Systolic and Diastolic Currents of Injury

Similar documents
ECG and Cardiac Electrophysiology

Sheet 5 physiology Electrocardiography-

PART I. Disorders of the Heart Rhythm: Basic Principles

ECG SIGNS OF HYPERTROPHY OF HEART ATRIUMS AND VENTRICLES

Ameen Alsaras. Ameen Alsaras. Mohd.Khatatbeh

Department of medical physiology 7 th week and 8 th week

Medical Electronics Dr. Neil Townsend Michaelmas Term 2001 ( The story so far

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are :

Ask Mish. EKG INTERPRETATION part i

Advanced Multi-Layer Speckle Strain Permits Transmural Myocardial Function Analysis in Health and Disease:

- why the T wave is deflected upwards although it's a repolarization wave?

Principles and Applications of Electrical Circuits and Signal Theories in EP

Cardiovascular System Notes: Heart Disease & Disorders

Farah Khreisat. Raghad Abu Jebbeh. Faisal Mohammad. 1 P a g e

Lab Activity 24 EKG. Portland Community College BI 232

Cardiac physiology. b. myocardium -- cardiac muscle and fibrous skeleton of heart

5- The normal electrocardiogram (ECG)

ECG (MCQs) In the fundamental rules of the ECG all the following are right EXCEP:

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

Mathematical modeling of ischemia and infarction

12 Lead ECG Interpretation: Color Coding for MI s

A few new tools for better detection and understanding of STEMIs in the field.

Chapter 5 subtitles GABAergic synaptic transmission

By the end of this lecture, you will be able to: Understand the 12 lead ECG in relation to the coronary circulation and myocardium Perform an ECG

ELECTROCARDIOGRAPHY (ECG)

BASIC CONCEPT OF ECG

CARDIOVASCULAR SYSTEM

Chapter 3 Neurotransmitter release

Cardiovascular System Notes: Physiology of the Heart

Health Science 20 Circulatory System Notes

Chapter 3 subtitles Action potentials

ECGSIM; AN INTERACTIVE TOOL FOR STUDYING THE GENESIS OF QRST WAVEFORMS

The Normal Electrocardiogram

Electrocardiogram ECG. Hilal Al Saffar FRCP FACC College of medicine,baghdad University

Chapter 12: Cardiovascular Physiology System Overview

Questions. Question 1!

Nerve. (2) Duration of the stimulus A certain period can give response. The Strength - Duration Curve

The cardiovascular system is composed of the heart and blood vessels that carry blood to and from the body s organs. There are 2 major circuits:

Signal Processing of Stress Test ECG Using MATLAB

3/26/15 HTEC 91. EKG Sign-in Book. The Cardiac Cycle. Parts of the ECG. Waves. Waves. Review of protocol Review of placement of chest leads (V1, V2)

Electrocardiography negative zero LA/VL RA/VR LL/VF recording electrode exploring electrode Wilson right arm right arm, left arm left arm

ANATOMY AND PHYSIOLOGY OF NEURONS. AP Biology Chapter 48

Neurophysiology scripts. Slide 2

NEURONS Chapter Neurons: specialized cells of the nervous system 2. Nerves: bundles of neuron axons 3. Nervous systems

The Heart. Happy Friday! #takeoutyournotes #testnotgradedyet

CARDIOCOMP Electrocardiography Primer

Concept 48.1 Neuron organization and structure reflect function in information transfer

Cell Membrane and Transport

Arrhythmias. 1. beat too slowly (sinus bradycardia). Like in heart block

This presentation will deal with the basics of ECG description as well as the physiological basics of

Heart. Structure Physiology of blood pressure and heartbeat

Collin County Community College. ! BIOL Anatomy & Physiology! WEEK 5. The Heart

Chapter 4 Neuronal Physiology

Lab #3: Electrocardiogram (ECG / EKG)

Introduction to ECG Gary Martin, M.D.

The Electrocardiogram

Subject-Specific Modeling of Cardiac Ischemia

Lab 16. The Cardiovascular System Heart and Blood Vessels. Laboratory Objectives

Cardiovascular System

Cardiovascular Physiology

Lab 7. Physiology of Electrocardiography

8/20/ Identify the functions of common ECG machines. 3.3 Explain how each ECG machine control is used. 3.4 Recognize common electrodes.

Station Neurons and synapses

Introduction to Electrocardiography

DR QAZI IMTIAZ RASOOL OBJECTIVES

UNDERSTANDING YOUR ECG: A REVIEW

AP Biology Unit 6. The Nervous System

J Wave Syndromes. Osama Diab Lecturer of Cardiology Ain Shams University

37 1 The Circulatory System

The Fundamentals of 12 Lead EKG. ECG Recording. J Point. Reviewing the Cardiac Conductive System. Dr. E. Joe Sasin, MD Rusty Powers, NRP

Biology 212: Anatomy and Physiology II. Lab #5: Physiology of the Cardiovascular System For Labs Associated With Dr. Thompson s Lectures

Bear: Neuroscience: Exploring the Brain 3e

10/23/2017. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

a lecture series by SWESEMJR

Chapter 6 subtitles postsynaptic integration

I PART I. Timing Cycles and Troubleshooting Review COPYRIGHTED MATERIAL

Biology 13A Lab #10: Cardiovascular System II ECG & Heart Disease

What is Anatomy and Physiology?

Cardiac Muscle Physiology. Physiology Sheet # 8

The Circulatory System. The Heart, Blood Vessels, Blood Types

ECG Signal Characterization and Correlation To Heart Abnormalities

Mapping Cardiac Pacemaker Circuits: Methodological puzzles of SAN optical mapping

for Heart-Health Scanning

INTRODUCTION TO ECG. Dr. Tamara Alqudah

V4, V5 and V6 follow the 5 th intercostal space and are NOT horizontal as indicated in the image. Page 1 of 7

آالء العجرمي أسامة الخضر. Faisal Muhammad

Nervous System. Nervous system cells. Transmission of a signal 2/27/2015. Neuron

Phase 2 Early Afterdepolarization as a Trigger of Polymorphic Ventricular Tachycardia in Acquired Long-QT Syndrome

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota

-12. -Ensherah Mokheemer - ABDULLAH ZREQAT. -Faisal Mohammad. 1 P a g e

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

2The Concept of Periodic Functions

Matters of the Heart: Comprehensive Cardiology SARAH BEANLANDS RN BSCN MSC

Chapter 13 The Cardiovascular System: Cardiac Function

Lab 4: Introduction to Physiological Measurements - Cardiovascular

Electrocardiography. Hilal Al Saffar College of Medicine,Baghdad University

Electrocardiography Normal 5. Faisal I. Mohammed, MD, PhD

Acute chest pain and ECG need for immediate coronary angiography?

BIOLOGY 2050 LECTURE NOTES ANATOMY & PHYSIOLOGY I (A. IMHOLTZ) FUNDAMENTALS OF THE NERVOUS SYSTEM AND NERVOUS TISSUE P1 OF 5

Omar Sami. Muhammad Abid. Muhammad khatatbeh

Transcription:

Systolic and Diastolic Currents of Injury Figure 1 Action Potentials of Normal and Ischemic Tissue In Figure 1 above, the action potential of normal myocardium is represented by the solid lines and the action potential of the ischemic myocardial area is represented by the dotted lines. There are some basic concepts that must be remembered at all times during the discussion of the theories of systolic and diastolic currents of injury: 1. Localized ischemia always damages some cells. Loss of circulation to an area of the myocardium results in cellular hypoxia. The hypoxia leads to diminished levels of ATP in the affected cells. There are ionic transport systems in the cell membrane that depend on ATP for energy and the Na + / K + pump is one of them. Loss of this pump prevents K + from being pumped back into the cell during diastole, so the concentration of K+ builds up outside the cell while the intracellular concentration of K+ falls. The concentrations of K+ inside and outside the cell are less different, so the resting transmembrane potential is reduced. CAUTION! Everyone is familiar with the vertical scale that runs from -90 mv through 0 to around +30 mv. We have a tendency to think that a value increases as it moves up the scale and decreases as it moves down the scale but it s just the opposite! -70 mv is less than -90 mv. The transmembrane potential increases when the difference between the internal and external charges increases. So the closer the resting membrane potential is to 0, the less it is.

2. The damage caused by ischemia is localized it is not reflected in the organism as a whole, but just in the area affected by the ischemia. 3. The collection of K + in the extracellular space locally causes the extracellular concentration of K + to rise resulting in less difference between the intracellular and extracellular concentrations. A reduction in the membrane potential difference is the same as depolarization (the interior of the cell is becoming less negative), so localized myocardial ischemia results in localized partial depolarization. 4. Thus, the resting membrane potential of ischemic myocardium is less negative than the resting membrane potential of normal myocardium. (Arrow A ) (Resting membrane potential = Phase 4) 5. The partial depolarization caused by ischemia is not rapid enough to trigger an actual depolarization wave. It does, however, cause many Na + channels to open momentarily and then close. So, when the depolarization wave eventually arrives, it finds fewer Na + channels available to open. Consequently, the action potential is both slowed (decreased slope) and has less amplitude (Phase 0 does not rise as far). (Arrow B ) 6. Because the amplitude of Phase 0 is reduced in cells affected by ischemia, Phase 2 must therefore occur at a lower voltage (Phase 2 can never be higher than the peak of Phase 0). The Phase 2 maximum voltage in ischemic myocardium is significantly less than that of Phase 2 in the normal tissue. And notice that Phase 2 of the normal action potential is POSITIVE (above 0 ) during most of systole. (Arrow C ) 7. When we speak of vectors, we are talking about the direction (as well as magnitude) of depolarization or repolarization. We use the internal charge as our reference point. However, when we are speaking of an injury current, we are referring to the charge on the exterior of the cell. If a cell is depolarized, the interior will be positively charged and the exterior will carry a negative charge; if the cell has repolarized, the interior of the cell will be negatively-charged and the exterior of the cell will carry a positive charge. 8. Current of injury in biological systems always flows from negative to positive, or negative to less negative. Now let s talk about the theories of systolic and diastolic currents of injury. Bear in mind these are still theories and neither has been completely validated. During my reading, I have been impressed that more and more physiologists and electrophysiologists feel that there is truth in both theories.

Systolic Current of Injury Theory PERSPECTIVE: Bear in mind that the Systolic Current of Injury Theory attempts to explain ST elevation or depression by looking at the ST segment itself on the action potential Phase 2. During Phase 2 (the ST segment), the normal cells are more positively-charged internally than the ischemic cells (Figure 1 above where the solid line is above the dotted line) and thus have a negative external charge. On the other hand, the ischemic cells are unable to depolarize as completely as the normal cells, so their internal charge is negative relative to the normal myocardium and the external charge is positive. Since current travels from negative to positive or negative to less negative, an injury current appears that runs from the normal tissue to the ischemic tissue during systole. Because Phase 2 is represented on the ECG tracing as the ST segment, whether the ST segment is elevated or depressed depends on the location and thickness (or depth) of the ischemic area. Just picture this in your mind: there is an area of subendocardial ischemia. What will the positive electrode overlying this area see? Remember: during systole the normal myocardium is more positive internally and more negative externally than the ischemic myocardium and current will flow from negative to positive (or less negative ). So, the systolic current of injury will run from the normal tissue to the ischemic tissue. In our particular example, the ischemic tissue is subendocardium and the normal tissue is subepicardium. Therefore, the positive electrode overlying the area will see a current during Phase 2 (the ST segment) traveling away from the body surface (epicardium to endocardium) and will therefore register ST depression. But what happens when the ischemia is transmural? Again, the current will travel from negative to positive (or less negative). Since during systole the normal tissue is more positively-charged internally and negatively-charged on the exterior surface than the ischemic tissue, the current will travel from normal myocardium (with the negative external charge) to ischemic myocardium (with a positive external charge). The resultant vector will be outward and the ECG will record ST elevation.

Diastolic Current of Injury Theory PERSPECTIVE: The Diastolic Current of Injury Theory attempts to explain ST elevation or depression not by examining the ST segments themselves but by looking at the baseline of the ECG the T-P segment (represented on the action potential by Phase 4). Diastole is Phase 4 of the action potential. In this case, the Phase 4 of the ischemic cells have more positive internal charge (and thus a negatively-charged exterior) than the normal cells during Phase 4 (Arrow E). Therefore, the current in this case will travel from the ischemic myocardium to the normal myocardium. A very important point here is that we are talking about the effect that ischemia will have on Phase 4. Remember: Phase 4 represents the T-P segment. No one ever looks at the T-P segment when they are looking for ischemia or infarction! They always look at the ST segment! And for good reason: the ECG machine is programmed to keep the T-P segment at 0 mv with everything else on the strip moved up or down relative to that. If the T-P segment is depressed (below 0 mv) the ECG machine will raise it back up to 0 mv and concomitantly raise the rest of the tracing an equal amount. Thus instead of seeing actual T-P depression, you will think you are seeing ST elevation. Let s look at the example of subendocardial ischemia being recorded during Phase 4 diastole (the T-P segment). Because Phase 4 of the ischemic myocardium is partially depolarized and therefore more positive interiorly and negative externally than the normal myocardium, the current will travel from ischemic myocardium to normal myocardium. In the case of subendocardial ischemia, this results in an injury current traveling toward the recording electrode during diastole resulting in an elevation of the T-P segment. However, the ECG machine brings the baseline T-P segment back down to 0 mv and so the ST segment is now even lower and appears depressed. Figure 2 Normal ECG Tracing Figure 4 T-P Elevation Due To Ischemia Figure 3 Illusion of ST Depression After the Baseline Is Corrected to 0 mv By the ECG Machine

Let s now look at an example of a transmural infarction or an infarction that has managed to extend from the epicardial layer at least to the electrical subendocardium. Again, we are speaking only of events that are occurring during diastole Phase 4, the T-P segment. Because of the difference in membrane potential between the ischemic and normal tissues ischemic, depolarized with a positively-charged interior and a negatively-charged exterior a current is generated that runs from the ischemic tissue to the normal myocardium. The recording electrode will see only vectors traveling away from it, so it will inscribe a negative T-P segment. Again, the electrocardiograph will adjust the baseline T-P segment to 0 mv which raises everything on the ECG. Because we assume the baseline is always at 0 mv, what we thus see on the tracing is ST elevation. Figure 6 Normal ECG Tracing Figure 5 T-P Depression Due To Ischemia Figure 7 Illusion of ST Elevation After the Baseline Is Corrected to 0 mv By the ECG Machine

Some Points to Remember: 1. What we are trying to explain with these two theories is the cause of ST elevation or depression with acute myocardial ischemia. Remember: with the Diastolic Current of Injury Theory, even though we are examining and measuring the T-P segment, we are really trying to explain the actions of the ST segment! 2. The Systolic Current of Injury Theory looks at the relative voltages of the normal and ischemic myocardium during systole which occurs primarily during repolarization. It is actually looking at the ST segment and the effects of the currents of injury on it. 3. The Diastolic Current of Injury Theory looks at the relative voltages of the normal and ischemic myocardium during Phase 4 diastole which is represented by the T-P segment. By convention, the T-P segment is considered the baseline and the baseline is assumed to be at 0 mv. Because any deviation of the T-P segment (baseline) is automatically adjusted back to 0 mv by the ECG machine, we can t see any effects on the T-P segment on the ECG. Whether it is elevated or depressed, the machine will always adjust it up or down to 0 mv. But what we can see are the changes in the ST segment. The ST segment is not really involved in the Diastolic Current of Injury Theory except that if the T-P segment is depressed, its adjustment back to 0 mv will cause the ST segment to be raised up giving the illusion of ST elevation. Likewise, if the T-P segment is elevated, its adjustment by the ECG machine back down to 0 mv will give the impression that the ST segment is depressed.