EPI Case Study 4: Using Molecular Epidemiology in a TB Contact Investigation Estimated Time to Complete Exercise: 1 hour 30 minutes

Similar documents
Please evaluate this material by clicking here:

Primer on Tuberculosis (TB) in the United States

Investigation of Contacts of Persons with Infectious Tuberculosis, 2005

Chapter 7 Tuberculosis (TB)

EPI Case Study 2: Reliability, Validity, and Tests of Agreement in M. Tuberculosis Screening Time to Complete Exercise: 30 minutes

TUBERCULOSIS CONTACT INVESTIGATION

Fundamentals of Tuberculosis (TB)

Contact Investigation

MEMORANDUM. Re: Guidance for follow-up of newly-arrived individual with Class B1 Tuberculosis Pulmonary Tuberculosis, no treatment

Stop TB Poster (laminated copies are available from TB Control: )

Tuberculosis What you need to know. James Zoretic M.D., M.P.H. Regions 2 and 3 Director

"GUARDING AGAINST TUBERCULOSIS IN HEALTHCARE FACILITIES"

"GUARDING AGAINST TUBERCULOSIS IN INSTITUTIONAL FACILITIES"

INDEX CASE INFORMATION

FLORIDA DEPARTMENT OF JUVENILE JUSTICE DETENTION SERVICES FACILITY MEDICAL POLICIES

What s New in TB Infection Control?

MEMORANDUM. Re: Guidance for follow-up of newly-arrived Individual with a Class B1 Tuberculosis Extrapulmonary Tuberculosis

TUBERCULOSIS. Presented By: Public Health Madison & Dane County

Tuberculosis 6/7/2018. Objectives. What is Tuberculosis?

TB In Detroit 2011* Early TB: Smudge Sign. Who is at risk for exposure to or infection with TB? Who is at risk for TB after exposure or infection?

TB Contact Investigation Basics

"GUARDING AGAINST TUBERCULOSIS AS A FIRST RESPONDER"

TB is Global. Latent TB Infection (LTBI) Sharing the Care: Working Together. September 24, 2014

Replaces: 02/11/16. Formulated: 7/95 EMPLOYEE TB TESTING

2017/2018 Annual Volunteer Tuberculosis Notice

Intensified TB case finding among PLHIV and vulnerable population Identifying contacts Gunta Kirvelaite

Clinical Practice Guideline

TB Contact Investigation

TB IN EMERGENCIES. Disease Control in Humanitarian Emergencies (DCE)

Contact Investigation and Prevention in the USA

TB Program Management San Antonio, Texas November 5-7, 2008

Tuberculosis Procedure ICPr016. Table of Contents

TB Nurse Case Management Norman, Oklahoma October 8-10, 2008

All you need to know about Tuberculosis

Preventing Tuberculosis (TB) Transmission in Ambulatory Surgery Centers. Heidi Behm, RN, MPH TB Controller HIV/STD/TB Program

Self-Study Modules on Tuberculosis

Appendix C. Recommendations for Counting Reported Tuberculosis Cases (Revised July 1997)

TUBERCULOSIS IN HEALTHCARE SETTINGS Diana M. Nilsen, MD, FCCP Director of Medical Affairs, Bureau of Tuberculosis Control New York City Department of

When Can Isolation Be Discontinued?

Contact Investigation Overview

HEALTHWEST PROCEDURE. No Revised by: Effective: December 1, 1995 Revised: April 19, 2017 Environment of Care Committee

TB and Respiratory Protection

Tuberculosis (TB) and Infection Control PICNET Conference April 12, 2013

Tuberculosis & Refugees in Philadelphia

TB in Corrections Phoenix, Arizona

Appendix B. Recommendations for Counting Reported Tuberculosis Cases (Revised July 1997)

TB Clinical Guidelines: Revision Highlights March 2014

Communicable Disease Control Manual Chapter 4: Tuberculosis

Symptoms Latent TB Active TB

Learning Objectives: Case 1 11/12/2015. Tuberculosis: Focus on Transmission and Pathogenesis. TB: Some Important Terms

These recommendations will remain in effect until the national shortage of PPD solution has abated.

Tuberculosis Tools: A Clinical Update

Tuberculosis. Impact of TB. Infectious Disease Epidemiology BMTRY 713 (A. Selassie, DrPH)

Targeted Testing and the Diagnosis of. Latent Tuberculosis. Infection and Tuberculosis Disease

Tuberculosis in Chicago 2007

TUBERCULOSIS CONTACT INVESTIGATION

Appendix B. Recommendations for Counting Reported Tuberculosis Cases (Revised July 1997)

Tuberculosis and Diabetes Mellitus. Lana Kay Tyer, RN MSN WA State Department of Health TB Nurse Consultant

CHAPTER 3: DEFINITION OF TERMS

11/3/2009 SECOND EDITION Madhukar Pai McGill University. ISTC Training Modules Introduction

Tuberculosis (TB) Fundamentals for School Nurses

What is tuberculosis? What causes tuberculosis?

Director, University Health Services. Medical Director

Proposed Regs.pdf

TB Screening Guidelines for Transitional Care Unit

VERSION STUDENT. Outbreak of Tuberculosis in a Homeless Men s Shelter. Cases in Population-Oriented Prevention (C-POP)-based teaching cases

Latent Tuberculosis Infection (LTBI) Questions and Answers for Health Care Providers

17-ID-09. Title: Establishing a Case Definition for Latent TB Infection (TB Infection)

Northwestern Polytechnic University

Annual Tuberculosis Report Oregon 2007

Chapter 5 Treatment for Latent Tuberculosis Infection

TB & HIV CO-INFECTION IN CHILDREN. Reené Naidoo Paediatric Infectious Diseases Broadreach Healthcare 19 April 2012

TB Skin Test Practicum Houston, Texas Region 6/5 South September 23, 2014

(a) Infection control program. The facility must establish an infection control program under which it--

Epidemiological Methods in TB

Tuberculosis in Alameda County, 2009

At the end of this session, participants will be able to:

Molecular Epidemiology of Tuberculosis. Kathy DeRiemer, PhD, MPH School of Medicine University of California, Davis

Diagnosis and Treatment of Tuberculosis, 2011

Why need to havetb Clearance. To Control and Prevent Tuberculosis

Tuberculosis Populations at Risk

Molecular Epidemiology of Extrapulmonary Tuberculosis

Contact Investigation San Antonio, Texas January 14-15, 2013

Latent Tuberculosis Infection Reporting Instructions for Civil Surgeons Using CalREDIE Provider Portal

Mycobacterial Infections: What the Primary Provider Should Know about Tuberculosis

Diagnosis and Medical Management of TB Infection Lisa Y. Armitige, MD, PhD September 12, TB Nurse Case Management September 12 14, 2017

July 13, 1990 / 39(RR-10);7-20

Questions and Answers About

Outline. Tuberculosis (TB) Medical Evaluation for TB 5/5/2014. Chest Radiograph with Lower Lobe Cavity

Diagnosis and Medical Management of Latent TB Infection

Name Age Birthday / / Sex Last First MI. Home Address Street Apt City State Zip Code Home phone: ( ) Cell phone: ( ) Name of parent(s) or guardian:

ANNUAL TUBERCULOSIS REPORT OREGON Oregon Health Authority Public Health Division TB Program November 2012

Etiological Agent: Pulmonary Tuberculosis. Debra Mercer BSN, RN, RRT. Definition

ACTIVE TUBERCULOSIS IN MACOMB COUNTY, A Review of TB Program Data,

TB Infection Control in Healthcare Settings

Clinical and Public Health Impact of Nucleic Acid Amplification Tests (NAATs) for Tuberculosis

ORCA BUSINESS CARDHOLDER RULES OF USE

Core Curriculum on Tuberculosis: What the Clinician Should Know

Jessica Quintero, BAAS has the following disclosures to make:

Transcription:

EPI Case Study 4: Using Molecular Epidemiology in a TB Contact Investigation Estimated Time to Complete Exercise: 1 hour 30 minutes LEARNING OBJECTIVES At the completion of this case study, participants should be able to: Understand the goals of a tuberculosis (TB) interview in a TB contact investigation Be familiar with the criteria used to decide when a TB investigation should be initiated Define an outbreak Identify the steps you would take in investigating an outbreak Create a line list Distinguish between a case-control and a cohort study Calculate a relative risk and use confidence intervals to identify a statistically significant association between an exposure and an outcome Explain the difference between an epidemiologic and molecular link in a TB contact investigation Explain how molecular information could be used in an outbreak investigation ASPH EPIDEMIOOGY COMPETENCIES ADDRESSED C.2. Identify the principles and limitations of public health screening programs C.3. Describe a public health problem in terms of magnitude, person, place, and time C.6. Apply the basic terminology and definitions of epidemiology C.7. Calculate basic epidemiologic measures C.9. Draw appropriate inference from epidemiologic data ASPH INTERDISCIPLINARY/CROSS-CUTTING COMPETENCIES ADDRESSED I. Public Health Biology I.4. Explain the biological and molecular basis of public health I.8. Apply biological principles to development and implementation of disease prevention, control, or management programs Please evaluate this material by clicking here: http://www.zoomerang.com/survey/?p=web229tewjzq32 This material was developed by the staff at the Global Tuberculosis Institute (GTBI), one of four Regional Training and Medical Consultation Centers funded by the Centers for Disease Control and Prevention. It is published for learning purposes only. Permission to reprint excerpts from other sources was granted. Case study author(s) name and position: George Khalil, MPH (work done as MPH candidate) Mark Wolman, MPH Marian R. Passannante, PhD Associate Professor, University of Medicine & Dentistry of New Jersey, New Jersey Medical School and School of Public Health and Epidemiologist, NJMS, GTBI For further information please contact: New Jersey Medical School Global Tuberculosis Institute (GTBI) 225 Warren Street P.O. Box 1709 Newark, NJ 07101-1709 or by phone at 973-972-0979 Suggested citation: New Jersey Medical School Global Tuberculosis Institute. /Incorporating Tuberculosis into Public Health Core Curriculum./ 2009: Epidemiology case Study 4: Using Molecular Epidemiology in a TB Contact Investigation INSTRUCTOR S GUIDE Version 1.0. 1

Background for Instructors This exercise is drawn from an article published in Chest, Mycobacterium tuberculosis Miniepidemic in a Church Gospel Choir by Mangura and colleagues. 1 Specific aspects of the investigation have been altered, with permission from the authors, to assist in meeting the desired teaching objectives. Students should be aware that this study describes one particular approach to a TB outbreak investigation. Despite nationally published guidelines and recommendations from the Centers for Disease Control and Prevention for conducting contact investigations, the actual practice implemented during these investigations can vary from program to program. An epidemiologist investigating a TB outbreak works within the framework of an investigative team that includes persons with expertise in epidemiology, microbiology, TB surveillance, and environmental health. It is through the collaborative efforts of this team, with each member playing a critical role that outbreak investigations can result in a positive outcome. This exercise may be completed by hand with the use of a calculator or computer program to aid in the data analysis. This exercise may work best as an in-class assignment spread out over 1 or more sessions. Suggest Reading can be found on the CDC EXCITE website- Epidemiology in the Classroom- How to Investigate an Outbreak: http://www.cdc.gov/excite/classroom/outbreak/index.htm 2

PART I. Identifying a Problem This morning (June 21) the local health department (large town health department) received a telephone call from the infection control practitioner (ICP) from a nearby hospital reporting that 2 patients were seen in the emergency department (ED) late yesterday with complaints of fatigue, fever, night sweats, and cough. As part of their work-up, the ED physician ordered chest x-rays for both patients. The health department was informed that, in both cases, the radiology report indicated abnormal findings consistent with TB. As a result, both patients were admitted to the hospital with a diagnosis of suspected pulmonary TB. Once admitted, sputum samples collected from both patients were read as positive on microscopic smear with final culture identification pending. You know that tuberculosis (TB) is an infectious disease caused by bacteria called Mycobacterium tuberculosis. The bacteria usually affect the lungs (pulmonary TB) but also can affect any part of the body outside the lungs (extrapulmonary TB) with the most common sites being the lymph nodes, bone, kidney, and pleura. While TB disease was once the leading cause of death in the United States, it can now be treated successfully with appropriate antibiotics. However, if not diagnosed early or not treated appropriately, TB disease can be fatal. You also know that according to the CDC the presence of acid-fast-bacilli (AFB) on a sputum smear or other specimen often indicates TB disease. Acid-fast microscopy is easy and quick, but it does not confirm a diagnosis of TB because some acid-fast-bacilli are not M. tuberculosis. Therefore, a culture is done on all initial samples to confirm the diagnosis. (However, a positive culture is not always necessary to begin or continue treatment for TB.) A positive culture for M. tuberculosis confirms the diagnosis of TB disease. Culture examinations should be completed on all specimens, regardless of AFB smear results. Laboratories should report positive results on smears and cultures within 24 hours by telephone or fax to the primary health care provider and to the state or local TB control program, as required by law. 2 While some microbiology laboratories have access to advanced technology and have the ability to identify TB in a specimen in just a few days, your laboratory requires 4 to 8 weeks for growth and final identification. Therefore, you will need to wait for the results on these 2 suspected cases. Your health department (large town health department) receives calls of suspected TB cases several times a week. At total of 40% of these reports turn out to be negative for TB. Question 1: What questions should you ask and what information should you collect from the ICP while he/she is on the telephone with you? At this early juncture, should you consider initiating an investigation about these 2 cases? 3

If the ICP has not already done so, ensure that the 2 suspected cases are reported to the appropriate public health agencies via the reporting mechanism established for your state. If a written report has already been submitted, request a copy for local health department records. If the purpose of the call was to report these cases to your health department and it is now your responsibility to ensure that the reporting mechanism is completed, collect the following information for both patients: name, locating information and dates of birth, dates of admission, dates of service and results of radiology and bacteriology tests, and dates of initiation of treatment with a listing of treatment regimens prescribed. Collection of the symptom history for the purpose of establishing the infectious period is helpful but can be collected at a later date when, and if, the patients are to be interviewed and their medical records are to be reviewed. Information pertaining to potential exposure environments outside the patients living space (workplace, school etc) also can be collected from the ICP but the information could also be gathered at a later date if it is determined an interview is needed for the purpose of initiating a contact investigation. Yes, a contact investigation should be initiated for both suspected cases. These are 2 patients with abnormal chest x-rays and positive sputum smears with a history of cough. As such, they are considered to be infectious or potentially infectious. An investigation is recommended for the purpose of identifying all high-medium-lowpriority contacts that are at risk of exposure and transmission. The CDC classifies TB as a notifiable disease. A notifiable disease is one for which regular, frequent, and timely information regarding individual cases is considered necessary for the prevention and control of the disease. 3 Question 2: At this point, would you consider this an outbreak? Please note: the CDC uses the words outbreak and epidemic interchangeably, although outbreaks are often considered more local occurrences. In TB control in the United States the term most commonly used is outbreak. This is not yet an outbreak because all we have to date is a report of 2 suspected cases of TB. More investigation is needed to classify this as an outbreak. Also, this number of cases is not very much larger than the expected number of reports of TB for a given day at the large town health department. You decide that the next step you should take is to visit the patients in the hospital, collect information from their medical records, and interview them. 4

Question 3: What should you have as goals in your interviews with these suspected TB cases? The goals of the interviews are to: 1. Begin building trust and rapport with the suspected cases 2. As best as possible, maintain the patients rights to medical privacy 3. Provide TB education 4. Establish an infectious period 5. Identify all contacts during the infectious period (household, social, work, school etc) and classify them as high, medium, or low priority According to the CDC The period of infectiousness is the time period during which a person with TB disease is capable of transmitting M. tuberculosis. Determining the period of infectiousness can help focus the contact investigation efforts on those persons who were exposed while the patient was infectious. 4 The following guidelines may be used to estimate the beginning of the infectious period. 5 The CDC guidelines also state that the period of infectiousness ends when all the following criteria are met 4 : Symptoms have improved The patient has been receiving adequate treatment for at least 2 to 3 weeks The patient has had 3 consecutive negative sputum smears from sputum collected on different days 5

From your interview you are able to learn the following: Jack Gold, a 62-year-old male who lives at 87 Jefferson Street in Large Town, NJ, has not been feeling well for 2 weeks and for the past 7 days he has been feeling weak, has also had some unexpected weight loss, fever, and cough. Mr. Gold has a history of bladder cancer. He works at Large Company X in Large Town, NJ. His home phone number is 973-555- 2233, and he could not remember his work number. Mr. Gold also does not know anyone with similar symptoms, including anyone hospitalized with similar symptoms. Mr. Gold lives with his wife and his 85-year-old father. Mr. Gold was born in the United States and he has never traveled outside North America. Marla Smith is a 47-year-old female who lives at 33 Madison Avenue in Large Town, NJ, and has been sick for 3 weeks. She has been feeling weak, has had some unexpected weight loss, fever, night sweats, and cough. She works at Large Company Y in Large Town, NJ. Her cell phone number is 973-555-1290 and work number is 973-555-1212. Ms. Smith has a history of hypertension, diabetes, and obesity and also indicates that she does not know anyone with similar symptoms, including anyone hospitalized with similar symptoms. Ms. Smith lives with her husband and 2 children 13 and 17 years of age. Ms. Smith was born in the United States. Ms. Smith has not traveled outside the United States since her children were born. Previously, she had traveled to South American and Europe. You decide to test the families of these 2 individuals for TB infection. The families of these suspected cases were given tuberculin skin tests (TST), and results of all were negative (0 mm). After 4 weeks, you receive the culture results from Mr. Gold and Ms. Smith. As was suspected, you learn from the hospital microbiology department that tuberculosis was identified on final culture from both patients. You also learn that genotyping, or DNA fingerprinting results will be available within the next 2 weeks. You know that DNA results represent a valuable piece of information that could potentially link, or not link, these cases to other known cases. Meanwhile a colleague of yours in the TB Control Program happens to tell you about a case that he has been following: a 38-year-old homeless non-us born male who emigrated from Somalia (a high-incidence country) to the United States 1 year ago, named Ali Yusef. Since his arrival, Mr. Yusef has worked as a church custodian. The patient complained of having a productive cough for 1 month prior to his being hospitalized on May 3 and reported a history of pneumonia and malnutrition. A cavitary chest x-ray coupled with a positive sputum smear raised suspicions of TB and, as a result, appropriate TB treatment was prescribed. The diagnosis of TB was confirmed when tuberculosis was identified on final culture. Upon discharge from the hospital with 3 negative sputum smears, Mr. Yusef was placed in a homeless shelter and provided directly observed therapy (DOT) by health department staff. Outpatient care is currently being provided by the local health department clinic. When the DNA results become available, you are informed that not only do the 2 culture isolates (from Mr. Gold and Ms. Smith) possess the same banding pattern (see Figure 1 6

below), but they also match a third person (Mr. Yusef) who was previously identified in Large Town in early June as a confirmed TB case. In addition, according to a search through a national DNA database, the strain profile of all 3 cases indicates that they are most commonly found in Africa. The IS6110 RFLP analysis is one technique used to explore the molecular epidemiology of M tuberculosis complex. IS6110 RFLP analysis is done by inserting an IS6110 probe into the DNA, which then attaches to a specific enzyme, called a restrictive enzyme, whose location is unique to each strain of TB. The size of each fragment depends on its distance from this site to the next restrictive enzyme and the location of each of these restrictive enzymes can be measured to see if the samples taken from each patient have the same or similar strains. 6 Figure 1. IS6110 RFLP analysis of cases 1, 2, and 3 Cases 2 and 3 Index/Source Case 1* * the first case or instance of a patient coming to the attention of health authorities 7 Since Mr. Yusef emigrated from Somalia (remember neither Mr. Gold nor Ms. Smith have traveled outside the country recently), the DNA strain that they all share is most commonly found in Africa and Mr. Yusef was diagnosed with TB much earlier than the other 2 cases, we can assume that Mr. Yusef is the index case (the first case of the disease in an outbreak). We will refer to Mr. Yusef as Case 1 for the remainder of this investigation. 7

This new information provides molecular evidence that Case 1 appears to be the source or index to Cases 2 and 3. With this new information, it has been decided that follow-up interviews with all 3 cases should be initiated to not only review previously collected information but to focus in-depth on establishing a common link (person, place, and time) between the cases that may not only provide an exposure site but could potentially lead to the identity of additional contacts and cases. Follow-up interviews reveal that the common link shared among all 3 cases was that they are all congregants of the same church and that all 3 cases are members of the church choir. You now decide to combine and organize into a line list information collected on all three cases starting with the first confirmed case, Mr. Yusef. You organize the information that you have collected into a line list. Question 4: Complete the line list below for the confirmed cases. Table 2. Line list for confirmed cases I TB Status Name Age/ Smear/ Phone Address D Sex Culture #s 1 Confirmed Ali Yusef 38/M +/+ None Homeless/ from Somalia 2 Confirmed Jack Gold Place of Symptoms Employment / Chest X- Ray Church Date Onset Med Hx Pneumonia, malnutrition Social Environment Church choir 62/M Church choir 3 Confirmed Marla Smith 47/F Church choir 8

Table 2. Line list for confirmed cases I TB Status Name Age/Se Smear/ Phone #s Address Place of D x Culture Employment 1 Confirmed Ali 38/M +/+ None Homeless/ Yusef from 2 Confirmed Jack Gold 3 Confirmed Marla Smith 62/M +/+ 973-555- 2233 47 F +/+ 973-555- 1290 973-555- 1212 Somalia 87 Jefferson St. Large Town, NJ 33 Madison Ave. Large Town, NJ Symptoms/ Chest X-ray Date Onset Med Hx Church Cough/+ April? Pneumonia, malnutrition Large Company X Large Town, NJ Large Company Y Large Town, NJ Some unexpected weight loss, fever, cough/+ Unexpected weight loss, fever, night sweats, cough/+ June 7 Bladder Cancer June 1 Hypertensio n, diabetes, obesity Social Environment Church choir Church choir Church choir Question 5: Is this now an outbreak? Provide your reasons. You now suspect that this is an outbreak. According to.glossary of Epidemiology Terms taken from Principles of Epidemiology in Public Health Practice.an outbreak is the occurrence of more cases of disease, injury, or other health condition than expected in a given area or among a specific group of persons during a specific period. Usually, the cases are presumed to have a common cause or to be related to one another in some way. Sometimes distinguished from an epidemic as more localized, or the term less likely to evoke public panic. 8 Public health workers in the area of TB control have a more specific definition for a TB outbreak, which includes the identification of linked cases by mutual activities or molecular genotyping. The source case and other 2 cases are bacteriologically proven TB cases, a notifiable disease. They all have the same strain of TB common only in a continent from which the index case source emigrated. Your initial interview with the cases did not lead you to believe there was some personal connection; however, further interviews led you to the link that could help you identify and control this outbreak. There is now a link between your cases: membership in a church choir. 9

Question 6: What are the steps you should take in investigating this outbreak? There are 12 steps in an outbreak investigation 9 : 1. Identify team, resources, prepare fieldwork 2. Establish existence of an epidemic 3. Verify diagnosis 4. Construct a working case definition 5. Find cases systematically and develop a line listing 6. Perform descriptive epidemiology (incidence and distribution by person, place, and time) 7. Develop hypothesis 8. Evaluate hypothesis 9. As necessary, reconsider and refine hypothesis and execute additional studies, if needed. 10. Implement control and prevention measures 11. Communicate findings by summarizing investigation for requesting authority and by preparing written reports 12. Maintain surveillance to monitor trends and evaluate control or prevention measures Your supervisor suggests that you use a concentric circle analysis in your investigation 4. The concentric circle approach (Figure 2) is a method of testing contacts by their exposure time and risk, with those at highest risk of infection or disease tested first. In this approach, the original TB patient (the index case) is at the center. The circle is divided into 3 concentric rings to represent the 3 levels of risk: high, medium, and low. The circle is also divided, like a pie, into segments that represent the 3 types of environment where the exposure may have taken place: household or residential, work or school, leisure or recreation environments. 10

Figure 2 Concentric circle approach 4 Question 7: The purpose of this investigation is to identify any additional cases of TB and individuals who may have been infected by these cases. What is your case definition for transmission in this investigation? Remember a complete case definition should include information on person, place, time, and clinical characteristics. The case definition for transmission during this outbreak will focus on the identification of new infection and/or disease. Person: Gospel choir member or someone connected to choir member Place: Large Town, NJ Time: Between January 3rd and the present (3 months prior to onset of cough for the index case) Clinical Characteristics: a positive Tuberculin Skin Test (TST) and/or an abnormal x- ray consistent with TB disease The Tuberculin Skin Test (TST) may be used to determine if a person has TB infection. A TST is available at the health department or at a doctor s office. A health care worker injects a small amount of testing fluid (called tuberculin or PPD) just under the skin on the underside of the forearm. After 48 to 72 hours, the patient must return to have the skin test read by the 11

health care worker. He/she may have a swelling-called induration-where the tuberculin was injected. The health care worker will measure this induration and explain to the patient whether the results are positive or negative. A positive reaction usually means that the patient has been infected with the TB bacteria. If a person has recently spent time with and been exposed to someone with active TB disease, his/her TST reaction may not yet be positive. He/she may need a second skin test 8 to 10 weeks after the last date of exposure to the TB patient because it can take several weeks after infection for the immune system to react to the TST. If a person s reaction to the second test is negative, he/she is considered not infected. 10 Question 8: At this point, who needs to be tested for transmission of TB, through a TST? At this point since family members have been tested, the workplace should be investigated and contact tracing and testing should be expanded to include all individuals within the church choir who were determined to have the most exposure since they would be considered high-priority contacts. 12

PART II. Outbreak Investigation A choir list was matched to the state TB registry and 2 additional confirmed cases of TB within the choir were identified and their information was added to the line listing below: Table 3. Updated Line List of M tuberculosis Clinical Cases in Large Town Church Choir I TB Status Name Age/ Smear/C Phone #s Address Place of Symptoms/C Date Med Hx D Sex ulture Employment hest X-ray Onset 1 Confirmed Ali Yusef 38/M +/+ None Homeless/ from Church Cough/+ April? Pneumonia, Somalia malnutrition 2 Confirmed Jack Gold 62/M +/+ 973-555- 2233 87 Jefferson St. Large Company Some Large Town, NJ X Large Town, unexpected June 7 Bladder Cancer NJ weight loss, fever, cough/+ 3 Confirmed Marla Smith Unexpected June 1 4 Confirmed James Jones 5 Confirmed Mark Carlen 47/F +/+ 973-555- 1290 973-555- 1212 33 Madison Ave., Large Town, NJ Large Company Y Large Town, NJ weight loss, fever, night sweats, cough/+ 48/M +/+ Unexpected weight loss, cough June 20 Hypertension, diabetes, obesity 52/M +/+ June 25 Hypertension Table 3 continued I TB Status Name Choir Vocal Range DNA testing Other D 1 Confirmed Ali Yusef 8 am and 11 Tenor African-continent strain am 2 Confirmed Jack Gold 11am Tenor African-continent strain 3 Confirmed Marla Smith 4 Confirmed James Jones 11am Alto African-continent strain 8 am Tenor Not done Commuted to choir practice with Case 1 5 Confirmed Mark Carlen 11 am Tenor Not done 13

Question 9: Are Cases 4 and 5 epidemiologically linked to the other cases? (Look at Table 3 above) Cases 4 and 5 are epidemiologically linked because they had contact with the other cases. However, even though they are epidemiologically linked they cannot be molecularly linked because DNA fingerprinting was not available for these 2 cases. The suspected index case (Case 1) is a tenor in the 8 and 11 AM church choirs. In the winter months, he was occasionally driven to church with Case 4, a tenor in the church choir. There were 5 different choir groups totaling approximately 300 to 500 members (per an outdated choir list). Aggregate and separate choir practices were held once a week in the church or in its basement with 3 separate choir groups singing together or in staggered time periods. Choir groups were labeled as to the time the choir sang in church each Sunday (8 AM choir and 11 AM choir). Choir members ages ranged from 5 to 70 years. The adult choirs rehearsed together once a week; on average, rehearsal time was 1 hour. Many choir members lived in other urban or suburban communities away from the church location. Commuting together usually was sporadic and ad hoc. The church and choir members were largely working, middle class African-Americans. Part III. Analysis Question 10: Can you develop a hypothesis regarding this outbreak? The hypothesis is that the index case (Case 1) infected the others in church or in Case 4's car. Priority should be given to investigating exposure in the 11AM choir, since all but 1 case were members of the 11 AM choir and the remaining case commuted with the index case to the church. Only 300 of the assumed total of 500 choir members were accessible and available for tuberculin testing. Nonchoir church members were not tested. The entire church building including the stage and basement where all the choirs rehearsed was inspected for contributory factors (such as ventilation outlets) to environmental transmission. 14

Question 11: What was the response/cooperation rate of the choir members, assuming there were 500 choir members? Why is this important? 300 responded/500 members X 100= 60.0% The cooperation rate is important because it is possible that those who cooperated may not be representative of the entire choir membership. It could not be ascertained for certain where transmission occurred, but the main church s choir loft, where most rehearsals occurred, was considered the most likely location for cases 1, 2, 3, and 5. Transmission to Case 4 could have occurred in the choir loft during joint practice or while commuting with Case 1. The basement, where some transmission could have occurred, had air conditioning units with 8 air outlets from a dropped ceiling. Air was recirculated. Of the 300 traced choir members tested, 120 belonged to the 11 AM choir; 25 members of the 120 11 AM choir members were TST reactors; 12 of the 25 reactors were tenors and 12 of 36 tenors were reactors. Question 12: Use the data from the 120 11 AM choir members who received TSTs to create a contingency table to look for an association between vocal range (as a proxy for location/exposure to the index case in the choir) and skin test result. Assume that the group has been assembled based on their exposure status and that level of exposure is stratified by vocal range (tenor vs nontenor) because the index case was a tenor. These 120 choir members received TSTs and when the data is available, populate this table. TST Results Vocal Range + (Reactor) - (Nonreactor) Tenor Nontenor Total 120 TST Results Vocal Range + (Reactor) - (Nonreactor) Tenor 12 24 36 Non-Tenor 13 71 84 Total 25 95 120 Question 13: Conduct an appropriate statistical test to examine the relationship between the location in the choir and TST result. 15

Contingency Analysis Vocal Range TB Reactor Count 1. Yes 2. No Total % Col % Row % Expected 1. Tenor 12 24 36 10.00 48.00 33.33 7.5 20.00 30.00 25.26 66.67 28.5 2. Nontenor 13 10.83 52.00 15.48 17.5 25 20.83 71 59.17 74.74 84.52 66.5 95 79.17 84 70.00 120 Test Chi Square P value Pearson 4.872.0273 Fisher's Exact Test Left Right 2-Tail Prob Alternative Hypothesis 0.9916 Prob(TB Reactor=2. negative) is greater for vocal range=1. tenor than 2. Nontenor 0.0271 Prob(TB Reactor=2. negative) is greater for vocal range=2. Nontenor than 1. tenor 0.0476 Prob(TB Reactor=2. negative) is different across vocal range. Either Fisher s Exact Test or Pearson s Chi Square could be used to test this association. If choosing a 2-sided test, the P-values are.0476 and.0273, respectively, for these tests. The P-values associated with these test are less than the conventional alpha.05 significance level. Therefore, we can say that there is a statistically significant association between vocal range (ie, location in the choir) and TST result. If we choose to conduct a 1-sided Fisher s Exact Test, nontenors are significantly more likely than tenors to be nonreactors (P=.0271). 16

Question 14: What type of study design is this? This is a cohort study because the full cohort (all the involved persons) was assessed, minus nonresponders. Question 15: A. Assuming all positive TSTs were newly infected, what is the measure of relative risk associated with being a tenor? The relative risk is the incidence rate of TB infection in the exposed divided by incidence rate of TB infection in the unexposed. Relative Risk Description P(1. positive 1. tenor)/p(1. positive 2. nontenor) Relative Lower Upper Risk 95% 95% 2.153846 1.09055 4.253866 B. Was the risk of developing a skin test reaction indicating TB infection statistically significantly higher among tenors compared with nontenors? The risk was significantly higher, since the 95% confidence interval (CI) does not include 1.0. Part IV. Control and Prevention of an Epidemic Question 16: What preventive measures would you recommend for those who had a positive TST, but did not have any other sign of disease? Assuming these individuals are not immunocompromised and that they had a chest X- ray that ruled out disease, there is a 10% chance throughout their lifetime of developing TB disease, with the greatest risk during the first 2 years after infection. 11 Treatment for latent TB infection would be recommended. 17

Question 17: Based on the pathogenicity the ability of an agent to cause disease after infection, measured as the proportion of persons infected by an agent who then experience clinical disease 8 of TB, do you recommend future TSTs and studies? Because it can take up to 10 weeks after exposure for the TST to detect infection, more tests and studies need to be done 12. Skin tests should be repeated for those with an initial negative TST result, 8 to 10 weeks after the last date of presumed exposure. Part V. Conclusion Ten weeks after the initial tuberculin testing, 86 of the 11 AM nonreactor choir members were retested. Two new reactors (both tenors) were found and given treatment for latent TB infection. No additional cases were found. It should also be noted that the sopranos who sat directly in front of the tenors, separated by the floor air outlet-intake vents, did not have TB, and few sopranos had positive TST results. Works Cited 1. Mangura BT, Napolitano EC, McDonald RJ, Passannante MR, Reichman LB. Mycobacterium tuberculosis miniepidemic in a church gospel choir. Chest. 1998;113:234-237. 2. Centers for Disease Control and Prevention. Fact sheets: diagnosis of tuberculosis disease. http://www.cdc.gov/tb/pubs/tbfactsheets/diagnosis.htm Accessed April 15, 2009. 3. Centers for Disease Control and Prevention. Summary of notifiable diseases- United States, 2006. MMWR. 2008;55:1-94. 4. Centers for Disease Control and Prevention. Module 6: contact investigations for tuberculosis. http://www.cdc.gov/tb/education/ssmodules/pdfs/6.pdf Accessed July 23, 2009.. 5. California Department of Health Services Tuberculosis Control Branch; California Tuberculosis Controllers Association. Contact Investigation Guidelines. Berkeley, CA: California Department of Health Services; 1998. 6. Centers for Disease Control and Prevention. Guide to the application of genotyping to tuberculosis prevention and control. www.cdc.gov/.../chap3/3_cdclab_2description.htm Accessed April 15, 2009. 7. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Office of Workforce and Career Development, Career Development Division, Atlanta, GA 30333. Technical content by: Richard C. Dicker, MD, MSc, Lead Author, Fatima Coronado, MD, MPH, Denise Koo, MD, MPH and Roy Gibson Parrish, II, MD, Published by the Public Health http://www.cdc.gov/excite/library/glossary.htm#p Accessed July 23, 2009. 8. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Office of Workforce and Career Development, Career Development Division, Atlanta, GA 30333. Technical content by: Richard C. Dicker, MD, MSc, Lead 18

Author, Fatima Coronado, MD, MPH, Denise Koo, MD, MPH and Roy Gibson Parrish, II, MD, Published by the Public Health http://www.cdc.gov/excite/library/glossary.htm#p Accessed April 15, 2009. 9. Michael GB. Field Epidemiology. Second Edition. New York: Oxford Press, 2002. 10. Centers for Disease Control and Prevention. Q&A: About TB, 2009.http://www.cdc.gov/tb/faqs/default.htm Accessed April 15, 2009. 11. Targeted tuberculin testing and treatment of latent tuberculosis infection. Am J Respir Crit Care Med. 2000; 161:S221-S247. 12. Centers for Disease Control and Prevention. Guidelines for preventing the transmission of Mycobacterium tuberculosis in health-care facilities, 1994. MMWR Morb Mortal Wkly Rep. 1994; 43:1-132. 19