The effect of calcium hydroxide on the sealing properties of MTA apical barrier

Similar documents
Assembling of fluid filtration system for quantitative evaluation of microleakage in dental materials

Staining Potential of Calcium Hydroxide and Monochlorophenol Following Removal of AH26 Root Canal Sealer

Mineral Trioxide Aggregate

The effect of one-step or two-step MTA plug and tooth apical width on coronal leakage in open apex teeth

MTA PULPOTOMY ASSOCIATED APEXOGENESIS OF HUMAN PERMANENT MOLAR WITH IRREVERSIBLE PULPITIS: A CASE REPORT

Journal of Dental & Oro-facial Research Vol. 14 Issue 01 Jan. 2018

MTA apical plug and clinical application of anatomic post and core for coronal restoration: A case report

Single-Step Apexification with Mineral Trioxide Aggregate (MTA) Case Reports

Post natal mesenchymal cells possibility to regenerate and repair dental structures.

The use of mineral trioxide aggregate in one-visit apexification treatment: a prospective study

The traumatic injury of an immature permanent tooth can lead to the loss of pulp

Comparison of Spreader Penetration during Lateral Compaction of 0.04 and 0.02 Tapered Gutta-Percha Master Cones

CONTENTS. Endodontic therapy Permanent open apex teeth Intracanal Medication. A. Introduction I. Problems II. III. IV. B. Research C.

Comparison of Bacterial and Dye Microleakage of Different Root-End Filling Materials

ENDODONTOLOGY. An in-vitro evaluation of apical sealing of three epoxy resin based commercial preparations INTRODUCTION MATERIALS AND METHODS ABSTRACT

Dental materials and cements, and its use in children

Non-surgical endodontic retreatment of failed surgical retreatment: A case report

Long Term Evaluation of the Sealing Ability of 2 Root Canal Sealers in Combination with Self-etching Bonding Agents

CLINICAL AND RADIOGRAPHIC EVALUATION OF DIRECT PULP CAPPING PROCEDURES PERFORMED BY POSTGRADUATE STUDENTS

Vijay Shekhar and K. Shashikala. 1. Introduction

Non-Surgical management of Apical third root fracture with MTA: A Case report

Case Report Single visit apexification technique by root end barrier formation with MTA

The use of MTA in teeth with necrotic pulps and open apices 1

ENDODONTOLOGY. Evaluation of the effect of chlorhexidine gluconate as an endodontic irrigant on the apical seal - An in vitro study INTRODUCTION

Case Report Continued Root Formation after Delayed Replantation of an Avulsed Immature Permanent Tooth

Sealing Ability of Mineral Trioxide Aggregate and Calcium- Enriched Mixture Cement as Apical Barriers with Different Obturation Techniques

Treatment Options for the Compromised Tooth: A Decision Guide

VITAL PULP THERAPY USING PLATELET-RICH FIBRIN IN AN IMMATURE PERMANENT TOOTH : CASE REPORTS

Case Report Boon of MTA Apexification in Young Permanent Posterior Teeth

Trauma to the Central Incisor: The Story So Far

A comparative analysis of microleakage of three root end filling materials an in vitro study

M. Zarrabian, et al Histologic Response to Retrofilling with MTA and Portland Cement

Management of an extensive invasive root resorptive lesion with mineral trioxide aggregate: a case report

Original Research. Journal of International Oral Health 2014; 6(4):12-17

In vitro evaluation of root canal preparation with plastic endodontic rotary finishing file - A SEM study

SingleVisit Apexification Technique for Inducing Root-End Barrier Formation in Apical Closures: Report of Two Cases P. Jain, C. Rita, R.S.

See This presentation on Video.

A Comparative Study between Mineral Trioxide Aggregate and Calcium Hydroxide as Pulp Capping Agents in Dog s Teeth

Goldberg, Robert A. DDS; Kuttler, Sergio DDS; Dorn, Samuel O. DDS. Publisher:(C)2004The American Association of Endodontists

Leakage along warm gutta-percha fillings in the apical canals of curved roots

Apexification has traditionally formed an integral part of the treatment of teeth with

Effects of Simulated Lateral Canals on the Accuracy of Measurements by an Electronic Apex Locator

A combined approach with passive and active repositioning of a traumatically intruded immature permanent incisor

Large periapical lesion: Healing without knife and incision

INTERNATIONAL JOURNAL OF CURRENT RESEARCH IN CHEMISTRY AND PHARMACEUTICAL SCIENCES

GUIDELINES FOR THE MANAGEMENT OF TRAUMATISED INCISORS

The Effect of Chlorhexidine Gluconate as an Endodontic Irrigant on the Apical Seal: Long-term Results

Journal of Craniomaxillofacial Research. Vol. 3, No. 4 Autumn 2016

REIMPLANTATION OF AVULSED TOOTH- A CASE REPORT

Comparison of White MTA And Grey MTA in the Apical Sealing Ability of Lased And Unlased Root Canal Walls - A Pilot Study

Case Report The Effect of Mineral Trioxide Aggregate on the Periapical Tissues after Unintentional Extrusion beyond the Apical Foramen

Influence of calcium hydroxide as an intracanal medicament on apical leakage following obturation using three different sealers

Comparison of removal of endodontic smear layer using NaOCl, EDTA, and different concentrations of maleic acid A SEM study

Long-term sealing ability of Pulp Canal Sealer, AH-Plus, GuttaFlow and Epiphany

Effect of Nd:YAG laser irradiation on adherence of retrograde filling materials: evaluation by micro-computed tomography

Non-Surgical Endodontic Retreatment after Unsuccessful Apicectomy: A Case Report

Pulpal treatment in young permanent teeth CHALLENGES IN PULPAL TREATMENT OF YOUNG PERMANENT TEETH A REVIEW

The Treatment of Traumatic Dental Injuries

The effect of mineral trioxide aggregate on the apexification and periapical healing of teeth with incomplete root formation

Bioactive Closure of Non Vital Immature Tooth with Open Apices - A Contemporary Approach

MTA MIRACLE IN DENTISTRY Shikha Singh*,Rahul Maria**,AU Palekar***,Sweta Singh*.

Comparison of apical and coronal sealing in canals having tapered cones prepared with a rotary NiTi system and stainless steel instruments

Intensive care for the immature pulp Maintaining pulp vitality after a traumatic injury

Analysis of sealing ability of endodontic cements apical plugs

Management of a Type III Dens Invaginatus using a Combination Surgical and Non-surgical Endodontic Therapy: A Case Report

Treatment Options for the Compromised Tooth

Treatment of perforating internal root resorption with MTA: a case report

An electrochemical study of the sealing ability of three retrofilling materials

Case Report Pulp Revascularization in Immature Permanent Tooth with Apical Periodontitis Using Mineral Trioxide Aggregate

PULP REVASCULARIZATION OF A NECROTIC INFECTED IMMATURE PERMANENT TOOTH: A CASE REPORT AND REVIEW OF THE LITERATURE

Microleakage of Root Canal Sealed with Temporary Endodontic Sealing Materials

J. Int Oral Health 2011 Case Report All right reserved

Conventional Management of Fractured Endodontic Instruments and Perforations

An In Vivo Evaluation of Two Types of Files used to Accurately Determine the Diameter of the Apical Constriction of a Root Canal: An In Vivo Study

A COMPARATIVE EVALUATION OF THE ACCURACY OF THIRD GENERATION ELECTRONIC APEX LOCATOR (ROOT ZX) IN PRESENCE OF VARIOUS INTRACANAL IRRIGANTS.

Dental Research Journal

MANAGEMENT OF OPEN APEX IN PERMANENT TEETH WITH CALCIUM HYDROXIDE PASTE

Here are some frequently asked questions about Endodontic treatment:

Case Note Retrieval of a separated file using Masserann technique: A case report

The Graduate School Yonsei University Department of Dentistry Myoungah Seo

Endodontic perforation repair with light-cured glass ionomer

Coronal and apical leakage analysis of two different root canal obturation systems

Shah. Management of a maxillary second premolar with an S-shaped root canal - An endodontic. Management of a maxillary second premolar

One of the most difficult situations a dentist encounters

Case Report. July 2015; Vol. 12, No. 7. Vineet Agrawal 1, Sonali Kapoor 2, Mukesh Patel 3

Apexification of Immature Teeth Using Novel Apical Matrices and MTA Barrier: Report of Two Cases

Maxillary Molar Endodontic Case Presentation. R.Bose. BDS (Manc 2010), General Dental Practitioner, Oxford/London.

Root Canal Treatment of an Immature Dens Invaginatus With Apical Periodontitis: A Case Report

Smear layer removal evaluation of different protocol of Bio Race file and XPendo Finisher file in corporation with EDTA 17% and NaOCl

Pulp Vitality. in Pediatric Patients. Treating deep carious lesions in vital permanent teeth. 86 MAY 2017 // dentaltown.com. by Jarod Johnson, DDS

THERMAL CHANGES IN THE HARD DENTAL TISSUE AT DIODE LASER ROOT CANAL TREATMENT

BioRoot RCS, a reliable bioceramic material for root canal obturation Jenner O. Argueta D.D.S. M.Sc.

Working length changes following straight-line access and different coronal flaring methods

REVASCULARIZATION AN OVERVIEW

SINGLE VISIT MTA APEXIFICATION TECHNIQUE FOR FORMATION OF ROOT-END BARRIER IN OPEN APICES- A CASE SERIES

Field Guide to the Ultrasonic Revolution

Dental material for filling the root canals "AUREOSEAL M.T.A."

Surgical Retreatment of an Invaginated Maxillary Central Incisor Following Overfilled Endodontic Treatment: A Case Report

Apexification with a New Intra-Canal Medicament: A Multidisciplinary Case Report

Transcription:

ORIGINAL ARTICLE Maryam Bidar1 DDS, MS, Reza Disfani2 DDS, MS, Salman Gharagozloo3 DDS, MS, Majid Akbari4 DDS, MS, Armita Rouhani2* DDS, MS The effect of calcium hydroxide on the sealing properties of MTA apical barrier 1.Associate Professor of Endodontics, Dental Research Center/Dental School, Mashad University of Medical Sciences, Mashad, Iran. 2.Assistant Professor of Endodontics, Dental School, Mashad University of Medical Sciences, Mashad, Iran. *Correspondence author Email: rouhania@mums.ac.ir 3.Assistant Professor of Endodontics, Dental School, Zahedan University of Medical Sciences, Zahedan, Iran. 4.Assistant Professor of Restorative Dentistry, Dental School, Mashad University of Medical Sciences, Mashad, Iran INTRODUCTION: The aim of this study was to evaluate the effects of remnant root canal medicament, calcium hydroxide on the short and long term sealing ability of mineral trioxide aggregate (MTA) apical barrier. MATERIALS & METHODS: Fifty single-rooted teeth were prepared and apical resorptions were made using sulfuric acid. The teeth were allocated into two experimental groups and two control groups. In group 1, calcium hydroxide was placed into canals for one week. In group 2, no medication was placed. In both groups, a 4-mm MTA plug was placed in the root canals. The remaining portion of the canal was filled with gutta-percha/sealer. The microleakage was evaluated after 7 days and 3 months using fluid filtration technique. Repeated measurement ANOVA was used for statistical analysis. RESULTS: There was no significant difference in sealing ability between the two groups in either time periods. In both groups, microleakage decreased after three months but this decrease was not statistically significant. CONCLUSION: Medication with calcium hydroxide had no adverse effect on the short and longterm sealing properties of MTA plug. KEYWORDS: Calcium hydroxide, Dental leakage, Fluid filtration, Mineral trioxide aggregate. Received October 2010; accepted December 2010 INTRODUCTION Root canal treatment of immature teeth entails different endodontic and restorative complications. The absence of apical stop or apical constriction makes it difficult to achieve complete debridement and favorable root canal obturation. In addition, thin root canal walls may fracture under masticatory forces. Treatment of such teeth is a challenge for both dentist and patient. Apexification is the most popular and commonly used treatment of open apex teeth. This treatment has been defined as a method to induce a calcified barrier in a root with an open apex or the continued apical development of an incomplete root in teeth with necrotic pulp (American Association of Endodontists 2003). This treatment has been traditionally performed using calcium hydroxide (1-4). Artificial apical barriers with a variety of materials have been suggested as alternatives to traditional calcium hydroxide apexification (1-5). Mineral trioxide aggregate (MTA) has become the material of choice in this regard (6). Popularity of MTA as an artificial apical barrier can be attributed to several factors. For instance, it can be used and placed in the root canal within one visit, thus eliminating the long working time required for calcium hydroxide apexification (7). MTA is a biocompatible material (8-10) which can induce the formation of hard tissue (11,12), and has good sealing properties(13,14).

Sealing properties of MTA 7 teeth were rinsed with a saline solution and the wax was removed with a scalpel (Supa, Tehran, Iran). The temporary filling was also removed from the access opening (15). Figure 1. A view of designed fluid filtration system (three-valve tube and its connections) Interim medicaments such as calcium hydroxide are not easily removed during final apical obturation with MTA. Therefore it would seem necessary to clarify the effects of the remaining calcium hydroxide on the sealing ability of MTA as the apical barrier. The purpose of this study was to evaluate the effects of calcium hydroxide remnants on the short and long term sealing ability of MTA apical barrier. MATERIALS & METHODS Fifty extracted human maxillary single-rooted teeth were collected. After extraction, the teeth were placed in sterile saline solution and then placed in 5.25% sodium hypochlorite (NaOCl) for five hours. They were then rinsed and again stored in saline solution. The teeth were radiographed and examined for fracture, and internal/external resorption. Clinical crowns were sectioned at the cement-enamel junction with a high-speed diamond saw (D&Z, Darmstadt, Germany) under copious water spray to create a standardized root length of 14mm. The canals were instrumented using K-files (Dentsply Maillefer, Tulsa, OK, USA) up to master apical file #40 and Gates-Glidden drills #1-4 (Dentsply, Maillefer, Tulsa, OK) in a step back manner. The access opening was sealed with Coltosol (Coltene, Altstatten, Switzerland). In order to develop apical resorption, the roots were submerged in melted rose wax (Cavex Holland, Netherlands) up to 3mm from the apex; subsequently waxed teeth were soaked in 20% sulfuric acid for four days. Subsequently, the The teeth were then randomly divided into two experimental groups (n=20) and two control groups (n=5). The apices of teeth were inserted into a box filled with wet foam to simulate spongy bone. In group 1 (n=20), pure calcium hydroxide mixed with distilled water (Cina Bartar, Tehran, Iran) was placed into the root canals using lentulo spiral (Moyco Union Brach, York, PA) for one week. A radiograph was taken to ensure complete coverage of the canal. The medicament was removed with stainless steel hand files (Dentsply, Maillefer, Tulsa, USA) and 0.5% NaOCl irrigation. In group 2 (n=20), inter canal medicament was not used. In both experimental groups, a 4-mm apical barrier of MTA (ProRoot MTA; Dentsply, Tulsa, USA) was placed into the canals. The MTA was mixed according to manufacturer and a messing gun was used to place the material as close as possible to the apex. A hand condenser was used to condense the material into the apex. Radiographs were taken to ensure proper placement and thickness of the MTA plug. Moistened paper points were placed in the canals and all specimens were stored at 37 C and 100% humidity for seven days. MTA was then tested to assure an adequate set. The remaining portion of the canal was obturated with warm gutta-percha and a coronal seal was achieved by 2-3 thicknesses of Coltosol (Coltene, Altstatten, Switzerland). Ten teeth served as positive and negative control. Root canals in positive control group were not filled. In the negative control group (n=5), the teeth were filled as in group 2 and all root surfaces and the MTA apical barrier were covered with two layers of nail varnish. Microleakage was measured by fluid filtration technique at two times (16,17). The fluid filtration system described by Moradi et al. was used in the present study (18). In this study, all the specimens were connected to fluid filtration system and the microleakage was measured. Then, the teeth were stored at 37 C and 100% humidity for three months and microleakage was

Bidar et al. 8 Table 1. The mean (±SD) microleakage in study groups at the two intervals (µl/min/cm H2O) Group G1 G2 Interval th th N 7 day 3 month 20 20 measured again. This system calculates bubble movement, and includes two parts: by a repeated measurement ANOVA. In all tests, the significance level was defined as =0.05. Part 1: tubes, micropipette, pipes and tooth sample that transfer pressure to the specimen. Part 2: recorder of fluid transport. In this study, for the first time, a digital camera (Olympus, C765, Japan- 5 mega pixel) and professional software (AutoCAD, 2006) was used to record and measure the amount of bubble displacement. RESULTS The camera was adjusted in the macrograph to take precise picture in a short distance. The apical end of the root (excluding apical foramen) was covered by cyanoacrylate glue (Inter Lock Co., Japan) and was inserted in a latex pipe (Guihua Co., China) and then the free end of the pipe was connected to the system. A balance in the system was achieved after thirty seconds and then the first picture of the bubble position in the micropipette was taken. Four subsequent pictures were taken with 2-minute time intervals (2, 4, 6 and 8 minutes after the first picture). The same steps were repeated for the next samples. Samples were then returned to their storage box for the next 3 months; the same steps were repeated for all samples. All pictures (5 for each tooth) were transferred to the computer. The bubble position in each picture was determined by professional software (AutoCAD 2006). These numbers (5 for each sample) were introduced to custom made software designed for accelerating the calculation. This software calculates the mean displacement of the bubble per minute and then with a specific quotient converts the longitudinal displacement of the bubble into the volume of fluid passing from the samples showing it as µl/min/cm H2O. As a result, one number was achieved for each sample that represented the amount of leakage in the root canal as µl/min/cm H2O (Figure 1). The preliminary analysis with the KolmogorovSmirnov test was used to confirm normal distribution of the data. The results were analyzed The mean microleakage statistics in L/ in/cm H2O are presented in Table 1. After one week and three months, analysis of the results showed that there was no significant difference between group 1 (with calcium hydroxide medication) and group 2 (without calcium hydroxide medication) (P>0.05). In both study groups, microleakage decreased after three months but this decrease was not statistically significant (P>0.05; power=80%). Samples showed no leakage in negative control and excessive immeasurable fluid leakage in positive control. DISCUSSION Before placing of MTA as an apical barrier in open-apex teeth, it has been recommended to medicate the canals with calcium hydroxide for one week, with subsequent removal using NaOCl and instrumentation (19). The rationale is to enhance disinfection of the root canal system in an open-apex tooth. However complete removal of calcium hydroxide from dentinal walls in these teeth is difficult and the remnants of calcium hydroxide may interfere with the proper seal of MTA apical plug. In this study, instrumentation and 0.5% NaOCl irrigation was used for removal of calcium hydroxide from root canal walls as utilizing higher concentrations of NaOCl in open apex teeth may cause a hypochlorite accident. The present research showed that medication with calcium hydroxide had no adverse effect on the sealing ability of the MTA plug. This result coincided with the results of Hachmeister et al. who found that one week calcium hydroxide therapy had no effect on the sealing ability of

Sealing properties of MTA 9 MTA in 70 days (20). They concluded that the remnants of calcium hydroxide on the root walls in an open apex do not affect the properties of MTA. However, our findings are in contrast to the findings of Stefopoulos et al. who found that calcium hydroxide pretreatment, adversely affected white MTA sealing ability (21). They assumed that calcium hydroxide may merely be a mechanical obstacle to MTA adaptation with the root canal walls or chemically react with white MTA. In their study, calcium hydroxide pretreatment had no effect on sealing properties of gray MTA. Another study investigated the effects of calcium hydroxide remnants along the canal walls on the sealing ability of gutta-percha and sealer. They found that a significant decrease in dye leakage in canals medicated with calcium hydroxide. They concluded that the calcium hydroxide reacts to form calcium carbonate, providing an initial decrease in permeability (22). The present study also showed that after three months, the microleakage of MTA decreased; although this decrease was not statistically significant. The improved apical seal after three months may contribute to the expansion of MTA in a wet environment. De Bruyne et al. found that the leakage of MTA decreased after one month although it showed an increase in the 6 th month (23). Martin et al. also found that the apical seal of MTA plugs improved after four weeks, although the difference between apical leakage in 48 hours and four weeks was not statistically significant (24). CONCLUSION This article presents an in vitro procedure and does not reflect the clinical condition; future studies focusing on the success rate of the MTA plug in vivo would further support this treatment option. ACKNOWLEDGMENTS This study was supported by the Dental Research Center of Mashad University of Medical Sciences. We would also like to thank Dr. Jafarzadeh for helpful assistance and Dr. Esmaili for performing the statistical analyses. Conflict of Interest: none declared. REFERENCES 1. Tronstad L. Tissue reactions following apical plugging of the root canal with dentin chips in monkey teeth subjected to pulpectomy. Oral Surg Oral Med Oral Pathol 1978;45:297-304. 2. Brandell DW, Torabinejad M, Bakland LK, Lessard GM. Demineralized dentin, hydroxylapatite and dentin chips as apical plugs. Endod Dent Traumatol 1986;2:210-4. 3. Rossmeisl R, Reader A, Melfi R, Marquard J. A study of freeze-dried (lyophilized) dentin used as an apical barrier in adult monkey teeth. Oral Surg Oral Med Oral Pathol 1982;53:303-10. 4. Schumacher JW, Rutledge RE. An alternative to apexification. J Endod 1993;19:529-31. 5. Torabinejad M, Chivian N. Clinical applications of mineral trioxide aggregate. J Endod 1999;25:197-205. 6. Shabahang S, Torabinejad M. Treatment of teeth with open apices using mineral trioxide aggregate. Pract Periodontics Aesthet Dent 2000;12:315-20. 7. Steinig TH, Regan JD, Gutmann JL. The use and predictable placement of Mineral Trioxide Aggregate in one-visit apexification cases. Aust Endod J 2003;29:34-42. 8. Keiser K, Johnson CC, Tipton DA. Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. J Endod 2000;26:288-91. 9. Torabinejad M, Ford TR, Abedi HR, Kariyawasam SP, Tang HM. Tissue reaction to implanted root-end filling materials in the tibia and mandible of guinea pigs. J Endod 1998;24:468-71. 10. Osorio RM, Hefti A, Vertucci FJ, Shawley AL. Cytotoxicity of endodontic materials. J Endod 1998;24:91-6. 11. Apaydin ES, Shabahang S, Torabinejad M. Hard-tissue healing after application of fresh or set MTA as root-end-filling material. J Endod 2004;30:21-4. 12. Shabahang S, Torabinejad M, Boyne PP, Abedi H, McMillan P. A comparative study of root-end induction using osteogenic protein-1, calcium hydroxide, and mineral trioxide aggregate in dogs. J Endod 1999;25:1-5. 13. Al-Hezaimi K, Naghshbandi J, Oglesby S, Simon JH, Rotstein I. Human saliva penetration of root canals obturated with two types of mineral trioxide aggregate cements. J Endod 2005;31:453-6. 14. Al-Kahtani A, Shostad S, Schifferle R, Bhambhani S. In-vitro evaluation of microleakage of an orthograde apical plug of mineral trioxide aggregate in permanent teeth with simulated immature apices. J Endod 2005;31:117-9. 15. Ghoddusi J, Asgary S, Parirokh M, Eghbal

Bidar et al. 10 MJ. Simulated root resorption: A new study model. Iranian Endod J 2008;2:152-5. 16. Pashley DH, Thompson SM, Stewart FP. Dentin permeability: effects of temperature on hydraulic conductance. J Dent Res 1983;62:956-9. 17. Wu MK, Wesselink PR. Endodontic leakage studies reconsidered. Part I. Methodology, application and relevance. Int Endod J 1993;26:37-43. 18. Moradi S, Naghavi N, Rohani E, Javidi M. Evaluation of microleakage following application of a dentin bonding agent as root canal sealer in the presence or absence of smear layer. J Oral Sci 2009;51:207-13. 19. Chhabra N, Singbal KP, Kamat S. Successful apexification with resolution of the periapical lesion using mineral trioxide ggregate and demineralized freeze-dried bone allograft. J Conserv Dent 2010;13:106-9. 20. Hachmeister DR, Schindler WG, Walker WA 3rd, Thomas DD. The sealing ability and retention characteristics of mineral trioxide aggregate in a model of apexification. J Endod 2002;28:386-90. 21. Stefopoulos S, Tsatsas DV, Kerezoudis NP, Eliades G. Comparative in vitro study of the sealing efficiency of white vs grey ProRoot mineral trioxide aggregate formulas as apical barriers. Dent Traumatol 2008;24:207-13. 22. Porkaew P, Retief DH, Barfield RD, Lacefield WR, Soong SJ. Effects of calcium hydroxide paste as an intracanal medicament on apical seal. J Endod 1990;16:369-74. 23. De Bruyne MA, De Bruyne RJ, Rosiers L, De Moor RJ. Longitudinal study on microleakage of three root-end filling materials by the fluid transport method and by capillary flow porometry. Int Endod J 2005;38:129-36. 24. Martin RL, Monticelli F, Brackett WW, Loushine RJ, Rockman RA, Ferrari M, Pashley DH, Tay FR. Sealing properties of mineral trioxide aggregate orthograde apical plugs and root fillings in an in vitro apexification model. J Endod 2007;33:272-5.