In Australia, as in much of the developed

Similar documents
The role of the gov and non gov in healthy food HHD UNIT 3 OUTCOME 2

Consuming a Varied Diet can Prevent Diabetes But Can You Afford the Added Cost? Annalijn Conklin 18 January 2017, Vancouver, Canada

Will Eating More Vegetables Trim Our Body Weight?

Journal of Epidemiology Vol. 13, No. 1 (supplement) January 2003

4 Nutrient Intakes and Dietary Sources: Micronutrients

Short guide for industry to the Nutrient Profiling Scoring Criterion in Standard Nutrition, health and related Claims

Adrienne Forsyth. Food and nutrition for journey-based outdoor education

USDA Food Patterns. Major points. What are the USDA Food Patterns? Update from the 2015 Dietary Guidelines Advisory Committee (DGAC) Report

ScienceDirect. Food Intake Patterns of Self-identified Vegetarians among the U.S. Population,

REVISED FLUORIDE NUTRIENT REFERENCE VALUES FOR INFANTS AND YOUNG CHILDREN IN AUSTRALIA AND NEW ZEALAND

Nutrition Requirements

Classes of Nutrients A Diet

Dietary Guidelines for Americans

WHAT ARE AUSSIE KIDS

THE CANCER COUNCIL VICTORIA INFORMATION FOR USERS OF DIETARY QUESTIONNAIRE

ASSESSING CALORIES INTAKE AND MAJOR NUTRIENTS OF MORADABAD SCHOOL GOING CHILDREN

Higher Fruit Consumption Linked With Lower Body Mass Index

Supporting and Implementing the Dietary Guidelines for Americans in State Public Health Agencies

Food Consumption Data in Microbiological Risk Assessment

Establishing new principles for nutrient reference values (NRVs) for food labeling purposes*

USDA Smart Snacks in Schools

Development of a Food Frequency Questionnaire in Japan. Chigusa Date1, Momoko Yamaguchi2, and Heizo Tanaka3

Dairy and health. The role of milk, milk products and cheese in a healthy diet

Understanding Nutrition and Health Level 2 SAMPLE. Officially endorsed by

Development of the Eating Choices Index (ECI)

IN THE GENERAL ASSEMBLY STATE OF. Competitive School Food and Beverage Act. Be it enacted by the People of the State of, represented in the General

Chapter 2. Planning a Healthy Diet

Purchasing Patterns for Nutritional-Enhanced Foods: The case of Calcium-Enriched Orange Juice

This presentation was supported, in part, by the University of Utah, where Patricia Guenther has an adjunct appointment.

Salt milligrams. Search Search

SMART SNACKS IN SCHOOL. USDA s All Foods Sold in School Nutrition Standards New for Snacks and Beverages

FINAL ASSESSMENT REPORT PROPOSAL P295 CONSIDERATION OF MANDATORY FORTIFICATION WITH FOLIC ACID. Attachments 7a and 7b

Higher protein, low GI diets evidence and practical considerations Manny Noakes CAFHS and SAF Workshop Sustainable diets

Mapping Food Supply and Demand: Data Inputs, Metrics and Measures

A FOOD FREQUENCY QUESTIONNAIRE TO DETERMINE THE INTAKE OF VITAMIN C: A PILOT VALIDATION STUDY

DIETARY RISK ASSESSMENT IN THE WIC PROGRAM

Food for Thought: Children s Diets in the 1990s. March Philip Gleason Carol Suitor

AWASH - Consumer survey findings SURVEY OF AUSTRALIAN CONSUMER AWARENESS AND PRACTICES RELATING TO SALT REPORT

Research Article A Study to Assess Relationship Between Nutrition Knowledge and Food Choices Among Young Females

Issues in assessing the validity of nutrient data obtained from a food-frequency questionnaire: folate and vitamin B 12 examples

Nutrition for health and physical activity

2. food groups: Categories of similar foods, such as fruits or vegetables.

MONITORING UPDATE. Authors: Paola Espinel, Amina Khambalia, Carmen Cosgrove and Aaron Thrift

A Fact Sheet for Parents and Carers Healthy Eating for Diabetes

Lorem ipsum. Do Canadian Adolescents Meet their Nutrient Requirements through Food Intake Alone? Health Canada, Key findings: Introduction

Prospective study on nutrition transition in China

Dietary Assessment: Practical, Evidence-Based Approaches For Researchers & Practitioners

NATIONAL NUTRITION WEEK 2012: A Food Guide to Healthy Eating

Suggested Answers Part 1 The research study mentioned asked other family members, particularly the mothers if they were available.

Project Officer Australian Alcohol Guidelines Evidence Translation Section NHMRC GPO Box 1421 CANBERRA ACT December 11, 2007

The Cost-Effectiveness of Individual Cognitive Behaviour Therapy for Overweight / Obese Adolescents

The Rockefeller Report I. The Rockefeller Report II. The Rockefeller Study. The Mediterranean Diet MEDITERRANEAN DIET. Antonia Trichopoulou, MD.

THE CONTRIBUTION OF SCHOOL LUNCH ON ACTUAL ENERGY AND NUTRIENT INTAKES AMONG SELECTED FILIPINO HIGH SCHOOL STUDENTS

METHODOLOGY OVERVIEW: WOMEN S DIETARY DIVERSITY PROJECT I (WDDP-I)

EAT FOR HEALTH. Australian Dietary Guidelines

The sugar reduction environment. Professor Julian G. Mercer Rowett Institute

The Food Guide Pyramid

Janis Baines Section Manager, Food Data Analysis, Food Standards Australia New Zealand. Paul Atyeo Assistant Director, ABS Health Section

Chapter 2 Nutrition Tools Standards and Guidelines

Reserve the computer lab. You will need one computer for each student. Earphones are recommended.

Patterns: A Nigerian Example

MyPlate.gov Assignment

School Canteen/Food Service Policy What is a Healthy School Food Service? A healthy school food service:

COMMISSION OF THE EUROPEAN COMMUNITIES REPORT FROM THE COMMISSION TO THE COUNCIL

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

WILL KIDS EAT HEALTHIER SCHOOL LUNCHES?

Grains, Grain-based foods and Legumes Staples in the Diet. Australian Dietary Guidelines. Dietary Guidelines for Australian Adults 2003

Sugar-Sweetened Beverage Intake among EFNEP Participants An Evaluation Using the National EFNEP Database

FINDIET 2007 Survey: energy and nutrient intakes

Dietary intake of older Victorians

A new approach to measuring Indian diet diversity: Healthy Eating Index

Health Impact Assessment

Nutrition Requirements

Chapter 2-Nutrition Tools Standards and Guidelines

Full Analyses of Meal Plans Summary Tables

Healthcare expenditure and productivity cost savings resulting from increased intake of grain fibre in Australia.

Canada s Food Supply: A Preliminary Examination of Changes,

Dietary intake in male and female smokers, ex-smokers, and never smokers: The INTERMAP Study

Exploring the Evidence on Dietary Patterns: The Interplay of What We Eat and Health

Dietary interventions in management of adults with overweight and obesity

Food Specialisations

MAKING A DIFFERENCE FOR DAIRY

SQUEEZING OUT THE EVIDENCE

Gloucester Public School Canteen Menu Feedback

Cost of the Diet: a Method and New Software

Secondary school food survey School lunch: provision, selection and consumption

Full file at Designing a Healthful Diet

Milk Facts. A sciencebased. discussion. Presenter Name Presenter Title Presenter Organization

The Nutritional Information Panel is a pretty technical looking piece of artwork and the main question people ask about it WHAT DOES IT ALL MEAN?

Iodine Deficiency in the UK Scientific Advisory Committee on Nutrition. Dr Alison Tedstone Department of Health

The popularity of eating out is a

MyPlate Web Quest. Name: Go to Click on MyPlate on the menu bar Click on Food Groups Overview

Dietary Guidelines Executive Summary

T h e curren t issu e an d full text archiv e of this jou rnal is av ailable at eraldinsight.com / X.htm

Lorem ipsum. Do Canadian Adolescents Meet their Nutrient Requirements through Food Intake Alone? Health Canada, 2009

Healthcare and productivity savings from increased intake of grain fibre in New Zealand.

Country Report: Sweden General Conclusions Basic Facts Health and Nutrition Health Related Initiatives Climate Change

Nutrition Intake of Children at the Caribou Child Care Centre

Transcription:

Most Australians do not meet recommendations for dairy consumption: findings of a new technique to analyse nutrition surveys Abstract Objective: To describe the pattern of dairy consumption in Australians aged 12 years and over, and assess the extent to which the population meets national recommendations. Methods: We developed a new method of combining quantitative data from a 24-hour dietary recall questionnaire with semiquantitative data from a food frequency questionnaire (FFQ), to investigate the usual patterns of dairy consumption. We applied this technique to data from the 9,096 Australians aged 12 and over who completed the FFQ part of the most recent nationally representative nutrition study the 1995 National Nutrition Survey. Results: When weighted according to the characteristics of the Australian population, 58% of male and 73% of female FFQ respondents failed to regularly meet recommendations for consumption of dairy products. While mean dairy consumption was higher in adolescents, 62% of boys and 83% of girls failed to meet their higher recommendation of three serves per day. Breastfeeding women appeared to consume more dairy but 60% consumed less than two serves per day. Conclusions and Implications: Given accumulating evidence of protective effects of dairy foods for a range of metabolic and cardiovascular disorders, our observations warrant a focus on the development of cost-effective public health interventions to increase dairy consumption. Key words: dairy products, nutrition surveys, nutrition policy, epidemiology, diet Aust NZ J Public Health. 2012; 36:236-40 doi: 10.1111/j.1753-6405.2012.00870.x James C. Doidge, Leonie Segal Health Economics and Social Policy Group, Sansom Institute for Health Research, University of South Australia In Australia, as in much of the developed world, there is concern about the quality of the diet. Diet-related diseases are now responsible for considerable ill health, resulting in premature death, morbidity and increased costs of healthcare as well as affecting the overall level of economic production. 1,2 To reduce both the individual and societal impacts of unhealthy diet, many countries support a range of nutrition interventions. 3-5 The information required to identify and develop well-targeted public health interventions are: (i) evidence-based nutrition guidelines (an understanding of optimal diets), (ii) knowledge of dietary patterns of the population (deviations from the optimum), (iii) a means of relating dietary patterns to recommended dietary guidelines (common units), and (iv) knowledge of effective intervention strategies for modifying diet. The Australian Government, through the National Health and Medical Research Council (NHMRC), publishes both broadly phrased food-based dietary guidelines (FBDGs) such as eat plenty of vegetables, legumes and fruits as well as a food selection guide (FSG) that provides quantitative recommendations for daily consumption, in standard serve units defined for each of five core food groups. These are combined and summarised in the consumer-targeted booklet, Food for Health: Dietary guidelines for Australians A guide to healthy eating. 10 This paper focuses on one food group dairy products. With their complex nutritional composition 6,7 and biologically active components, 8 dairy foods can be an integral component of a balanced diet. 9,10 There is an increasing body of evidence that connects consumption of dairy foods with improved health outcomes, especially through improved weight control 11 and reduction in the risk of metabolic and cardiovascular disorders. 12,13 Given the increasing burden of these diseases, it is important to understand the patterns of dairy consumption in the community relative to recommendations. Here, the term dairy primarily refers to milk, cheese and yoghurt; the specific dairy foods highlighted in NHMRC publications. Australian recommendations are that people include milk, yoghurts, cheeses and/ or alternatives and that those aged four years and older should aim for a minimum of 2-3 serves of these per day, depending on age and gender. 10 For example, the recommended minimum is three serves for people aged 12-18 years due to their increased requirements for calcium. 10 Some publications based on the FSG also suggest that breastfeeding women aim for three serves due to their increased requirements for zinc. 9 There is a paucity of information on the existing dietary patterns of Australians, 14 and much of this is focused on the adequacy of intake of specific nutrients, rather than whole foods or food groups. 15 The 2007 Australian National Children s Nutrition and Physical Submitted: June 2011 Revision requested: September 2011 Accepted: January 2012 Correspondence to: Mr James C. Doidge, Health Economics and Social Policy Group, University of South Australia City East Campus, GPO Box 2471, Adelaide, SA 5001; e-mail: James.Doidge@UniSA.edu.au 236 AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH 2012 vol. 36 no. 3

Australians do not meet recommendations for dairy consumption Activity Survey (ANCNPAS) was the first national survey to attempt to relate patterns of dairy consumption to recommended numbers of daily serves. This was done using calcium intake as a proxy; calculating the proportion of children, who met the estimated average requirement (EAR) for dietary calcium in one 24-hour period, adjusted for within-person variance. Based on dietary calcium intake, dairy consumption was estimated to be adequate in 99% of 2-3 year olds, but declined rapidly with age, to as little as 18% in girls aged 14-16 years. 15 The most recent national survey of adult Australians diet is the 1995 National Nutrition Survey (NNS). 16 When the NNS was conducted, there were no quantitative recommendations for dairy foods, and to date no publication has examined the dairy consumption data from the NNS in standard serve units or related dairy consumption to the more recent FSG. Published descriptions of this data provide only limited statistics (mean, median, etc) 17 that are unsuitable for interpretation of skewed distributions with respect to any threshold such as a recommended minimum. This article presents the findings of an analysis of dairy food consumption in the NNS, 18 translating the data into standard serve units in order to relate findings to published recommendations. We demonstrate a new approach to estimating distribution parameters, providing healthcare researchers with quantitative data for use in modelling or for comparison with other studies such as the forthcoming Australian Health Survey. It also provides clinical healthcare workers and policy makers with an insight into the epidemiology of low dairy consumption in Australia. Methods A full description of the methods for data collection in the NNS has been reported by the Australian Bureau of Statistics (ABS). 16 Data was collected from a subsample of 13,858 Australians aged two and over who were respondents to the 1995 National Health Survey (NHS). The NHS surveyed an area-based stratified random sample of 57,633 Australians, with a 97% response rate. From this group, 22,562 were selected to participate in a subsequent face-to-face interview for the NNS, of whom 61% participated. Differences between respondents and non-respondents (based on individual characteristics reported in the NHS) have been noted and discussed by the ABS, with corresponding adjustments made to sample weights. 16 The NNS included three components: (i) a 24-hour dietary recall questionnaire which provided quantitative estimates of intake for a wide range of foods and nutrients (grams, milligrams, etc); (ii) a food frequency questionnaire (FFQ) completed by 9,096 (76% of) participants aged 12 or over, providing qualitative and semiquantitative information on the frequency of consumption for 107 foods and 11 dietary supplements, as well as questions about the frequency of several food habits over the past 12 months; and (iii) a second 24-hour recall that was completed by approximately 1,500 participants that was used by the ABS to remove the statistical effect of within-person variance from their estimates of the standard error for specific nutrient values, but not for foods or food groups such as dairy. The present analysis uses a different method combining data from the FFQ with data from the first 24-hour recall to estimate the actual distribution of dairy consumption by age and gender. The FFQ included questions on nine types of dairy food, which together account for nearly all the common foods for which milk is a main ingredient. The only apparent exceptions were butter and custard (use of butter as opposed to other spreads or cooking oils was considered separately in the FFQ, as a food habit). For each of the nine types of dairy, participants selected the most appropriate of either not applicable or one of nine semiquantitative responses: never/less than once a month, 1-3 times per month, once per week, 2-4 times per week, 5-6 times per week, once per day, 2-3 times per day, 4-5 times per day, or 6+ times per day. The ABS converted the 24-hour recall data into a set of values detailing the total intake for a range of micro and macronutrients and foods, including milk products and dishes. More detailed quantitative data on the individual types of dairy food were not provided in the available dataset. When weighted according to the characteristics of the 1995 Australian population, this data provides an estimate of the mean daily dairy consumption across the population as a whole that is theoretically unbiased; however, the distribution would have been affected by the within-person variance. The FFQ, on the other hand, provides less-precise measures of quantity but a relatively precise measure of frequency (because of the narrow categories for response) that is unaffected by daily variance in foods consumed. If the quantity consumed varies proportionally with frequency of consumption (an assumption explored further below), then the distribution of quantity can be approximated by adjusting individual measures of frequency proportional to the ratio of mean quantity to mean frequency (the mean portion size). To do this, a measure of dairy frequency was constructed by converting the nine dairy items from the FFQ into quantitative measures of daily frequency and then summing the results. Not applicable and never/less than once a month were considered equal to zero times per day; for any other range of values, the response was considered equal to the midpoint of the range. Dairy Australia maintains a database of annual estimates of the per capita consumption of milk, cheese and yoghurt from all sources, including retail sales, food service and industrial or manufacturing channels (thus encompassing some wastage and more processed dairy products). 19 Adopting guideline-consistent standard serve sizes of 250 ml, 40 g, and 200 g for milk, cheese and yoghurt, respectively, 9 the mean mass per serve for total dairy consumption was estimated for the years 1985/86 to 2009/10 (Figure 1; average mass per serve = total mass of dairy / total number of serves). The per capita consumption of cheese and yoghurt have increased in absolute and relative terms over the past few decades, while consumption of milk has remained relatively constant. This has resulted in a downward trend in the mean mass of a standard serve of dairy foods, from approximately 180 g in 1985 to 160 g in 2009/10. We divided the total mass of dairy foods consumed by each participant in the NNS by the mean mass of a standard serve 2012 vol. 36 no. 3 AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH 237

Doidge and Segal Figure 1: Per capita daily consumption of milk, cheese and yoghurt from all sources (industry estimates), and the resulting average size of a standard serve* in Australia. Serves per day 2.5 2 1.5 1 0.5 0 Mean grams per serve 1985 1990 1995 2000 2005 yoghurt (200 g) cheese (40 g) milk (250 ml) 190 180 170 160 150 140 130 120 * Assuming standard serve sizes of 250 ml for milk, 200 grams for yoghurt and 40 grams for cheese. Grams per serve (170 g in 1995/96) to estimate the number of standard serves of dairy consumed by each participant in the 24-hour recall questionnaire. Measures of individual dairy frequency in standard serves were then multiplied by the age- and gender-specific ratio of mean dairy quantity to mean dairy frequency. In this way, we produced a distribution of daily dairy intake that had the same shape as the age- and gender-specific distribution of dairy frequency, but with a mean that was equal to the age- and gender-specific mean quantity. By allowing the ratio of mean quantity to mean frequency (i.e. mean portion size) to vary according to both age and gender, the underlying assumption was less restrictive, and simply assumed a proportional relationship within age and gender subgroups of the population. This assumption was supported by linear regression analyses of quantity upon frequency that returned highly significant coefficients (p<0.001) in each stratum. The statistical formula underlying the transformation is presented in the following equation (means are age- and gender-specific): daily dairy quantity = dairy frequency mean 24-hour dairy consumption mean dairy frequency The relationship between breastfeeding status ( currently breastfeeding a child, has breastfed a child within the last three years, and not stated, not applicable, has not breastfed a child within the last three years ) and dairy consumption was also explored in female participants aged between 18 and 49 years; Figure 2: Per capita daily consumption of dairy foods, and the average size of a standard serve in Australia (from industry estimates). 238 AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH 2012 vol. 36 no. 3

Australians do not meet recommendations for dairy consumption this group included all women who reported either currently or recently breastfeeding. All estimates were weighted according to characteristics of the 1995 Australian population (weights provided by the ABS), and all analyses were performed using PASW Statistics 18 software (SPSS / IBM Corporation, Somers USA). Results Both quantity and frequency of consumption were found to vary according to age and gender. The associations with quantity have previously been reported by the ABS. 20 Frequency of dairy consumption was found to increase with both age and male gender up to about age 30, after which it remained fairly constant and similar between genders. The distribution of daily dairy consumption in Australia, by age and gender, is presented in Figure 2. The results show that when the NNS FFQ respondents are weighted according to the characteristics of the 1995 Australian population, 24% of male and 32% of females consumed less than 1 standard serve of dairy per day, while 55% of male and 71% of females consumed less than two serves per day. Although mean consumption was higher amongst adolescents, most were still not meeting recommendations, especially adolescent girls of whom 83% consumed less than three serves per day (c.f. 62% for adolescent boys). The spike seen in Figure 3 at age 19 is an artefact of the change in recommendation from three to two serves per day. The relationship between breastfeeding and dairy consumption was obscured by the fact that 88% of women aged 18-49 responded not applicable, with only a small sample of breastfeeding women. Among the 2% of the subgroup who were currently breastfeeding, 40% consumed at least two serves per day. Among women who had breastfed within the past three years, 32% consumed at least two serves per day, suggesting that consumption dairy falls after breastfeeding. Of the women who responded not applicable, 29% consumed at least two serves per day. Discussion Our analysis indicates that most Australians consume less than the recommended minimum intake of dairy foods. While dairy consumption was somewhat higher in both adolescents and breastfeeding women, most still do not meet recommendations, which is of particular concern given their nutritional requirements. While the dataset upon which this analysis was based is not recent, the results are consistent with the findings of the more recent 2007 ANCNPAS that 44% of boys aged 14-16 and 82% of girls aged 14-16 did not meet the EAR for calcium intake. Until more pertinent dietary data is collected, the actual situation will remain uncertain. International comparisons of dairy intake are limited by the nature of published data, with only population means usually published. Mean Australian consumption of dairy products was 289 g NNS 20 which, according to the industry-reported milk:cheese:yoghurt ratio for that year, equates to 1.7 standard serves. This is similar to the mean dairy intake for the US population of 1.8 cups reported by the United States Department of Agriculture, 15 and a bit less than the 366 g (women) and 404 g (men) reported in the United Kingdom. 16 As far as we are aware, this analysis provides the only description of the pattern of dairy consumption in Australian adults that allows comparison with recommended daily consumption. The findings should enable an analysis of trends in dairy consumption in recent decades, by comparison with data from the forthcoming national dietary surveys. The methods could also be used in the interpretation of dietary data collected in various cohorts, such as the Women s Health Survey. 15 Our approach of combining semiquantitative data from a food frequency questionnaire with quantitative data, such as provided by recall questionnaires or food diaries, provides information that enhances understanding of dietary patterns. With non-normal distributions, such as those found in consumption of dairy and other food groups, estimates of mean, median or variance cannot be used to accurately determine the extent to which the population is meeting recommendations. The data required to implement this analysis can be collected in a single encounter with the participant, which has the potential to reduce costs and increase participation rates. Figure 3: Portion of Australians consuming the recommended minimum daily serves of dairy, by age and gender, 1995. Males Females 100% 100% 75% 50% 25% 0% 12 15 19 25 29 35 39 45 49 55 59 Age (years) 65 69 75 79 75% 50% 25% 0% 12 15 19 25 29 35 39 45 49 Age (years) 55 59 65 69 75 79 The light bars represent portions meeting recommendations while the dark bars represent the portions who consume less than the recommended serves of dairy. The recommendation was considered to be 3 serves per day for both genders aged 12 18 years and 2 serves per day for all other demographics based on recommendations in Food For Health 10 (pregnant women were only considered to have a recommendation of 2 serves per day for this analysis). 2012 vol. 36 no. 3 AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH 239

Doidge and Segal The main limitation in our application of the approach was the grouping of all dairy foods together that, in effect, assumes that individuals consumed the same relative proportions of milk-, cheese- and yoghurt-based products. This assumption was adopted because of limitations in our quantitative data. While it would have been technically possible to adjust individual quantity estimates for proportional differences in frequency by dairy food, this would have involved a stronger assumption about the proportional relationship between quantity and frequency, specifically that it applies at the individual level, reintroducing an effect of within-person variance, which is undesirable. Future applications of the technique could more precisely estimate dairy consumption by analysing quantitative responses by type of dairy food. Both in nutrition research and in the associated media, much attention is devoted to Australians low consumption of fruit and vegetables, and to the overconsumption of junk foods. Given the growing evidence connecting dairy consumption to prevention of chronic disease, 11-13 and the gross departure from guidelines indicated by this and other analyses, there is strong justification for promoting increased dairy consumption in public health campaigns to improve diet in Australia, especially among adolescent populations. This would ideally be supported by the regular collection of data on dietary patterns, including consumption by type of dairy food and population subgroup to monitor the impact of public health nutrition interventions. Acknowledgements This study formed part of a larger analysis that was funded by a grant from Dairy Australia. Dairy Australia provided industry estimates for per capita consumption of milk, cheese and yoghurt from all sources, but otherwise had no role in the development, analysis, or drafting of this article, or in the decision to publish. The authors declare that there were no other personal or financial conflicts of interest. Findings based on use of ABS CURF data References 1. Begg S, Voss T, Barker B, Stevenson C, Stanley L, Lopez A. The Burden of Disease and Injury in Australia, 2003. Canberra (AUST): Australian Institute of Health and Welfare; 2007. 2. Lester I. Australia s Food and Nutrition. Canberra (AUST): Australian Institute of Health and Welfare; 1994. 3. National Healthy School Canteens. National Healthy School Canteens: Home [Internet]. Canberra (AUST): Commonwealth Department of Health and Ageing; 2011 [cited 2011 May 2]. Available from: www.nhsc.com.au 4. U.S. Department of Agriculture, U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th ed. Washington (DC): U.S. Government Printing Office; 2010. 5. The National Archives. Nutrition Publications [Internet]. London (UK): United Kingdom Food Standards Agency; 2010 [cited 2011 Apr 27]. Available from: http://food.gov.uk/aboutus/publications/nutritionpublications/ 6. Haug A, Hostmark AT, Harstad OM. Bovine milk in human nutrition--a review. Lipids Health Dis. 2007;6:25. 7. Månsson HL. Fatty acids in bovine milk fat. Food Nutr Res. 2008;52. PubMed PMCID: PMC2596709. 8. Ebringer L, Ferenčík M, Krajčovič J. Beneficial health effects of milk and fermented dairy products. Folia Microbiol (Praha). 2008;53(5):378-94. 9. Kellet E, Smith A, Schmerlaib Y. The Australian Guide to Health Eating. Canberra (AUST): Commonwealth Department of Health and Ageing; 1998. 10. National Health and Medical Research Council. Food for Health: Dietary Guidelines for Australians A Guide to Healthy Eating. Canberra (AUST): Commonwealth Department of Health and Ageing; 2005. 11. Dougkas A, Reynolds CK, Givens ID, Elwood PC, Minihane AM. Associations between dairy consumption and body weight: a review of the evidence and underlying mechanisms. Nutr Res Rev. 2011;15:1-24. 12. Elwood P, Pickering J, Givens D, Gallacher J. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: an overview of the evidence. Lipids. 2010;45(10):925-39. 13. Ralston RA, Lee JH, Truby H, Palermo CE, Walker KZ. A systematic review and meta-analysis of elevated blood pressure and consumption of dairy foods. J Hum Hypertens. 2011;10:10. 14. Mogan E. Fruit and Vegetable Consumption and Waste in Australia. Melbourne (AUST): VicHealth; 2009. 15. Coblac L, Bowen J, Burnett J, Syrette J, Dempsey J, Balle S, et al. 2007 Australian National Children s Nutrition and Physical Activity Survey: Main Findings. Canberra (AUST): Commonwealth Department of Health and Ageing; 2008. 16. McLennan W, Podger A. National Nutrition Survey (1995): Users Guide. Canberra (AUST): ABS; 1998. 17. McLennan W, Podger A. National Nutrition Survey (1995): Nutrient Intakes and Physical Measurements. Canberra (AUST): ABS; 1998. 18. Australian Bureau of Statistics. National Nutrition Survey (1995). Basic CURF, CD-ROM edition; 1995. Canberra (AUST): ABS; 1995. 19. Dairy Australia. Dairy Industry Statistics: Consumption Summary. Melbourne (AUST): Dairy Australia; 2011. 20. McLennan W, Podger A. National Nutrition Survey: Foods Eaten, Australia, 1995. Canberra (AUST): ABS; 1999. 240 AUSTRALIAN AND NEW ZEALAND JOURNAL OF PUBLIC HEALTH 2012 vol. 36 no. 3