LIPOPROTEINE ATEROGENE E ANTI-ATEROGENE ATEROGENE

Similar documents
High density lipoprotein metabolism

Pathophysiology of Lipid Disorders

LE IPERCHILOMICRONEMIE FAMILIARI

Lipoproteins Metabolism

Lipid/Lipoprotein Structure and Metabolism (Overview)

PCSK9 Inhibition: From Genetics to Patients

*Address Correspondence to Päivi Pajukanta, MD, PhD, Associate Professor, Department of

Chapter VIII: Dr. Sameh Sarray Hlaoui

ATP III (Adult Treatment Panel III) CLASSIFICATION C IN ADULTS

HDL : A Treatment Target? ESC Paris M. John Chapman Ph.D., D.Sc., FESC. President, European Atherosclerosis Society

Genetic and biochemical characteristics of patients with hyperlipidemia who require LDL apheresis

Behind LDL: The Metabolism of ApoB, the Essential Apolipoprotein in LDL and VLDL

The inhibition of CETP: From simply raising HDL-c to promoting cholesterol efflux and lowering of atherogenic lipoproteins Prof Dr J Wouter Jukema

Nature Genetics: doi: /ng.3561

Summary and concluding remarks


ESC Congress 2011 Wednesday August 31st 2011

Central role of apociii

Novel HDL Targeted Therapies: The Search Continues Assoc. Prof. K.Kostner,, Univ. of Qld, Brisbane

CETP inhibition: pros and cons. Philip Barter The Heart Research Institute Sydney, Australia

2.5% of all deaths globally each year. 7th leading cause of death by % of people with diabetes live in low and middle income countries

Thematic Review Series: Genetics of Human Lipid Diseases. Genetic causes of high and low serum HDL-cholesterol

Lipid Metabolism Prof. Dr. rer physiol. Dr.h.c. Ulrike Beisiegel

Lipoproteins Metabolism Reference: Campbell Biochemistry and Lippincott s Biochemistry

DIAGNOSIS AND TREATMENT OF FH CHILDREN. O. GUARDAMAGNA Dipartimento di Scienze della Sanità Pubblica e Pediatriche UNIVERSITA DI TORINO

Focus on FH (Familial Hypercholesterolemia) Joshua W. Knowles, MD PhD for PCNA May, 2013

Genetic Dyslipidemia and Cardiovascular Diseases

Comprehensive Treatment for Dyslipidemias. Eric L. Pacini, MD Oregon Cardiology 2012 Cardiovascular Symposium

Metabolism and Atherogenic Properties of LDL

CVD Risk Assessment. Michal Vrablík Charles University, Prague Czech Republic

Inhibition of PCSK9: The Birth of a New Therapy

Low HDL-levels: leave it or treat it?

Lipoprotein Pathophysiology. Lipoprotein Pathophysiology

Hypertriglyceridemia. Ara Metjian, M.D. Resident s Report 20 December 2002

Treatment of Atherosclerosis in 2007

Nutrigenetics Today s Concept Tomorrow s Reality

The New Gold Standard for Lipoprotein Analysis. Advanced Testing for Cardiovascular Risk

Lecithin:cholesterol acyltransferase: old friend or foe in

Review of guidelines for management of dyslipidemia in diabetic patients

A Phase 3 Study of Lomitapide, a Microsomal Triglyceride Transfer Protein (MTP) Inhibitor, in Patients with Homozygous Familial Hypercholesterolemia

LIPOPROTIEN APHERESIS. Bruce Sachais, MD, PhD Executive Medical Director New York Blood Center

Unit IV Problem 3 Biochemistry: Cholesterol Metabolism and Lipoproteins

There are many ways to lower triglycerides in humans: Which are the most relevant for pancreatitis and for CV risk?

The Addition of Ezetimibe to Statin therapy in. Patients with Homozygous Familial. Hypercholesterolaemia

Reverse Cholesterol Transport and Atherosclerosis

METABOLISM of ADIPOSE TISSUE

Low-density lipoprotein as the key factor in atherogenesis too high, too long, or both

Lipids digestion and absorption, Biochemistry II

Lipid Lowering in Patients at High Risk for Cardiovascular Disease

MMBS, MMED (Path),MAACB, MACTM, MACRRM

Dyslipidemia. (Med-341)

From Biology to Therapy The biology of PCSK9 in humans Just LDL-cholesterol or more? May 24th. Dr. Gilles Lambert

STRUCTURE AND METABOLISM Of LIPIDS AND LIPOPROTEINS. R. Mohammadi Biochemist (Ph.D.) Faculty member of Medical Faculty

Cascade Screening for FH: the U.S. experience

Cholesterol Metabolism

13/09/2012. Dietary fatty acids. Triglyceride. Phospholipids:

Mendelian disorders refer to diseases caused by mutations. Review. Mendelian Disorders of High-Density Lipoprotein Metabolism

Conceptual Approach to CAD Risk. Disclosures. Integrating Imaging and Biomarkers for Optimal CVD Risk Assessment and Management 2/10/2014.

Fibrate and cardiovascular disease: Evident from meta-analysis. Thongchai Pratipanawatr

Zuhier Awan, MD, PhD, FRCPC

Familial hypercholesterolemia (FH) is a common autosomal,

COURAGE to Leave Diseased Arteries Alone

The relationship between coronary artery disease and low

John J.P. Kastelein MD PhD Professor of Medicine Dept. of Vascular Medicine Academic Medial Center / University of Amsterdam

THE CLINICAL BIOCHEMISTRY OF LIPID DISORDERS

Chapter (5) Etiology of Low HDL- Cholesterol

LIPID CLUB Rome, 2014

HoFH presents with a wide spectrum of LDL-C levels in a genetically confirmed cohort of patients

行政院國家科學委員會補助專題研究計畫成果報告

Dyslipidaemia. Is there any new information? Dr. A.R.M. Saifuddin Ekram

Case Discussions: Treatment Strategies for High Risk Populations. Most Common Reasons for Referral to the Baylor Lipid Clinic

Age and residual cholesterol efflux affect HDL cholesterol levels and coronary artery disease in ABCA1 heterozygotes

Low-density lipoproteins cause atherosclerotic cardiovascular disease (ASCVD) 1. Evidence from genetic, epidemiologic and clinical studies

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM The LDL Receptor, LDL Uptake, and the Free Cholesterol Pool

1Why lipids cannot be transported in blood alone? 2How we transport Fatty acids and steroid hormones?

BIOCHEMISTRY BLOOD - SERUM Result Range Units

Department of Internal Medicine and Molecular Science, Graduate School of Medicine, Osaka University, Osaka, Japan. 4

ANSC/NUTR 618 LIPIDS & LIPID METABOLISM Lipoprotein Metabolism

Familial hypercholesterolaemia

5. THE ROLE OF LIPIDS IN THE DEVELOPMENT OF ATHEROSCLEROSIS AND CORONARY HEART DISEASE: GUIDELINES FOR DIAGNOSIS AND TREATMENT

Dyslipidaemia. Dr NM Oosthuizen Dept of Chemical Pathology SA

Status of Small Dense LDL in Fasting and Nonfasting Lipidemia in Coronary Heart Disease

Update On Diabetic Dyslipidemia: Who Should Be Treated With A Fibrate After ACCORD-LIPID?

Safety of Anacetrapib in Patients with or

Figure S1. Comparison of fasting plasma lipoprotein levels between males (n=108) and females (n=130). Box plots represent the quartiles distribution

Compound heterozygosity Yurii S. Aulchenko yurii [dot] aulchenko [at] gmail [dot] com. Thursday, April 11, 13

Plasma lipoproteins & atherosclerosis by. Prof.Dr. Maha M. Sallam

Lipid Management: Beyond LDL

SUPPLEMENTARY INFORMATION. Rare independent mutations in renal salt handling genes contribute to blood pressure variation

Contributions in Medicine: Will CETP Inhibition Contribute Toward Reduction of Cardiovascular Risk?

A total of 2,822 Mexican dyslipidemic cases and controls were recruited at INCMNSZ in

Joslin Diabetes Center Advances in Diabetes and Thyroid Disease 2013 Consensus and Controversy in Diabetic Dyslipidemia

HDL and Its Galaxy of Proteins: What Do they Do? Jay Heinecke, University of Washington

Lipid Metabolism in Familial Hypercholesterolemia

How would you manage Ms. Gold

What Else Do You Need to Know? Presenter Disclosure Information. Case 1: Cardiovascular Risk Assessment in a 53-Year-Old Man. Learning Objectives

Cardiology, CardioVascular Center University Hospital Zurich Zurich, Switzerland

Vascular Medicine. Functional Lecithin: Cholesterol Acyltransferase Is Not Required for Efficient Atheroprotection in Humans

The Role of Apolipoprotein CIII in Coronary Artery Disease. Disclosures

Novel Biomarkers in Risk Assessment and Management of Cardiovascular Disease

Transcription:

LIPOPROTEINE ATEROGENE E ANTI-ATEROGENE ATEROGENE Sebastiano Calandra Dipartimento di Scienze Biomediche Università di Modena e Reggio Emilia

Incidence Rate/1000 200-150 - 100-50 - Women 0 Men <25 25-34 35-44 45-54 55-64 65-74 >75 HDL cholesterol level (mg/dl) Incidence of CHD in the Framingham Heart Study

CAD Relative Risk 1.00 3.21 Low Total Cholesterol (<212mg/dl) 2.41 3.78 High Total Cholesterol (>212mg/dl) Low HDL-C (<47 mg/dl) High HDL-C (>47 mg/dl) Physicians Health Study

128 CAD events (rate/1000/6 yr) 24 94 46 Low HDL-C (<35 mg/dl) High HDL-C (>35 mg/dl) Low Triglycerides (<200 mg/dl) High Triglycerides (>200 mg/dl) PROCAM Study

LOW HDL-CHOLESTEROL (HYPOALPHALIPOPROTEINEMIA) Plasma HDL-cholesterol levels (HDLc) below the 5-10 th percentile in the population. 28-33 mg/dl in males 33-39 mg/dl in females Most frequent lipoprotein abnormality found in patients with premature coronary artery disease

ANTI-ATHEROGENIC PROPERTIES OF HDL

HETEROGENEITY OF PLASMA HDL

REVERSE CHOLESTEROL TRANSPORT AND INTRAVASCULAR HDL REMODELLING Bile Macrophage SR-BI PL A-I TG LCAT A-I PL ABCA1 Liver Kidney

REVERSE CHOLESTEROL TRANSPORT AND INTRAVASCULAR HDL REMODELLING Bile Liver LDLR SR-BI A-I TP LCAT A-I Macrophage ABCA1 B TG VLDL/LDL Kidney

liver LDL-R LRP Apo B Apo E VLDL IDL LDL LPL PL Apo s FFA Cubilin kidney SR-B1 TG TP Bile acids Large HDL HL HDL2 LCAT SR-B1 adrenal PLTP HDL3 TGRL LPL Apo AII Apo AI LCAT Apo AI PL ABCA1 pre-ßhdl peripheral cells

CANDIDATE GENES IN PLASMA HDL DEFICIENCY (Hypoalphalipoproteinemia) CANDIDATE GENE Apo A-I Apo A-II ABCA1 LCAT LPL LPDL * PLTP * ABCC6 NPC1/NPC2 GBA FUNCTION IN HDL METABOLISM HDL structure, LCAT activation HDL structure HDL formation/ metabolism HDL remodelling HDL formation HDL formation HDL remodelling Unknown Unknown Unknown * No defects yet identfied in humans

CRITERIA FOR SELECTION OF PRIMARY HYPOALPHALIPOPROTEINEMIA HDL-C <5th percentile for age and gender Absence of secondary lipid disorders High likelihood of inherited low HDL-C (primary low HDL-C in at least one first-degree family member) 100 PROBANDS/FAMILIES UNDER INVESTIGATION

CANDIDATE GENES IN PLASMA HDL DEFICIENCY (Hypoalphalipoproteinemia) CANDIDATE GENE Apo A-I Apo A-II ABCA1 LCAT LPL LPDL PLTP ABCC6 NPC1/NPC2 GBA FUNCTION IN HDL METABOLISM HDL structure, LCAT activation HDL structure HDL formation/ metabolism HDL remodelling HDL formation HDL formation HDL remodelling Unknown Unknown Unknown

PRODUCTION OF APO A-I BY LIVER AND INTESTINE Liver Intestine A-I A-I A-II HDL HDL

Family 1 From Piedmont c.85 del C > 11X MI at 56 y 99 y From Venetia Julia Leukaemia at 69 y 60 y HDLc 42 AI 95 62 y HDLc 89 AI 190 72 y HDLc 74 AI 157 66 y HDLc 38 AI 99 Gx, px, 3V-CAD, 4BP Gx, px 37 y HDLc 8 AI 0 32 y HDLc 7 AI 0 36 y HDLc 68 AI 147 4 y HDLc 46 AI 105 HDLc, Apo AI: mg/dl

Family 2 From Piedmont (Turin) c.494 T>G (L141R) PVD MI MI MI MI MI CA-ATS AO-ATS 26 y HDLc 9 42 y HDLc 51 AI 129 57 y HDLc 75 AI 165 50 y HDLc 35 AI 79 53 y HDLc 40 AI 146 16 y HDLc 20 AI 70 28 y HDLc 53 AI 144 25 y HDLc 27 AI 75

Family 4 From Tuscany (Lucca) MI 84 y HDLc 24 Apo AI 69 78 y HDLc 22 Apo AI 47 c.85 del C > 11X c.494 T>G (L141R) CAD CAD CAD MI BP CAD 57 y HDLc 13 Apo AI 62 54 y HDLc 25 Apo AI 76 51 y HDLc 4 Apo AI <5 50 y HDLc 3 Apo AI 6 48 y HDLc 23 Apo AI 74 47 y HDLc 4 Apo AI <5 44 y HDLc 4 Apo AI <5 39 y HDLc 39 Apo AI 115 31 y HDLc 35 Apo AI 131 33 y HDLc 54 Apo AI 133 26 y HDLc 29 Apo AI 85 20 y HDLc 18 Apo AI 57 15 y HDLc 23 Apo AI 76 12 y HDLc 68 Apo AI 152 22 y HDLc 21 Apo AI 69 19 y HDLc 28 Apo AI 81 26 y HDLc 39 Apo AI 109 22 y HDLc 56 Apo AI 127 21 y HDLc 45 Apo AI 123 17 y HDLc 25 Apo AI 79 HDLc mg/dl Apo AI mg/dl

LIPID PROFILE IN CARRIERS OF APO AI MUTATIONS AND IN UNAFFECTED RELATIVES Mutation c.85 del C L141R Unaffected P* N. 3M, 4F 4M, 7F 11M, 11F Age (years) 43.4± 29.9 37.1 ± 19.6 44.5 ± 17.8 NS BMI (Kg/m 2 ) 26.6 ± 7.6 24.6 ± 4.0 25.0 ± 4.0 NS Tc (mg/dl) 177 ± 39 184 ± 48 192 ± 32 NS LDLc (mg/dl) 126 ± 24 142 ± 46 121 ± 28 NS HDLc (mg/dl) 34 ± 9 22 ± 5 54 ± 13 <0.0001 Tg (mg/dl) 90 ± 58 90 ± 51 91 ± 35 NS Apo AI (mg/dl) 89 ±17 67 ±15 138 ±18 <0.0001 Apo B (mg/dl) 86 ±23 92 ±27 84 ±19 NS

CONCLUSIONS (I)! The presence of two mutant alleles of A-I gene is the cause of severe HDL and apo A-I deficiency and appears to be associated with pcad at least in some kindred.! Heterozygotes for asynthetic apo A-I mutations have higher HDL and apo A-I levels than heterozygotes for missense apo A-I mutations located in 143-165 aa region.! Limited number of carriers of mutant apo A-I does not allow definite conclusions on CHD risk.

APO A-I MUTATION L178P AND CHD n. 54 carriers of mutant apo A-I L178P have: " reduced apo A-I (- 50%) " reduced HDL-C (- 63%) " increased carotid IMT " increased CHD risk (20 fold) Kastelein et al. 2004

MUTANT APO A-I AND CHD 1. Associated with increased CHD risk L141R (?), L159P (?), L178P 2. No effect on CHD risk L144R 3. Associated with CHD protection R173C (A-I Milano) Main variables to be considered: a) Site of mutation in apo A-I b) Type of mutation (asynthetic vs. missense) c) Type of amino acid substitution d) Genotype (homozygous vs. heterozygous) e) Plasma level of apo A-I and HDL-C f) Subclasses of plasma HDL

CANDIDATE GENES IN PLASMA HDL DEFICIENCY (Hypoalphalipoproteinemia) CANDIDATE GENE Apo A-I Apo A-II ABCA1 LCAT LPL LPDL PLTP ABCC6 NPC1/NPC2 GBA FUNCTION IN HDL METABOLISM HDL structure, LCAT activation HDL structure HDL formation/ metabolism HDL remodelling HDL formation HDL formation HDL remodelling Unknown Unknown Unknown

Intracellular Extracellular synthesis recycling from LPs droplet PL PL PL ABCA1 PL PL PL Lipid-poor Apo AI PL+ PL+ * * * * * * * * * * * * * * PL recycling LCAT PL nascent HDL -rich HDL LDL VLDL * * * * TP TgTg Tg Tg Tg Tg PL

REVERSE CHOLESTEROL TRANSPORT AND INTRAVASCULAR HDL REMODELLING Bile Macrophage SR-BI PL A-I TG LCAT A-I PL ABCA1 Liver Kidney

E89 W685 L739 L745 F794 L821 Hydrophobic region P1370 V1655 L1740 S1764 M1822 N1852 V70 I703 V717 W767 F773 E843 F1348 I1677 I1718 F1786 N1800 R1873 NH2 Y46 A NBD-1 G933-T940 B A B V2261 COOH NBD-2 G1946-S1953

GENETIC DEFECTS OF ABCA1 TRANSPORTER (Italian series) PHENOTYPE Analphalipoproteinemia (recessive) Severe hypoalphalipoproteinemia (recessive) (Tangier Disease) Hypoalphalipoproteinemia (co-dominant) (Familial HDL Deficiency) N 5 6 N of Mutations 12

Angina BP 56 y 66 y 53 y HDL 45 A-I 104 41 y 39 y 37 y 33 y HDL 46 A-I 141 HDL 30 A-I 93 HDL 29 A-I 85 HDL 38 A-I 89 ABCA1 (c.5703 A>C; R1901S) ABCA1 (del. C (A); H160>FsX173) 16 y 10 y HDL 7 HDL 38 A-I 12 A-I 103

CARRIERS OF APO A-I AND ABCA1 GENE MUTATIONS c.85delc Apo A-I L141R Apo A-I ABCA1 mutations Unaffected N subjects 3 M, 4 F 4 M, 7 F 6 M, 3 F 24 M, 31 F Age (years) 43.4 ± 29.9 36.9 ± 19.4 53.2 ± 24.4 43.3 ± 20.0 BMI (kg/m2) 26.6 ± 7.6 24.6 ± 4.0 22.4 ± 1.6 24.0 ± 3.5 TC (mmol/l) 4.42 ± 1.01 4.59 ± 1.30 4.30 ± 1.28 4.99 ± 0.85 LDL-C (mmol/l) 3.13 ± 0.70 3.56 ± 1.21 2.92 ± 1.22 3.06 ± 0.72 HDL-C (mmol/l) 0.89 ± 0.12 0.56 ± 0.14 0.73 ± 0.19 1.40 ± 0.31 TG (mmol/l) 1.01 ± 0.68 1.02 ± 0.59 1.47 ± 0.59 1.19 ± 0.58 Apo A-I (mg/dl) 89.0 ± 9.1 65.8 ± 15.1 86.9 ± 16.8 141.3 ± 18.0 Apo B (mg/dl) 83.5 ± 23.1 89.4 ± 27.4 82.2 ± 25.0 80.0 ± 15.7

CONCLUSIONS (II)! The presence of two mutant alleles of ABCA1 gene is associated with a severe HDL deficiency and pchd (in adults).! Heterozygotes for ABCA1 gene mutations are identified primarily for the presence of pchd (selection bias).! ABCA1 mutations may co-exist with mutations in other genes involved in lipoprotein metabolism.

CANDIDATE GENES IN PLASMA HDL DEFICIENCY (Hypoalphalipoproteinemia) CANDIDATE GENE Apo A-I Apo A-II ABCA1 LCAT LPL LPDL PLTP ABCC6 NPC1/NPC2 GBA FUNCTION IN HDL METABOLISM HDL structure, LCAT activation HDL structure HDL formation/ metabolism HDL remodelling HDL formation HDL formation HDL remodelling Unknown Unknown Unknown

REVERSE CHOLESTEROL TRANSPORT AND INTRAVASCULAR HDL REMODELLING Bile Macrophage SR-BI PL A-I TG LCAT A-I PL ABCA1 Liver Kidney

c.35 C>T (T-13M) c.31 del G (X-14) c.511 C>T (R147W) c.490 C>T (R140C) c.493 G>A (A141T) c.694 T>A (S208T) c.614 G>A (S181N) LCAT gene (16q 22.1) c.726 G>C (K218N) 5 3 1 2 3 4 5 6 c.321c>a (Y83X) c.343 T>C (S91P) c.209 T>A (V46E) g.968-994 del (X26) c.141-145 del (X76) c.893 C>T (T274I) c.892 A>G (T274A) c.803 G>A (R244H) c.997 G>A (V309M)

Comparison between Italian FED and FLD FED FLD P N. 3M, 1F 10M Age (years) 25.2±8.8 40.6±14.8 Tc (mmol/l) 2.27±0.74 4.66±1.52 0.01 LDLc (mmol/l) 1.41±0.56 2.92±1.50 0.05 HDLc (mmol/l) 0.24±0.08 0.27±0.12 NS Fc/Tc 0.625±0.065 0.920±0.044 0.004 Triglyc. (mmol/l) 1.42±0.54 4.22±2.11 0.04 Apo A-I (mg/dl) 51.2±20.7 37.5±11.5 NS R (nmol/ml/h) 40.5±4.9 0 (n.v. 30-60) LCAT act. (nmol/ml/h) 0 0 NS (n.v. 25-55) LCAT mass (µg/ml) (n.v. 3.1-6.7) 2.18±0.74 1.07±0.64 0.008 Values are mean±sd.

Comparison between Heterozygous Carriers of Italian LCAT mutations and Unaffected Relatives Heterozygotes Normal relatives P N. 20M, 19F 13M, 10F Age (years) 44.0 ± 22.7 40.3 ± 24.3 NS BMI (kg/m 2 ) 24.5 ± 3.9 23.1 ± 3.8 NS Tc (mg/dl) 161.2 ± 37.5 190.2 ± 32.1 0.003 LDLc (mg/dl) 100.5 ± 29.8 117.5 ± 28.6 0.03 HDLc (mg/dl) 35.6 ± 8.5 54.1 ± 9.3 0.0001 Fc/Tc 0.31 ± 0.08 0.25 ± 0.04 0.0001 Triglyc. (mg/dl) 124.6 ± 55.3 108.8 ± 51.7 NS Apo A-I (mg/dl) 106.6 ± 18.5 142.9 ± 14.8 0.0001 Apo A-II (mg/dl) 29.5 ± 5.9 34.6 ± 5.3 0.008 Apo B (mg/dl) 79.0 ± 19.8 84.2 ± 14.8 NS LCAT act. (nmol/ml/h) 26.7 ± 15.4 35.2 ± 12.3 NS LCAT mass (µg/ml) 3.72 ± 1.46 4.41 ± 0.70 0.03 Values (mean±sd) are adjusted for gender, age and BMI.

CHD AND PRE-CLINICAL ATHEROSCLEROSIS IN SUBJECTS WITH LCAT DEFECTS # HOMOZYGOTES Familial LCAT deficiency Fish eye disease No evidence of CHD or pre-clinical atherosclerosis # HETEROZYGOTES No clinical phenotype No evidence of pre-clinical atherosclerosis (average IMT and maximum IMT lower that in controls)

UNANSWERED QUESTIONS We need to understand more about:! Factors which regulate the concentration and subpopulation of HDL.! HDL function in vivo.! Relationship between HDL concentration and cardioprotective function.! Subpopulations of HDL and cardioprotection.! HDL as target for therapy recommended HDL level.

HDL WORKING GROUP GENETICS MOLECULAR PATHOLOGY Averna M. (Palermo) Bertolini S. (Genova) Calandra S. (Modena) Cortese C. (Roma) BIOCHEMISTRY LL BIOLOLOGY Bellotti V. (Pavia) Bernini F. (Parma) Calabresi L. (Milano) Franceschini G. (Milano) VASCULAR STUDIES Baldassarre D. (Milano) Mannarino E. (Perugia) CASE FINDING FAMILY STUDIES Italian Lipid Clinic Network

HDL and Reverse Cholesterol Transport Bile Liver SR-BI A-I Mature HDL LCAT A-I Nascent ABCA1 HDL Macrophage

CANDIDATE GENES, PLASMA HDL AND CARDIOVASCULAR DISEASE Variations in plasma HDL level are at least 50% genetically determined: At least 15 genes involved Rare mutations of major candidate genes Many gene polymorphisms Interactions of a few major candidate genes

ABCA1-mediated cholesterol efflux Lipid free Apo A-I apoa-i C Nascent HDL C ABCA1 C ABCA1 ABCA1 ER/Golgi

Angina 59 y, 1V-CAD, PTCA, CA-ATS LDLc Tg HDLc Apo AI Apo B Apo E 62 y 105 mg/dl 194 mg/dl 28 mg/dl 102 mg/dl 92 mg/dl ε3ε3 ABCA1 Exon 49 c.6588 G>C Q2196H