Regional difference in cancer detection rate in prostate cancer screening by a local municipality in Japan

Similar documents
Questionnaire. 1) Do you see men over the age of 40? 1. Yes 2. No

The Evolving Role of PSA for Prostate Cancer. The Evolving Role of PSA for Prostate Cancer: 10/30/2017

Risk Factors for Loss to Follow-up During Active Surveillance of Patients with Stage I Seminoma

PROSTATE CANCER SCREENING: AN UPDATE

MISSING IN ACTION : Ethnic Groups in Cancer Screening

Recent decline in prostate cancer incidence in the United States, by age, stage, and Gleason score

Epidemiologic characteristics of cervical cancer in Korean women

Association between obesity, prostate-specific antigen level and prostate-specific antigen density in men with a negative prostate biopsy

Prediction of Cancer Incidence and Mortality in Korea, 2018

The Diabetes Epidemic in Korea

Prostate-Specific Antigen (PSA) Test

Urological Society of Australia and New Zealand PSA Testing Policy 2009

PSA Screening and Prostate Cancer. Rishi Modh, MD

Long-term Survival of Extremely Advanced Prostate Cancer Patients Diagnosed with Prostate-specific Antigen over 500 ng/ml

Practice Patterns of Korean Urologists for Screening and Managing Prostate Cancer according to PSA Level

Prostate cancer screening: Attitudes and practices of family physicians in Ontario

Nomogram for Prediction of Prostate Cancer with Serum Prostate Specific Antigen Less than 10 ng/ml

EUROPEAN UROLOGY 58 (2010)

A nomogram based on age, prostate-specific antigen level, prostate volume and digital rectal examination for predicting risk of prostate cancer

Contribution of prostate-specific antigen density in the prediction of prostate cancer: Does prostate volume matter?

RESEARCH ARTICLE. Cancer Prevalence in Aichi, Japan for 2012: Estimates Based on Incidence and Survival Data from Population- Based Cancer Registry

Bone Scanning Who Needs it Among Patients with Newly Diagnosed Prostate Cancer?

Screening for Prostate Cancer with the Prostate Specific Antigen (PSA) Test: Recommendations 2014

PSA Screening for Prostate Cancer at Western Medical Clinic Kardy Fedorowich University of Manitoba Max Rady College of Medicine

Since the beginning of the prostate-specific antigen (PSA) era in the. Characteristics of Insignificant Clinical T1c Prostate Tumors

Establishment of Korean prostate cancer database by the Korean Urological Oncology Society

Prediction of Cancer Incidence and Mortality in Korea, 2013

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

Active Surveillance (AS) is an expectant management. Health Services Research

Nomogram using transrectal ultrasound-derived information predicting the detection of high grade prostate cancer on initial biopsy

Examining the Efficacy of Screening with Prostate- Specific Antigen Testing in Reducing Prostate Cancer Mortality

Cancer. Description. Section: Surgery Effective Date: October 15, 2016 Subsection: Original Policy Date: September 9, 2011 Subject:

Prognostic factors of prostate cancer mortality in a Finnish randomized screening trial

Title: Prostate Specific Antigen (PSA) for Prostate Cancer Screening: A Clinical Review

EUROPEAN UROLOGY 62 (2012)

White Paper: To Screen or Not to Screen?

False-positive screening results in the European randomized study of screening for prostate cancer

US Preventive Services Task Force prostate-specific antigen screening guidelines result in higher Gleason score diagnoses

RESEARCH ARTICLE. Comparison between Overall, Cause-specific, and Relative Survival Rates Based on Data from a Population-based Cancer Registry

Response to United States Preventative Services Task Force draft PSA Screening recommendation: Donald B. Fuller, M.D. Genesis Healthcare Partners

Predictors of Palliative Therapy Receipt in Stage IV Colorectal Cancer

Prostate-Specific Antigen Testing in Tyrol, Austria: Prostate Cancer Mortality Reduction Was Supported by an Update with Mortality Data up to 2008

NIH Public Access Author Manuscript World J Urol. Author manuscript; available in PMC 2012 February 1.

10/2/2018 OBJECTIVES PROSTATE HEALTH BACKGROUND THE PROSTATE HEALTH INDEX PHI*: BETTER PROSTATE CANCER DETECTION

Correspondence should be addressed to Taha Numan Yıkılmaz;

Questions and Answers about Prostate Cancer Screening with the Prostate-Specific Antigen Test

Extent of Prostate-Specific Antigen Contamination in the Spanish Section of the European Randomized Study of Screening for Prostate Cancer (ERSPC)

Controversies in Prostate Cancer Screening

Original Article - Urological Oncology. Ho Gyun Park 1, Oh Seok Ko 1, Young Gon Kim 1, Jong Kwan Park 1-4

ASJ. Magnification Error in Digital Radiographs of the Cervical Spine Against Magnetic Resonance Imaging Measurements. Asian Spine Journal

Screening program of prostate cancer at Tokai University Hospital: Characterization of prostate-specific antigen measurement

PSA-based Early Detection in the US:

Prostate Cancer Screening Guidelines in 2017

IJC International Journal of Cancer

Prostate Cancer Update 2017

Relation between the Peripherofacial Psoriasis and Scalp Psoriasis

Clinical Policy Title: Prostate-specific antigen screening

Dong Hoon Lee, Ha Bum Jung, Seung Hwan Lee, Koon Ho Rha, Young Deuk Choi, Sung Jun Hong, Seung Choul Yang and Byung Ha Chung *

Reducing overtreatment of prostate cancer by radical prostatectomy in Eastern Ontario: a population-based cohort study

Best Papers. F. Fusco

INTRODUCTION PATIENTS AND METHODS. Jpn J Clin Oncol 2007;37(10) doi: /jjco/hym098

Annual Report to the Nation on the Status of Cancer, , Featuring Survival Questions and Answers

Pre-test. Prostate Cancer The Good News: Prostate Cancer Screening 2012: Putting the PSA Controversy to Rest

Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea

Weekly Administration of Docetaxel in Patients with Hormonerefractory Prostate Cancer: a Pilot Study on Japanese Patients

Saturation Biopsy for Diagnosis and Staging and Management of Prostate Cancer

Prostate-Specific Antigen testing in men between 40 and 70 years in Brazil: database from a check-up program

Saturation Biopsy for Diagnosis and Staging and Management of Prostate Cancer

The Huashan risk calculators performed better in prediction of prostate cancer in Chinese population: a training study followed by a validation study

USA Preventive Services Task Force PSA Screening Recommendations- May 2018

The burden of prostate cancer in Asia: prevalence & screening

Mr Declan Cahill Consultant Urological Surgeon The Royal Marsden

european urology 55 (2009)

The Change of Prostate Cancer Treatment in Korea: 5 Year Analysis of a Single Institution

1. Introduction. Correspondence should be addressed to Zhongcheng Xin; and Liqun Zhou;

Trends in Participation Rates for the National Cancer Screening Program in Korea,

(2015) : 85 (5) ISSN

The Impact of MRI-TRUS Cognitively Targeted Biopsy on the Incidence of Pathologic Upgrading After Radical Prostatectomy

Racial variation in receipt of quality radiation therapy for prostate cancer

Quality-of-Life Effects of Prostate-Specific Antigen Screening

#1 cancer. #2 killer. Boulder has higher rate of prostate cancer compared to other areas surrounding Rocky Flats

PSA To screen or not to screen? Darrel Drachenberg, MD, FRCSC

PREVALENCE OF PROSTATE CANCER AMONG HYPOGONADAL MEN WITH PROSTATE-SPECIFIC ANTIGEN LEVELS OF 4.0 ng/ml OR LESS

A new classification system of nasal contractures

Health Screening Update: Prostate Cancer Zamip Patel, MD FSACOFP Convention August 1 st, 2015

α-blocker Monotherapy and α-blocker Plus 5-Alpha-Reductase Inhibitor Combination Treatment in Benign Prostatic Hyperplasia; 10 Years Long-Term Results

Screening for Prostate Cancer US Preventive Services Task Force Recommendation Statement

Developing a new score system for patients with PSA ranging from 4 to 20 ng/ ml to improve the accuracy of PCa detection

PSA and the Future. Axel Heidenreich, Department of Urology

Dichotomous Estimation of Prostate Volume: A Diagnostic Study of the Accuracy of the Digital Rectal Examination

Epidemiology in Texas 2006 Annual Report. Cancer

PROSTATE CANCER Amit Gupta MD MPH

Factors Influencing the Prevalence of Amblyopia in Children with Anisometropia

Early Experience With Active Surveillance in Low-Risk Prostate Cancer Treated

Although the test that measures total prostate-specific antigen (PSA) has been

Predictive Performance Evaluation

Temporal Trends in Demographics and Overall Survival of Non Small-Cell Lung Cancer Patients at Moffitt Cancer Center From 1986 to 2008

Preoperative Gleason score, percent of positive prostate biopsies and PSA in predicting biochemical recurrence after radical prostatectomy

Relationship between initial PSA density with future PSA kinetics and repeat biopsies in men with prostate cancer on active surveillance

Evaluation of prognostic factors after radical prostatectomy in pt3b prostate cancer patients in Japanese population

Transcription:

Original Article Prostate Int 14;2(1):19- http://dx.doi.org/.12954/pi.135 P ROSTATE INTERNATIONAL Regional difference in cancer detection rate in prostate cancer screening by a local municipality in Japan Chie Koizumi, Takahiro Suetomi 1, Taeko Matsuoka 1, Atsushi Ikeda 1, Tomokazu Kimura 1, Mizuki Onozawa 2, Jun Miyazaki 1, Koji Kawai 1, Hideto Takahashi 3, Hideyuki Akaza 4, Hiroyuki Nishiyama 1 School of Medicine, University of Tsukuba, Tsukuba, Japan 1 Department of Urology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan 2 Department of Urology, Tokyo-Kita Social Insurance Hospital, Tokyo, Japan 3 Department of Epidemiology, University of Tsukuba Faculty of Medicine, Tsukuba, Japan 4 Department of Strategic Investigation on Comprehensive Cancer Network, Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan Purpose: We conducted the present retrospective study to elucidate regional differences in the quality of secondary screening in the prostate cancer (PCA) screening program by a local municipality in Japan. Methods: Of 115,881 men who attended the PCA screening in 36 municipalities between 1 and 11, a total of 6,99 men consulted hospitals for secondary screening. The cancer detection rate () at the secondary screening was calculated, and municipalities were classified into three s according to the age-adjusted observed-to-expected ratios of. Of the secondary screening facilities, hospitals in Ibaraki Prefecture screening less than patients were classified as I facilities and the others as II facilities. Results: Overall, 2,3 of 6,99 secondary screening patients underwent prostate biopsy, and 1,73 men were diagnosed with PCA. The overall at the secondary screening was 17.6%, but it varied from 5.6% to 34.4% among municipalities. Although there were no significant differences in age and prostate-specific antigen (PSA) distribution among the three s, a significantly higher rate of patients in low municipalities visited I facilities. Both biopsy rates and s of secondary screening at II facilities were significantly higher than those of I facilities (P=.1). Multivariate analysis showed that the secondary screening at II facilities as well as age and PSA levels were independent contributing factors for PCA detection. Conclusions: s at secondary screening varied widely among municipalities in Ibaraki Prefecture. Variation in s was associated with biopsy rates. Keywords: Prostate neoplasms, Prostate-specific antigen, Early detection of cancer INTRODUCTION Prostate cancer (PCA) is one of the common malignancies in men. The number of PCA patients increasing, and PCA is expected to become the second most frequent male cancer in Japan. Further, the PCA mortality rate will increase by 2.8 folds in compared to [1]. This increase of prevalence rate is affected by various factors including age of the population, food, genetic factors, and also screening systems using prostate-specific antigen (PSA). PCA was generally identified by metastatic symptoms before the PSA era, but the introduction of PSA made it possible to identify PCA in the early stages. Generally, prevention and early detection reduce the mortality rate of malignancies. For this reason, national population-based screening systems have been established in Japan for five major malignancies including lung, stomach, breast, Corresponding author: Hiroyuki Nishiyama Department of Urology, University of Tsukuba Faculty of Medicine, 2-1-1 Amakubo, Tsukuba 5-5, Japan E-mail: nishiuro@md.tsukuba.ac.jp / Tel: +81-29-853-3223 / Fax: +81-29-853-8854 Submitted: 21 December 13 / Accepted after revision: 4 February 14 Copyright 14 Asian Pacific Prostate Society (APPS) This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3./) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. http://p-international.org/ pissn: 2287-8882 eissn: 2287-93X 19

Koizumi, et al. Regional difference in cancer detection rates in PSA screening colon, and cervical cancer. PSA-based screening systems for PCA have not been established by the Japanese government, but mostly administered by municipal governments since the 199s. The Japanese Urological Association (JUA) recommends PSA-based screening for men over 5 years old, and also further examinations for patients with more than 4 ng/ml or ageadjusted cut off levels of PSA to assess the presence of PCAs [2]. Further examinations including digital rectal examinations, transrectal ultrasonography, blood examinations, magnetic resonance imaging, and/or prostate biopsy are performed as secondary screening. The definitive diagnosis of PCA is made by prostate biopsy, although the actual indication for a biopsy largely depends on decision-making practices at each facility. The cancer detection rate () is an important indicator to evaluate screening systems for malignancies. of PSAbased screening is known to be higher than those of national screening systems for the other five major cancers. According to a survey by the Japan Cancer Society, the of PCA screening was.5% in 11, whereas those of the other five cancer screenings were.4% to.22%. However, large regional differences in the s of PCA screening were reported; the 5 annual report of the Japanese Foundation for Prostate Research (JFPR) revealed that the among men attending a primary screening varied from.% to 5.1% in 218 municipalities throughout Japan [3]. Multiple factors, including the age distribution of the target population, exposure rates of PSA screening, rate of persons receiving secondary screening, quality of secondary screening, and others might be responsible for the variability. Comprehensive analysis of these factors might reveal strategies to improve the, but this type of information is limited in Japan. Improvement of is considered to be a common issue in most of Asian countries, where PSA exposure rates are very lower than Western countries [4]. In the present study, we extensively analyzed factors contributing to regional differences in s at the secondary screening using the practice-based, retrospective data of 115,881 men who participated in PSA-based screening programs of Ibaraki Prefecture during the past years. Ibaraki Prefecture is located about km from Tokyo. To our knowledge, this is the first study to examine factors responsible for regional differences in s of PCA screening programs by municipal governments in Japan. MATERIALS AND METHODS 1. PSA-based screening program in Ibaraki Prefecture PSA screening was started in Ibaraki Prefecture in 1999, and 36 of 44 municipalities in Ibaraki Prefecture have participated in the PSA-based screening program. In the first screening, the serum PSA level alone with a cut off of 4. ng/ml was used, and notifications for further examinations were mailed to participants by the Ibaraki Health Service Association (IHSA). When the participants were referred to hospital or clinics for secondary screening, each facility sent the results of further examinations to IHSA using the screening report form. The available information from the screening report including examination date, patient age, name of the facility, PSA levels at secondary screenings, and the results of a prostate biopsy if performed. The percentage of individuals referred for secondary screening and were aggregated annually for each municipality by IHSA. We obtained permission of IHSA committee for use of anonymised data on PCA screening in the present study. 2. Patients and facilities Because the aggregate screening data is available from 1, we analyzed the results of 115,881 men who attended a PSAbased screening for the first time between 1 and 11. During this period, as a result of municipal mergers, 84 municipalities in Ibaraki Prefecture were integrated into 44 municipalities. Therefore, we adjusted the data of each municipality according to the consequence of these municipal mergers. In the present study, we excluded men who had previously attended the PSA-based screening program of Ibaraki Prefecture. Among 115,881 men, 8,473 men (7.3%) had a serum PSA level higher than 4. ng/ml at the first screening, and finally a total of 6,99 (72.%) received the secondary screening. The profiles of these 6,99 patients are presented in Table 1. During the study period, a total of 376 hospitals or clinics conducted the secondary screening. Of them, 299 facilities were located in Ibaraki Prefecture and the remaining 77 facilities were located outside of Ibaraki Prefecture. We divided these facilities into two s according to number of patients screened during the study period. The hospitals or clinics with less than patients in years were classified as I facilities. Those with or more patients and those located outside Ibaraki Prefecture were classified as II facilities. Thus, 24 facilities and 136 facilities were classified as I and II facilities, respectively. 3. Statistical analysis at secondary screening, the rates of prostate biopsies performed and positive biopsy rates were calculated using the following equations: at secondary screening =number of PCA patients/ number of patients who received secondary screening http://dx.doi.org/.12954/pi.135

Vol. 2 / No. 1 / March 14 Table 1. Participants profile in secondary screening Variable Value No. of municipality 36 No. of secondary screenees 6,99 Biopsied cases, n (%) 2,3 (38.) No. of prostate cancer 1,73 Positive biopsy proportion 46.3% in secondary screening 17.6% Distribution of age, n (%) 59 44 (7.2) 6 69 2,631 (43.1) 7 79 2,564 (42.) 8 464 (7.6) Distribution of PSA, n (%) >4, 6 3,9 (49.3) >6, 1,733 (28.4) >, 864 (14.2) >, 5 333 (5.5) >5 16 (2.6) Secondary screenees, n (%) facilities a) 2,17 (33.1) facilities b) 4,8 (66.9), cancer detection rate; PSA, prostate-specific antigen. a) Hospitals or clinics in Ibaraki prefecture with less than patients. b) Hospitals or clinics with or more patients in Ibaraki prefecture, and those located outside Ibaraki prefecture. Prostate biopsy rate = number of patients who underwent prostate biopsy/number of patients who received secondary screening Positive biopsy rate = number of PCA patients/number of patients who underwent prostate biopsy The age-adjusted observed-expected (O/E) ratio of PCA patients in each municipality was calculated by the number of screening detected PCA patients in the municipality divided by its expected number. The expected number of PCA patients was calculated by applying the age-specific s in Ibaraki Prefecture to the age-specific populations in each municipality. The age-specific s in Ibaraki Prefecture was calculated from accumulated PCA screening data between 1 and 11. We classified 36 municipalities into three regions (high, moderate, low) by tertiles of the OER. Differences in the factors related to s at secondary screening (age, serum PSA level, type of facility) were examined by a simple logistic regression (Table 2). Differences in, biopsy rate, and positive biopsy rate between facilities were examined by a chi-square test. Multivariate analyses using a logistic regression model were performed to examine the contributing factors associated with cancer detection (Table 2). P-values of less than.5 were considered statistically significant. All statistical analyses were performed using the soft- Table 2. The factors related with cancer detection rates at secondary screening Variable OR (95% CI) P-value Age (yr) <.1 <7 1 7 1.28 (1.11 1.47) Serum PSA level (ng/ml) <.1 4 6 1 6 5.79 (4.9 6.86) Facilities <.1 1 2.14 (1.82 2.54) OR, odds ratio; CI, confidence interval; PSA, prostate-specific antigen. ware package JMP ver...2 (SAS Institute, Cary, NC, USA). RESULTS Among 6,99 men who received the secondary screening, a total of 2,3 (38.%) underwent prostate biopsy, and 1,73 men were finally diagnosed with PCA (Table 1). The of all participants in the secondary screening was 17.6%. When s were calculated by municipality, large differences in s were noted: they varied from 5.6% to 35.%. Even when s in each municipality were adjusted by age-population, the age-adjusted O/E ratios of PCA patients varied from.39 to 2.4, as shown in Fig. 1. To examine the possible factors contributing to the difference in s, 36 municipalities were divided into three s according to their O/E ratios. Thus, 14, 11, and 11 municipalities were classified as high, moderate, and low s (Fig. 1), and their s were 22.8%, 17.%, and 12.8%, respectively. Among the three s divided by, there was no significant difference in the distribution of age and PSA (Fig. 2). On the other hand, more patients belonging to the moderate and low s rather than the high tended to visit I facilities (P=.5 and P=.1, respectively) Next, we compared qualities of secondary screening between s I and II facilities. As shown in Fig. 3A, the of II facilities was significantly higher than that of I facilities in total (21.% and.7%, respectively; P=.1). When participants were divided into high, moderate, and low s, similar significant differences in s between s I and II facilities were observed in all three s (Fig. 3). The rates of prostate biopsies were significantly different between s I and II facilities, although there were no significant differences in positive biopsy rates. Multivariate analysis demonstrated that I/II facilities, as well as age and PSA levels, were independent factors for http://dx.doi.org/.12954/pi.135 21

Koizumi, et al. Regional difference in cancer detection rates in PSA screening 3. 2.5 O/E ratio 2. 1.5 1..5. High Low No. of municipality 14 11 11 No. of patients 2,9 1,929 2,61 Fig. 1. The observed/expected number of prostate cancer (PCA) patients who attended secondary screening in each municipality. Thirty-six municipalities were divided to three s according to the observed-to-expected (O/E) ratios of numbers of PCA., cancer detection rate. (%) 9 8 7 6 5 4 <8 yr 7-79 yr 6-69 yr <59 yr (%) 9 8 7 6 5 4 4<PSA 6 ng/ml 6<PSA ng/ml <PSA ng/ml <PSA 5 ng/ml 5<PSA ng/ml (%) 9 8 7 6 5 4 * facilities facilities High Low A High Low B High Low C Fig. 2. Distribution of patient age (A), serum prostate-specific antigen (PSA) levels (B), and referral facilities (C) among three municipality s divided by cancer detection rate (). Significant differences in referral facility among the three s were noted (C). There was no significant difference in patient age (A) and serum PSA level (B). *P<.5. P<.1. Cancer detection rates (%) 15 5 All munisipalities High Low A Prostate biopsy rates (%) 15 5 All munisipalities High Low B Positive biopsy rates (%) 15 5 All munisipalities High Low C Fig. 3. Differences in cancer detection rate () (A), biopsy rate (B), and positive biopsy rate (C) between s I and II facilities. Significant differences in (A) and biopsy rate (B) were noted between s I and II facilities. There was no significant difference in positive biopsy rate (C)., not significant. P<.1. in secondary screening of participants with high PSA levels, as shown in Table 2. To elucidate why the s in s I and II facilities were different, participants were stratified by PSA levels (Fig. 4). Interestingly, the s of II facilities increased according to PSA levels in a similar pattern in all three municipality s, whereas the s in the I facilities were significantly lower than the II facilities for participants with more than ng/ml PSA in moderate and low municipality s. In high municipality s, the s for participants with ng/ml of PSA 22 http://dx.doi.org/.12954/pi.135

Vol. 2 / No. 1 / March 14 (%) 9 8 7 6 5 4 >4, 6 >6, >, >, 5 >5 >4, 6 >6, >, >, 5 >5 >4, 6 >6, >, >, 5 >5 High Low facilities facilities Serum PSA level (ng/ml) Fig. 4. Difference in cancer detection rate () between s I and II facilities according to serum prostate-specific antigen (PSA) levels. P<.1. were significantly different between s I and II facilities. DISCUSSION In the present study, we analyzed the results of 6,99 men who underwent secondary screening in the practice-based PCA screening program of Ibaraki Prefecture and demonstrated that s at the secondary screening varied largely among municipalities from 5.6% to 35.%. These variations were also observed when the age distributions were adjusted. Similarly, the 5 annual report of JFPR revealed that s at the primary screening varied from % to 5.1% among 218 municipalities over Japan [3]. These data indicate that this variation of at secondary screening is an important issue for PCA screening not only in Ibaraki Prefecture but also all over Japan. Generally, s at the secondary screening could be affected by several factors including age distribution, PSA distribution, and the rate of prostate biopsies performed. To elucidate the factors contributing to the wide variations of might provide crucial information for improving at secondary screening. In the present study, we demonstrated several important findings. First, significant differences in s were observed between facilities at the secondary screening. The s in I facilities, which had accumulated fewer than participants in years, were approximately half of those in II facility. This tendency was observed in all three municipality s. Furthermore, the multivariate analysis demonstrated a significant association between facility s at secondary screening and s, indicating that it was an independent predicting factor for PCA detection as well as age and serum PSA levels. The second important finding was that II facilities demonstrated a significantly higher rate of prostate biopsy rather than I facilities in accordance with s between facility s, but a similar rate of positive biopsies. In the European Randomized Study of Screening for Prostate Cancer (ERSPC), Otto et al. [5] revealed that differences in protocol rather than a true underlying incidence of PCA could contribute to the high variation of among European countries, although it was not restricted to biopsy rate. These observations suggested that the variations in s were associated with biopsy rates. Several factors have been reported to be related to the rates of prostate biopsy for patients with high PSA. In the United States, significant variations of accessibility or compliance to PCA screening were observed among race, ethnicity, and residency. Fedewa et al. [6] reported that insurance status was strongly associated with PCA disease severity and concluded that the lack of access to services such as PSA screening might be responsible for the variations of disease severity. Also, in another large screening trial, non-hispanic black men had significantly lower access to diagnostic care after a positive PSA screening [7]. A nationwide multicenter study in Korea revealed a significantly lower incidence of biopsy in local clinics than in general hospitals (21.6% vs. 66.2%) [8]. In Japan, where a national health insurance system is established, a disadvantage from insurance status can be almost negligible. One plausible explanation for variations in biopsy rates is that accessibility to specialized care differs after positive PSA screening. These data suggested the necessity of establishing a referral system for biopsy in the screening program. Another possible explanation for wide variations of prostate biopsy is a more conservative attitude toward making the de- http://dx.doi.org/.12954/pi.135 23

Koizumi, et al. Regional difference in cancer detection rates in PSA screening cision for a prostate biopsy in general practice compared to an academic setting. In ERSPC, the average rate complying with a biopsy recommendation is as high as 85.6% [9]. Although not necessarily directly comparable, the overall biopsy rate at the secondary screening in the present study was limited to 38%. This biopsy rate was also somewhat lower than the JFPR data. According to the 5 JFPR report, the overall biopsy rate of second screening participants was 51.9%. But, importantly, the JFPR report also showed a large regional difference in biopsy rates at secondary screening; it differed from % to % among municipalities. A similar difference in compliance with the biopsy recommendation was observed in an active surveillance program. The reported first biopsy rate was as high as 8% in the PRIAS study []. In contrast, Lee et al. [11] demonstrated a 53% compliance rate within one year in a U.S. Veterans Affairs population. Multiple factors are supposed to underlie the lower compliance in general practice, such as less patient education and poorer physician-patient communication. The present retrospective study has several limitations. The detailed information such as procedure of informed consent, the intensity of recommendation for prostate biopsy and biopsy strategy in each facility was lacking. Those factors can directly affect of each facility. In addition, unfortunately in Ibaraki Prefecture, the reliable information on regional difference in exposure rate for PSA screening was not available. If regional difference of PSA exposure rate exists, it can affect regional s in PCA screening. Next, biopsy rate and were estimated on screening reports from facilities where PSA-positive patients had first visited. Therefore, it is possible that some patients transferred to another hospital for further evaluation. This may result in underestimation of biopsy rate and. This database does not include detailed information on patients such as comorbidity or other reasons to avoid biopsy. Finally, if patients and physicians decided to follow up a serum PSA at the first visit, follow-up data was not available in the present study. Therefore, there is a possibility that some nonbiopsied patients were finally diagnosed with PCA at further follow-up. In conclusion, we demonstrated that varied greatly among municipalities, and that the variation in s was associated with biopsy rates but not a difference in target populations among municipalities in Ibaraki Prefecture. The different decisions made for prostate biopsy are considered to be responsible for the variation of biopsy rates. CONFLICT OF INTEREST No potential conflict of interest relevant to this article was reported. ACKNOWLEDGMENTS The authors deeply thank the Ibaraki Health Service Association for kind help in analyzing data of the PCA screening program of Ibaraki Prefecture. REFERENCES 1. Kuroishi T, Hirose K, Tominaga Y. Prediction of the future mortality of cancer in Japan (in Japanese). In: Oshima A, Kuroishi T, Tajima K, editors. White paper on cancer and statistics- incidence/mortality/prognosis-4. Tokyo: Shinohara- Shuppan; 4:219-34. 2. Committee for Establishment of the Guidelines on Screening for Prostate Cancer; Japanese Urological Association. Updated Japanese Urological Association Guidelines on prostatespecific antigen-based screening for prostate cancer in. Int J Urol ;17:8-8. 3. The Japanese Foundation for Prostate Research. The Annual Report 5. Tokyo; The Japanese Foundation for Prostate Research: 9. 4. Namiki M, Akaza H, Lee SE, Song JM, Umbas R, Zhou L, et al. Prostate Cancer Working Group report. Jpn J Clin Oncol ;4 Suppl 1:i7-5. 5. Otto SJ, Moss SM, Maattanen L, Roobol M, Zappa M, Nelen V, et al. PSA levels and cancer detection rate by centre in the European Randomized Study of Screening for Prostate Cancer. Eur J Cancer ;46:53-6. 6. Fedewa SA, Etzioni R, Flanders WD, Jemal A, Ward EM. Association of insurance and race/ethnicity with disease severity among men diagnosed with prostate cancer, National Cancer Database 4-6. Cancer Epidemiol Biomarkers Prev ;19:2437-44. 7. Barocas DA, Grubb R 3rd, Black A, Penson DF, Fowke JH, Andriole G, et al. Association between race and follow-up diagnostic care after a positive prostate cancer screening test in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer 13;119:2223-9. 8. Chung MS, Lee SH, Lee DH, Kim SJ, Kim CS, Lee KS, et al. Practice patterns of Korean urologists for screening and managing prostate cancer according to PSA level. Yonsei Med J 12;53:1136-41. 9. Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, 24 http://dx.doi.org/.12954/pi.135

Vol. 2 / No. 1 / March 14 Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 9;36:13-8.. Bul M, Zhu X, Valdagni R, Pickles T, Kakehi Y, Rannikko A, et al. Active surveillance for low-risk prostate cancer worldwide: the PRIAS study. Eur Urol 13;63:597-63. 11. Lee EK, Baack J, Penn H, Bromfield CT, Duchene DA, Thrasher JB, et al. Active surveillance for prostate cancer in a veteran population. Can J Urol ;17:5429-35. http://dx.doi.org/.12954/pi.135