Benedict s Quantitative Reagent Powder A Quantitative Test for Reducing Sugars

Similar documents
Organic Molecule Composition of Milk: Lab Investigation

Experiment 2 Introduction

CHAPTER 3: MATERIALS AND METHODS

Hardness by EDTA Titration

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

TRATION: ANALYSIS OF SODIUM HYDROXIDE

Aim: To study the effect of ph on the action of salivary amylase. NCERT

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Carbohydrates. Objectives. Background. Experiment 6

Tests for Carbohydrates

Method 7.6 Raw sugar: reducing sugars by the Luff Schoorl method

Biological molecules = Biomolecules = Compounds of life

Experiment: Iodometric Titration Analysis of Ascorbic Acid Chem251 modified 09/2018

QUANTITATIVE TEST (CHEMICAL) FOR SUGARS IN SUGARCANE. Talha Saeed. Faisal Iftikhar. Mam AMMARA AINEE

TRATION: ANALYSIS OF SODIUM HYDROXIDE

Standardization of a Base, Mass Percent of an Acid

EXERCISE 3 Carbon Compounds

Name: Period: Date: Testing for Biological Macromolecules Lab

Change to read: BRIEFING

Purity Tests for Modified Starches

Experiment 20 Identification of Some Carbohydrates

Name... Class... Date...

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya

6 The chemistry of living organisms

Experiment 6: STANDARDIZATION OF A BASE; MASS PERCENT OF AN ACID

Enzyme Development Corporation (212) Penn Plaza, New York, NY

SALIVA TEST Introduction

BIOL 305L Laboratory Four

Feedstuffs Analysis G-22-1 PROTEIN

Determination of Vitamin C in Fruit Juices

Determining the Molecular Mass of an Unknown Acid by Titration

SAC 17 Queen Mary University of London

Chemical Reactions. Carbohydrate Qualitative Analysis: Foundation Lab. 2012, Sharmaine S. Cady East Stroudsburg University

Biomolecule: Carbohydrate

Properties of Alcohols and Phenols Experiment #3

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates

MODULE TOPIC: Percent Composition of Elements using EDTA titration. LESSON PLAN 1: EDTA titration of Calcium in a Citracal Tablet

Experiment 10 Acid-base Titrations: Part A Analysis of vinegar and Part B Analysis of a Carbonate/Bicarbonate mixture

Chemistry Iodometric Determination of Vitamin C

Experiment 7, Analysis of KHP by titration with NaOH Wright College, Department of Physical Science and Engineering

BIOL 347L Laboratory Three

6.02 Uniformity of Dosage Units

BIOL 305L Spring 2019 Laboratory Six

Experiment 27 CARBOHYDRATES. Text Topics and New Techniques. Discussion. Carbohydrate chemistry, qualitative tests for carbohydrates.

Experiment 12 Sugar!

Titration of Synthesized Aspirin A continuation of the aspirin synthesis lab

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Sulfite. Iodate-Iodide Method 1 Method mg/l as SO 3. (or 0 to more than 500 mg/l) Buret Titration. Test preparation.

FIGURE 1. The structure of glucose and ascorbic acid (vitamin C). FIGURE 2. Reduced and oxidized forms of ascorbic acid.

Hardness, Total, Sequential

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP)

OCR (A) Biology A-level

Carbohydrates. Haworth Projections

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point.

Properties of Alcohols and Phenols Experiment #3

BCH302 [Practical] 1

QUALITATIVE TESTS OF CARBOHYDRATE

3016 Oxidation of ricinoleic acid (from castor oil) with KMnO 4 to azelaic acid

Experiment 18: Esters

Take an initial volume reading and record it in your. 11/17/2014 ChemLab - Techniques - Titration

COPPER SOLUTIONS FOR MICROSCOPICAL DETECTION OF GLUCOSE AND FRUCTOSE*

Nitrate/Nitrite Assay Kit Manual Catalog #

» Croscarmellose Sodium is a cross linked polymer of carboxymethylcellulose sodium.

METHOD OF TEST FOR DETERMINATION OF INSOLUBLE RESIDUE OF CARBONATE AGGREGATES

Chemical Tests For Biologically Important Molecules Do not write on this document

MATERIAL SAFETY DATA SHEET

9. Determine the mass of the fat you removed from the milk and record in the table. Calculation:

EXPT 8. Iodimetric Titration of Vitamin C

CELLULASE from PENICILLIUM FUNICULOSUM

HAGEDORN AND JENSEN TO THE DETER- REDUCING SUGARS. MINATION OF LARGER QUANTITIES OF XIV. AN APPLICATION OF THE METHOD OF

Enzymatic Assay of CHOLESTEROL OXIDASE (EC )

Amylase: a sample enzyme

(LM pages 91 98) Time Estimate for Entire Lab: 2.5 to 3.0 hours. Special Requirements

Petrolatum. Stage 4, Revision 1. Petrolatum is a purified semi solid mixture of hydrocarbons obtained from petroleum.

Hydroponics TEST KIT MODEL AM-41 CODE 5406

You should wear eye protection throughout this practical. Amylase is harmful, avoid contact with eyes and skin.

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required.

EXPERIMENT 9 LIPIDS: DETERMINATION OF FAT IN FRENCH FRIES. a fat molecule. Materials Needed

Name: Date: AP Biology LAB : FACTORS INFLUENCING ENZYME ACTIVITY

Complexometric Titration of Calcium in Antacids SUSB-017 Prepared by M. J. Akhtar and R. C. Kerber, SUNY at Stony Brook (Rev 1/13, RFS)

Food acidity FIRST LAB

McMush Lab Testing for the Presence of Biomolecules

Macromolecules Materials

EXPERIMENT 13 QUALITATIVE ANALYSIS

By Authority Of THE UNITED STATES OF AMERICA Legally Binding Document

Carbohydrates Chemical Composition and Identification

Chemistry of food and FOOD GRAINS Build a simple calorimeter. Regina Zibuck

ARE YOU WHAT YOU EAT? TEACHER HANDBOOK

2.1.1 Biological Molecules

Instruction Manual Updated 8/27/2013 Ver. 1.1

Lab 6: Reactions of Organic Compounds and Qualitative Analysis

CCMR Educational Programs

BRIEFING. Nonharmonized attributes: Characters, Microbial Enumeration Tests, and Tests for Specified Microorganisms, and Packing and Storage (USP)

IODINE AFFINITY. 3. Extraction Shells: Paper, 80 x 22 mm (Note 1)

Ch 2 Molecules of life

Preparation of Banana Oil

Transcription:

Benedict s Quantitative Reagent Powder A Quantitative Test for Reducing Sugars SIENTIFI Introduction Benedict s Quantitative Solution (prepared from Benedict s Quantitative Reagent Powder) is a test reagent used for detecting and quantitatively determining the amount of reducing sugars present in a substance. All monosaccharides and some disaccharides are reducing sugars that is, they contain a free aldehyde or α-hydroxyketone group which is capable of reducing copper(ii) or iron(iii) ions. Sucrose, a disaccharide, is a notable exception in that it is not a reducing sugar. oncepts Reducing sugars xidation reduction reactions Functional groups Materials (to make 1 L of solution) opper(ii) sulfate, us 4 5H 2, 18.0 g Beaker, 250-mL Potassium ferrocyanide, K 4 Fe(N) 6 3H 2, 1 g Beaker, 2-L Potassium thiocyanate, KSN, 125 g Boiling stones, 2 3 Sodium carbonate, Na 2 3, 120 g Sodium citrate, Na 3 6 H 5 7 2H 2, 200 g Sugar solution Water, distilled or deionized, 1000 ml Balance Beaker, 100-mL Safety Precautions Buret Erlenmeyer flask, 125-mL Funnel with filter paper Hot plate stirrer with stirring bar Pipet, 10-mL opper(ii) sulfate is a skin and respiratory irritant and is moderately toxic by ingestion and inhalation. Sodium carbonate is mildly toxic by ingestion. Potassium thiocyanate is moderately toxic by ingestion. It emits toxic fumes of cyanide if heated to decomposition or if in contact with concentrated acids. Potassium ferrocyanide is slightly toxic by ingestion. It emits toxic fumes of cyanide if heated to decomposition or if in contact with concentrated acids. Wear chemical splash goggles, chemical-resistant gloves, and a chemical-resistant apron. Wear insulated gloves or use tongs when handling the hot Erlenmeyer flask. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Preparation of Benedict s Quantitative Solution 1. Dissolve 100 g of anhydrous sodium carbonate, 200 g of sodium citrate, and 125 g of potassium thiocyanate in about 800 ml of distilled or deionized water in a 2-L beaker. If necessary, warm the solution to get all of the solids to dissolve. If all of the solids still do not dissolve after warming, filter the solution. 2. Dissolve 18.0 g of copper(ii) sulfate in about 100 ml of distilled or deionized water. Add this solution to the first solution prepared in Step 1. Stir constantly while mixing the two solutions. 3. Prepare a 5% potassium ferrocyanide solution by dissolving 1 g of potassium ferrocyanide in 20 ml of distilled or deionized water. Add 5 ml of the potassium ferrocyanide solution to the mixture from Step 2. Dilute to 1 L with distilled or deionized water. 2016 Flinn Scientific, Inc. All Rights Reserved. 1 Publication No. 10182 061616

Procedure Preliminary Titration Note: The reduction of copper(ii) ions by reducing sugars in an example of a non-stoichiometric reaction one which does not follow a defined pathway and cannot be described by an equation either qualitatively or quantitatively. Therefore, this procedure is only accurate over a small range of sugar concentrations. To obtain accurate results, the volume of sugar added must lie within 6 12 ml per 10 ml of Benedict s Quantitative Solution. Thus, the preliminary titration is performed to ensure that the sugar solution is within this concentration range. 1. Pipet 10 ml of Benedict s Quantitative Solution into a 125-mL Erlenmeyer flask. Add 2 g of anhydrous sodium carbonate and several boiling stones to the flask. Shake the mixture well to suspend the sodium carbonate. 2. Place the flask on a hot plate. Heat the contents in the flask to boiling. Keep the contents of the flask boiling steadily throughout the experiment. If the volume of the solution in the flask is reduced, add distilled or deionized water to keep the volume constant. 3. Add 3 ml of the sugar solution to the flask. If testing monosaccharides, allow the sugar solution to boil for 30 seconds. If testing disaccharides, allow the sugar solution to boil for 1 minute. (Disaccharides are oxidized more slowly than monosaccharides). If the blue color is not removed after boiling for the prescribed amount of time, add another 3 ml of the sugar solution and boil again for the prescribed amount of time. ontinue this process of adding 3-mL aliquots and boiling until the blue color disappears from the solution and the conditions outlined in Step 4 are met. 4. If the blue color is completely removed after adding 6 ml of the sugar solution, dilute the sugar solution in half and repeat Steps 1 3. If the blue color still remains after adding 12 ml of the sugar solution, concentrate the sugar solution (by heating it and allowing some water to evaporate) to half its original volume and repeat Steps 1 3. When the preliminary titration requires between 6 and 12 ml to remove the blue color, the sugar solution is within the proper concentration range to procede. Quantitative Determination of Reducing Sugars 5. Fill a buret with about 15 ml of the correctly diluted (or concentrated) sugar solution prepared in Steps 1 4 above. lamp the buret so that it is positioned above the hot plate. 6. Pipet 10 ml of Benedict s Quantitative Solution into a 125-mL Erlenmeyer flask. Add 2 g of anhydrous sodium carbonate and two boiling stones to the flask. Shake the mixture well to suspend the sodium carbonate. 7. Place the flask on a hot plate situated underneath the buret. Heat the contents in the flask to boiling. Titrate the Benedict s Quantitative Solution in the flask with the sugar solution in the buret. The endpoint of this titration occurs when the blue color disappears from the solution in the flask. Keep the contents of the flask boiling steadily throughout the experiment. If the volume of the flask is reduced, add distilled or deionized water to keep the volume constant. 8. alculate the concentration of the unknown sugar solution using the following procedure and conversion factors. a. Find your sugar in the table below. Note the mass in grams of sugar required to completely reduce 10 ml of Benedict s Quantitative Solution. This is the number of grams of sugar that was titrated into the 10-mL sample of Benedict s Quantitative Solution before reaching the endpoint. 2 2016 Flinn Scientific, Inc. All Rights Reserved.

Sugar Glucose Fructose Lactose Maltose Sucrose* Number of grams required to reduce 10 ml of Benedict s Quantitative Solution 0.0200 g 0.0202 g 0.0271 g 0.0282 g 0.0196 g *Non-reducing sugars, such as sucrose, are estimated by first hydrolyzing the sugar with dilute hydrochloric acid solution into its component monosaccharides, then titrating the hydrolyzed mixture. c.record the number of ml of sugar solution required to reach the endpoint. c. Take the preliminary titration into account. For example, if the unknown solution had to be diluted, divide the volume required to reach the endpoint by 2. d. Divide the mass of sugar (Step 1) by the adjusted volume (Step 3) to determine the concentration of the sugar solution. Your answer will be in g/ml. onvert to mg/ml. Example alculation Suppose you have a lactose solution of unknown concentration. The preliminary titration required that the original solution be diluted in half. The diluted sugar solution was then titrated and 8.20 ml were required to reach the endpoint. a. According to the table above, 0.0271 g of lactose is required to completely reduce 10 ml of Benedict s Quantitative Solution. Therefore, 0.0271 g of lactose was titrated into the 10-mL sample of Benedict s Quantitative Solution before reaching the endpoint. b. The volume required to reach the endpoint as read off the buret was 8.20 ml. c. Taking the preliminary titration into account, the volume required to reach the endpoint (8.20 ml) must be divided in half. Therefore, 4.10 ml of the original lactose solution was actually required to reach the endpoint. d. By dividing the mass of lactose (Step 1) by the adjusted volume (Step 3), the concentration in g/ml of the unknown lactose solution can be determined: 0.0271 g/ 4.10 ml = 0.00661 g/ml. onverting to mg/ml gives 6.61 mg/ml. Disposal Please consult your current Flinn Scientific atalog/reference Manual for general guidelines and specific procedures governing the disposal of laboratory waste. Flush all solutions down the drain with an excess of water according to Flinn Suggested Disposal Method #26b. onnecting to the National Standards This laboratory activity relates to the following National Science Education Standards (1996): Unifying oncepts and Processes: Grades K 12 Evidence, models, and explanation ontent Standards: Grades 5 8 ontent Standard B: Physical Science, properties and changes of properties in matter ontent Standards: Grades 9 12 ontent Standard B: Physical Science, structure and properties of matter, chemical reactions 3 2016 Flinn Scientific, Inc. All Rights Reserved.

Tips Near the endpoint, the solution will become cloudy and begin to lose its blue color. Begin titrating more slowly at this point, allowing between 30 seconds to 1 minute (as in Step 3 of the preliminary titration) between additions of sugar solution to allow the Benedict s Quantitative Solution and the sugar solution to react completely. The endpoint is when the blue color completely disappears from the solution and only a white cloudy solution remains. Stir the sugar solution frequently, especially after each addition of sugar solution to the flask. A stir bar may be used for constant stirring. The calculations shown here apply only to sugar solutions containing a single sugar, such as lactose or glucose. The calculations for sugar solutions containing multiple sugars would need to take into account the conversion factors for the various sugars and ratios at which they are present. Discussion Benedict s Quantitative Solution allows for the quantitative determination of reducing sugars. It is based on the redox reaction between copper(ii) ions and reducing sugars. The copper(ii) ions in Benedict s solution impart a characteristic blue color to the solution. When added to another solution containing a reducing sugar, the blue copper(ii) ions are reduced by the reducing sugar, generally resulting in the formation of a precipitate and a color change. A reducing sugar is a sugar that contains a free aldehyde or α-hydroxyketone group that is capable of reducing iron(iii) or copper(ii) ions. In a reaction with iron(iii) or copper(ii) ions, an aldehyde is oxidized to a carboxylic acid (see Equation 1), while an α-hydroxyketone is oxidized to a diketone (see Equation 2). All monosaccharides and some disaccharides are reducing sugars. H aldehyde + u 2+ alkali + u 2 (s) red carboxylic acid precipitate Equation 1 H + u 2+ alkali + u 2 (s) Equation 2 - hydroxyketone diketone red precipitate Examples of reducing sugars include glucose, fructose, maltose, galactose, and lactose. Notably, sucrose is not a reducing sugar. Benedict s Quantitative Solution contains copper(ii) sulfate, sodium citrate, sodium carbonate, potassium thiocyanate, and potassium ferrocyanide. Each plays a role in the determination of reducing sugars: opper(ii) sulfate provides the copper(ii) ions that are reduced by the reducing sugar. Sodium carbonate provides a basic environment, which is necessary for the redox reaction to occur. If the carbonate ions from the sodium carbonate were to combine with the copper(ii) ions from the copper(ii) sulfate, insoluble copper(ii) carbonate would form. To prevent the formation of a copper(ii) carbonate precipitate, sodium citrate is added. The citrate ions chelate with the copper(ii) ions before the copper(ii) ions can precipitate with the carbonate ions. The reducing sugar reduces the copper(ii) ions to cuprous ions, which combine with the thiocyanate ions from the potas sium thiocyanate to form white cuprous thiocyanate. This makes the endpoint of the titration, the transition from blue to white, readily visible. The small amount of potassium ferrocyanide prevents any reoxidation of the cuprous ions. 4 2016 Flinn Scientific, Inc. All Rights Reserved.

Reference Frais, F. Practical Biochemistry: An Introductory ourse; Butterworths: London, 1972; pp 30 32, 150 151. Materials for Benedict s Quantitative Solution are available from Flinn Scientific, Inc. atalog No. Description S0068 Sodium itrate Dihydrate, 500 g S0051 Sodium arbonate, Anhydrous, 500 g P0090 Potassium Thiocyanate, 500 g 0102 opper(ii) Sulfate, Pentahydrate, 100 g P0053 Potassium Ferrocyanide, Trihydrate, 100 g B0195 Benedict s Quantitative Solution, 100 ml G0024 Glucose Solution AP1087 Magnetic Stirrer Hot Plate GP1080 Buret, Straight Bore, Glass Stopcock, 50-mL onsult your Flinn Scientific atalog/reference Manual for current prices. 5 2016 Flinn Scientific, Inc. All Rights Reserved.