemotherapeutic drugs and radiation therapy are some of the cancer therapies that frequently be used to treat colon cancer patient. 5 Cisplatin and its derivatives are the effective DNA-damaging anti-tumor agent for various human cancers, including colon cancer. 6 The p53 protein is stabilized and its level increases in response to various DNA damaging agents, including cisplatin. However, side effects including resistance to cisplatin arise in p53-mutant cancer cells. 7 Thus, we need to investigate potential anticancer compounds that work on p53-independent pathway. Currently, combination of chemotherapy regiments based on platinum-derived compounds with other drugs (co-chemotherapeutic agent) constitute the pharmacological therapy of choice for the treatment of colon cancer. The p53-mutant colon cancer may need to be treated with combination therapy. The major compounds of Caesalpinia sappan L. (Caesalpiniaceae) i.e. brazilin and brazilein have been reported to have activities as antiinflammation, antioxidant, hepatoprotective and antiviral. 8 11 Brazilin and brazilein induce apoptosis and inhibit cell growth on several cancer cells. 12 14 Brazilein suppresses cancer cells migration and invasion. 15 Thus, brazilin and brazilein have potential to be developed as co-chemotherapeutic agent. Nevertheless, synergistic effect of combination of brazilin and brazilein with cisplatin against p53-mutant WiDr cancer cells has never been reported. In this study, we observed the synergistic cytotoxic effect of combination of brazilin and brazilein with cisplatin on WiDr cancer cells. Materials and Methods Chemicals Brazilin and brazilein were isolated from Caesalpinia sappan, L. using previously reported method. 9 Cisplatin was purchased from Wako (Japan). *Corresponding author: Edy Meiyanto, Tel: +62274-6492662, Fax: +62274-543120, Email : edy_meiyanto@ugm.ac.id 2017 The Authors. This is an Open Access article distributed under the terms of the Creative Commons Attribution (CC BY), which permits unrestricted use, distribution, and reproduction in any medium, as long as the original authors and source are cited. No permission is required from the authors or the publishers.

Handayani et al. Cell culture WiDr cell line was obtained Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta. Cytotoxic assay The 1 104 cells/well were seeded in 96-well plate. Cells were treated with various concentrations of brazilin, brazilein, and cisplatin in single or in combination then incubated in 37 C, 5% CO 2 for 24 h. Cells were then washed with PBS (Sigma), were treated with 100 µl culture medium containing 0.5 mg/ml MTT (Sigma) and incubated in 37 C, 5% CO 2 for 4 h. The reaction was stopped by adding to the cells with SDS reagent (10% sodium dodecyl sulphate (Merck) in HCl 0.01M (Merck)) then was incubated overnight in room temperature. The absorbance was measured with microplate reader (Bio-Rad) at λ 595 nm. Cell cycle distribution Propidium iodide (PI) staining kit (Becton Dickinson) was used to analyze DNA content. 5 104 cells/well were seeded in 24-well plate. Cells were treated with various concentrations of samples in single or in combination then incubated in 37 C, 5% CO 2 for 24 h. Cells were harvested and washed in PBS, fixed with 70% ethanol, labeled with PI (2 µg/ml), and incubated in room temperature, protected from light, for 10 min. The DNA content was analyzed using flow cytometry (Becton Dickinson) and followed by flowing software (version 2.5.1) and Excel MS Office 2013. Apoptosis detection Apoptotic c e l l s population was determined using PI- Annexin V assay (Annexin V-FITC Apoptosis Detection Kit Roche). 5 10 4 cells/well were seeded in 24-well plate. Cells were treated with various concentrations of samples either single or in combination for 24 h. Cells were harvested, added with 1 binding buffer, labeled with PI-Annexin V, and incubated at room temperature in the dark for 5 min. The cells suspension was analyzed using a flow cytometry (Becton Dickinson) and followed by flowing software (version 2.5.1) and Excel MS Office 2013. Statistical analysis Statistical analysis was performed using Student t-test (Microsoft Excel 2013). P-values less than 0.05 were considered significant. Effects of combinations on growth inhibition were analyzed using the Combination index (CI) equation developed by Reynolds and Maurer. 16 Results and Discussion Cytotoxic effect of brazilin and brazilein on WiDr cells. First, we observed the cytotoxic activity to find out the potency of brazilin and brazilein in inhibiting of WiDr cells proliferation. The cytotoxic activity was performed by using MTT assay. The results showed that brazilin and brazilein inhibited WiDr cells growth in a dosedependent manner with IC 50 value were 41 µm and 52 µm respectively (Figure 1), while the IC 50 value of cisplatin was 15 µm (data not shown). Figure 1. Cytotoxic effect of brazilin and brazilein on WiDr cells. A. brazilin (1-75 µm), B. brazilein (10-100 µm). Cells were treated with various concentrations of samples for 24 h before assessed by MTT assay. Data was collected from three replications (P<0.05). 376 Advanced Pharmaceutical Bulletin, 2017, 7(3), 375-380

Cytotoxic effect brazilin & brazilein with cisplatin Synergistic effect of combination of Bi-Cisp and Be- Cisp on WiDr cells growth Discovery of agents that reduce resistance of chemotherapeutic agent is urgently needed and become one main target of today research. We investigated the effect of brazilin and brazilein in combination with cisplatin, a standard chemotherapeutic agent, on WiDr colon cancer cells. As shown in Figure 2, the combination of 1/10, ⅛, ¼ and ½ IC 50 of either Bi-Cisp or Be-Cisp showed synergistic effect on inhibition of WiDr cells growth (CI<1). Moreover, the combination of ½ IC 50 of Bi-Cisp inhibited cell viability up to 64%. These data indicate that both compounds are potential to be developed as co-chemotherapeutic agent on colon cancer cells. To understand the mechanism underlies the synergistic effect, we observed the effect of the combinations on cell cycle modulation and on the induction of apoptosis. Figure 2. Combination of ½ IC 50 of Bi-Cisp (20.5 µm- 7.5 µm) and Be-Cisp (26 µm- 7.5 µm) synergistically inhibited WiDr cells growth. A. Effect of combination of Bi-Cisp on WiDr cells growth. B. Combination Index (CI) of Bi-Cisp on WiDr cells. C. Combination of Be-Cisp on WiDr cells growth. D. CI of Be-Cisp on WiDr cells. Cells were treated with samples for 24 h before assessed by MTT assay. Data was collected from three replications (P<0.05). Cell cycle modulation of brazilin and brazilein in combination with cisplatin We conducted cell cycle analysis to elucidate how brazilin, brazilein and their combination with cisplatin inhibited cells proliferation. The results of cell cycle analysis (Figure 3) showed that single treatment of either brazilin or brazilein caused S-phase and G2/Mphase accumulation. Treatment of ½ IC 50 of brazilein (Figure 3D) induced higher G2/M accumulation compared to ½ IC 50 of brazilin (Figure 3C). On the other hand, single treatment of ½ IC 50 of cisplatin induced S-phase accumulation (Figure 3B). When brazilin or brazilein was combined with cisplatin, the combinations increased cells accumulation in S-phase compared to its single treatment, whereas both combination showed accumulation in G2/M-phase compared to control cells (Figure 3E-G). Advanced Pharmaceutical Bulletin, 2017, 7(3), 375-380 377

Handayani et al. Figure 3. Combination of ½ IC 50 of Bi-Cisp and Be-Cisp induced S-phase accumulation on WiDr cells. A. Control. B. Cisplatin (7.5 µm). C. Brazilin (20.5 µm). D. Brazilein (26 µm). E. Combination of Bi-Cisp (20.5 µm -7.5 µm). F. Combination of Be-Cisp (26 µm -7.5 µm). G. Cell cycle distribution of ½ IC 50 of Bi and Be in single and combination with Cisp. Data was collected according to the description in Method. Apoptosis induction of brazilin and brazilein in combination with cisplatin. Inhibition of proliferation may be caused by modulation in cell cycle and by the induction of apoptosis. To investigate the effect of brazilin, brazilein and their combination with cisplatin on apoptosis, we did FACS analysis on WiDr cells which were treated with samples and were stained with fluorescein isothiocyanateconjugated annexin V and fluorescent dye propidium iodide (PI). Single treatment of cisplatin, brazilin and brazilein exhibited 14%, 10% and 12% of total apoptotic cells respectively. Either combination of brazilin-cisplatin or brazilein-cisplatin increased total apoptotic cells up to 22% compared to control or 9% compared to cisplatin alone (Figure 4). Combination of brazilein-cisplatin treatment showed highest accumulation in late apoptotic and necrosis, while combination of brazilin-cisplatin exhibited highest accumulation in early apoptotic cells following 24 hours of incubation. These results suggested that brazilin and brazilein increased the induction of apoptosis of cisplatin on WIDr cells. Cisplatin is a platinum-based drug that is used for the treatment of a wide-variety of primary human cancers. However, the efficacy of cisplatin is often limited by the rise of drug resistance. 6,7 Brazilin and brazilein are the active compounds from Caesalpinia sappan L. The structures of brazilin and brazilein are almost similar, whereas brazilein has C=O group and brazilin does not have C=O group in its structure. 9 In this study, brazilin showed the better cytotoxic effect against WiDr cancer cells than brazilein (Figure 1). Nevertheless, both of compounds performed synergistic effect while were combined with cisplatin. Figure 4. Combination of ½ IC 50 of Bi-Cisp and Be-Cisp synergistically induced apoptosis on WiDr cells. Cells were treated with Bi, Be and Cisp (20.5 µm, 26 µm, and 7.5 µm respectively) as indicated in the graph for 24 h. Data was collected according to the description in Method. Cell cycle analysis showed that single treatment of either brazilin or brazilein induced S-phase and G2/M-phase accumulation, while single treatment of cisplatin only accumulated cells in S-phase (Figure 4). Interestingly, when brazilin and brazilein were given as combination with cisplatin, both compounds seemed to work effectively in two fields. Both brazilin and brazilein enhance S-phase accumulation of cell cycle up to 23% and 28% respectively compared to single treatment of cisplatin. The rest of the cells, which were lead to G2/M phase were also blocked by brazilin and brazilein (Figure 4). The mechanism underlies the S-phase and G2/Mphase arrest-induced by brazilin and brazilein needs further investigation. Previous study reported that brazilin induces G2/M arrest through inactivation of histone deacetylase and followed by the activation of CDK inhibitor p27. 14 The G2/M accumulation on brazilein treatment on colon cancer cells may be related 378 Advanced Pharmaceutical Bulletin, 2017, 7(3), 375-380

Cytotoxic effect brazilin & brazilein with cisplatin with the ability of brazilein to bind with COX2 receptor (data not shown). Brazilein may induce G2/M arrest through inhibition of COX2, which is followed with the activation of p21. The p21 inhibits the CDK1/cyclin B complex and maintains the G2 arrest. 17 Since WiDr cell expresses p53 mutant, p21 may be induced by p53- independent pathway. 18,19 The S phase arrest-induced by the combination of brazilin-cisplatin and brazileincisplatin are possibly due to the action of cisplatin which as reported by Yuan et al, 20 single treatment of cisplatin induces S-phase arrest via activation of CHK1 and CHK2 checkpoint kinase. The proteins induce cell death through DNA damage and cell cycle arrest during S phase. Hence, S-phase arrest induced by cisplatin through CHK1 activation on p53-mutant cells has been reported. 21 Hence, we need to investigate that S-phase arrest induced by both of the combinations underwent apoptosis instead of DNA repair. Although the total apoptosis event of single treatment of cisplatin, brazilin and brazilein were similar (Figure 2), the three compounds have different pattern. Cisplatin exhibited the highest distribution in early apoptosis. On the other hand, brazilin and brazilein exhibited the highest distribution in late apoptosis. Combination of both brazilin-cisplatin and brazilein-cisplatin enhanced induction of apoptosis compared to cisplatin single treatment. The results support our suggestion that S- phase accumulation induced by the combinations lead to apoptosis instead of DNA repair. Interestingly, even though the total apoptotic events of both of the combinations were similar, combination of brazilincisplatin exhibited the highest accumulation in the early apoptotic cells, while combination of brazilein-cisplatin treatment exhibited the highest accumulation in the late apoptotic cells and necrosis. This difference may be due to its different mechanism. Previous study reported that cisplatin induces apoptosis through FAS receptor pathway. 22 FAS/FADD as well as TNF activate procaspase-8 to form caspase-8 and lead to increasing of proapoptotic protein Bax via intrinsic pathway. 23 Caspase-8 also directly activated caspase-3 and 7 and lead to apoptosis via extrinsic pathway. 24 Furthermore, brazilin induces apoptosis by increasing of cleavage caspase 3, cleavage caspase 7 and cleavage PARP, 12 while brazilein directly inhibits anti apoptotic protein surviving. 25 The p53 is a transcription factor for proapoptotic protein, while NFκB is a transcription factor for anti-apoptotic protein such as Bcl-2 and surviving. 26 Hsieh reported that brazilein inhibits activation of NFκB. 15 On p53-mutated cells with loss most of proapoptotic protein expression, inhibition of NFκB activation which down-regulates anti-apoptotic protein and followed by apoptosis induction is an important mechanism to suppress cancer cells growth. Downregulation of of anti-apoptotic protein induces activation of caspase-9 and caspase-3 and followed with apoptosis phenomena. 25,27,28 Those support our finding that the combination of brazilin-cisplatin and brazileincisplatin work synergistically to induce apoptosis on WiDr cells. Combination of several therapies facilitates the blockade of several survival mechanisms in cancer cells and their microenvironment, achieving a synergistic therapeutic effect. 29 On combination therapy, reducing of concentration without reducing the effect may be feasible. It overcomes side effects of chemotherapeutic agent. Brazilin and brazilein are potential to be developed as a co-chemotherapeutic agent with cisplatin for treating colon cancer cells. However, further investigation need to be done to elucidate the molecular mechanism of brazilin, brazilein and its combination with cisplatin in inducing apoptosis and modulating S- phase and G2/M arrest on WiDr colon cancer cells. Conclusion Based on these results, we propose that brazilin and brazilein work synergistically with cisplatin in inhibiting colon cancer WiDr cells growth through a different target in cell cycle modulation and apoptosis induction. Acknowledgments This work was supported by the grant of Penelitian Unggulan Perguruan Tinggi (PUPT) 2015 from Indonesian Ministry of Research and Technology and High Education. Ethical Issues Not applicable. Conflict of Interest The authors declare no conflict of interests. References 1. Sarasqueta AF, Forte G, Corver WE, de Miranda NF, Ruano D, van Eijk R, et al. Integral analysis of p53 and its value as prognostic factor in sporadic colon cancer. BMC Cancer 2013;13:277. doi: 10.1186/1471-2407- 13-277 2. Bieging KT, Mello SS, Attardi LD. Unravelling mechanisms of p53-mediated tumour suppression. Nat Rev Cancer 2014;14(5):359-70. doi: 10.1038/nrc3711 3. Muller PA, Vousden KH. Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell 2014;25(3):304-17. doi: 10.1016/j.ccr.2014.01.021 4. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, et al. Mutant p53 prolongs nf-kappab activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 2013;23(5):634-46. doi: 10.1016/j.ccr.2013.03.022 5. Guillou PJ, Quirke P, Thorpe H, Walker J, Jayne DG, Smith AM, et al. Short-term endpoints of conventional versus laparoscopic-assisted surgery in patients with colorectal cancer (mrc clasicc trial): Multicentre, randomised controlled trial. Lancet 2005;365(9472):1718-26. doi: 10.1016/S0140-6736(05)66545-2 Advanced Pharmaceutical Bulletin, 2017, 7(3), 375-380 379

Handayani et al. 6. Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: A cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 2012;64(3):706-21. doi: 10.1124/pr.111.005637 7. Gadhikar MA, Sciuto MR, Alves MV, Pickering CR, Osman AA, Neskey DM, et al. Chk1/2 inhibition overcomes the cisplatin resistance of head and neck cancer cells secondary to the loss of functional p53. Mol Cancer Ther 2013;12(9):1860-73. doi: 10.1158/1535-7163.MCT-13-0157 8. Liu AL, Shu SH, Qin HL, Lee SM, Wang YT, Du GH. In vitro anti-influenza viral activities of constituents from caesalpinia sappan. Planta Med 2009;75(4):337-9. doi: 10.1055/s-0028-1112208 9. Nirmal NP, Rajput MS, Prasad RG, Ahmad M. Brazilin from caesalpinia sappan heartwood and its pharmacological activities: A review. Asian Pac J Trop Med 2015;8(6):421-30. doi: 10.1016/j.apjtm.2015.05.014 10. Cuong TD, Hung TM, Kim JC, Kim EH, Woo MH, Choi JS, et al. Phenolic compounds from caesalpinia sappan heartwood and their anti-inflammatory activity. J Nat Prod 2012;75(12):2069-75. doi: 10.1021/np3003673 11. Liang CH, Chan LP, Chou TH, Chiang FY, Yen CM, Chen PJ, et al. Brazilein from caesalpinia sappan l. Antioxidant inhibits adipocyte differentiation and induces apoptosis through caspase-3 activity and anthelmintic activities against hymenolepis nana and anisakis simplex. Evid Based Complement Alternat Med 2013;2013:864892. doi: 10.1155/2013/864892 12. Lee DY, Lee MK, Kim GS, Noh HJ, Lee MH. Brazilin inhibits growth and induces apoptosis in human glioblastoma cells. Molecules 2013;18(2):2449-57. doi: 10.3390/molecules18022449 13. Tao LY, Li JY, Zhang JY. Brazilein, a compound isolated from caesalpinia sappan linn., induced growth inhibition in breast cancer cells via involvement of gsk-3beta/beta-catenin/cyclin d1 pathway. Chem Biol Interact 2013;206(1):1-5. doi: 10.1016/j.cbi.2013.07.015 14. Kim B, Kim SH, Jeong SJ, Sohn EJ, Jung JH, Lee MH, et al. Brazilin induces apoptosis and g2/m arrest via inactivation of histone deacetylase in multiple myeloma u266 cells. J Agric Food Chem 2012;60(39):9882-9. doi: 10.1021/jf302527p 15. Hsieh CY, Tsai PC, Chu CL, Chang FR, Chang LS, Wu YC, et al. Brazilein suppresses migration and invasion of mda-mb-231 breast cancer cells. Chem Biol Interact 2013;204(2):105-15. doi: 10.1016/j.cbi.2013.05.005 16. Reynolds CP, Maurer BJ. Evaluating response to antineoplastic drug combinations in tissue culture models. Methods Mol Med 2005;110:173-83. doi: 10.1385/1-59259-869-2:173 17. Sobolewski C, Cerella C, Dicato M, Ghibelli L, Diederich M. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol 2010;2010:215158. doi: 10.1155/2010/215158 18. Ahmed D, Eide PW, Eilertsen IA, Danielsen SA, Eknaes M, Hektoen M, et al. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis 2013;2:e71. doi: 10.1038/oncsis.2013.35 19. Park C, Kim GY, Kim GD, Choi BT, Park YM, Choi YH. Induction of g2/m arrest and inhibition of cyclooxygenase-2 activity by curcumin in human bladder cancer t24 cells. Oncol Rep 2006;15(5):1225-31. 20. Yuan Z, Guo W, Yang J, Li L, Wang M, Lei Y, et al. Pnas-4, an early DNA damage response gene, induces s phase arrest and apoptosis by activating checkpoint kinases in lung cancer cells. J Biol Chem 2015;290(24):14927-44. doi: 10.1074/jbc.M115.658419 21. Shen H, Perez RE, Davaadelger B, Maki CG. Two 4N Cell-Cycle Arrests Contribute to Cisplatin- Resistance. PLoS ONE. 2013;8(4):e59848. doi:10.1371/journal.pone.0059848. 22. Rebillard A, Jouan-Lanhouet S, Jouan E, Legembre P, Pizon M, Sergent O, et al. Cisplatin-induced apoptosis involves a fas-rock-ezrin-dependent actin remodelling in human colon cancer cells. Eur J Cancer 2010;46(8):1445-55. doi: 10.1016/j.ejca.2010.01.034 23. Huang K, Zhang J, O'Neill KL, Gurumurthy CB, Quadros RM, Tu Y, et al. Cleavage by caspase 8 and mitochondrial membrane association activate the bh3- only protein bid during trail-induced apoptosis. J Biol Chem 2016;291(22):11843-51. doi: 10.1074/jbc.M115.711051 24. Florea AM, Busselberg D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011;3(1):1351-71. doi: 10.3390/cancers3011351 25. Zhong X, Wu B, Pan YJ, Zheng S. Brazilein inhibits survivin protein and mrna expression and induces apoptosis in hepatocellular carcinoma hepg2 cells. Neoplasma 2009;56(5):387-92. 26. Zubair A, Frieri M. Role of nuclear factor-ĸb in breast and colorectal cancer. Curr Allergy Asthma Rep 2013;13(1):44-9. doi:10.1007/s11882-012-0300-5. 27. Miyake N, Chikumi H, Takata M, Nakamoto M, Igishi T, Shimizu E. Rapamycin induces p53- independent apoptosis through the mitochondrial pathway in non-small cell lung cancer cells. Oncol Rep 2012;28(3):848-54. doi:10.3892/or.2012.1855 28. Rathore R, McCallum JE, Varghese E, Florea AM, Busselberg D. Overcoming chemotherapy drug resistance by targeting inhibitors of apoptosis proteins (iaps). Apoptosis 2017;22(7):898-919. doi: 10.1007/s10495-017-1375-1 29. Eldar-Boock A, Polyak D, Scomparin A, Satchi- Fainaro R. Nano-sized polymers and liposomes designed to deliver combination therapy for cancer. Curr Opin Biotechnol 2013;24(4):682-9. doi: 10.1016/j.copbio.2013.04.014 380 Advanced Pharmaceutical Bulletin, 2017, 7(3), 375-380