Interlimb Transfer of Grasp Orientation is Asymmetrical

Similar documents
Simulation Modifies Prehension: Evidence for a Conjoined Representation of the Graspable Features of an Object and the Action of Grasping It

Coordination among the body segments during reach-to-grasp action involving the trunk

Conscious control of movements: increase of temporal precision in voluntarily delayed actions

Upper limb asymmetries in the utilization of proprioceptive feedback

MOTOR EVALUATION SCALE FOR UPPER EXTREMITY IN STROKE PATIENTS (MESUPES-arm and MESUPES-hand)

Hand kinematics during reaching and grasping in the macaque monkey

PSYCHOLOGICAL SCIENCE. Research Article

The role of visual feedback of hand position in the control of manual prehension

Human Paleoneurology and the Evolution of the Parietal Cortex

Transfer of Motor Learning across Arm Configurations

University of Groningen. Getting a grip on grasping Kamp, Cornelis van de

Left hand, but not right hand, reaching is sensitive to visual context

The Effect of Task Complexity Influencing Bilateral Transfer

Chapter 3: 2 visual systems


How Objects Are Grasped: The Interplay between Affordances and End-Goals

Visuomotor Learning Generalizes Between Bilateral and Unilateral Conditions Despite Varying Degrees of Bilateral Interference

Multi-joint limbs permit a flexible response to unpredictable events

Which Factors Affect Midline Crossing in Adult: Combined Effect of Task Complexity and Object Location

7 Grip aperture and target shape

ANTICIPATING DYNAMIC LOADS IN HANDLING OBJECTS.

doi: /brain/aws283 Brain 2013: 136;

Therapy Manual DO NOT PRINT

Max Planck Institut für biologische Kybernetik. Spemannstraße Tübingen Germany

PROCEEDINGS of the HUMAN FACTORS AND ERGONOMICS SOCIETY 48th ANNUAL MEETING

Evidence- Based Examination of the Shoulder Presented by Eric Hegedus, PT, DPT, MHSC, OCS, CSCS Practice Sessions/Skill Check- offs

ARTICLE IN PRESS. Neuropsychologia xxx (2009) xxx xxx. Contents lists available at ScienceDirect. Neuropsychologia

End-State Comfort in Bimanual Object Manipulation

and the surrounding annuli. Effects on grasp scaling be-

The Pennsylvania State University. The Graduate School. College of Health and Human Development

CRITICALLY APPRAISED PAPER (CAP)

Timing and Force Components in Bilateral Transfer of Learning

TASC Manual and Scoresheet Printing Suggestions

Functional Properties of Grasping-Related Neurons in the Ventral Premotor Area F5 of the Macaque Monkey

The Effects of Carpal Tunnel Syndrome on the Kinematics of Reach-to-Pinch Function

Control of Finger Forces during Fast, Slow and Moderate Rotational Hand Movements

Attentional coding for three-dimensional objects and two-dimensional shapes

CRITICALLY APPRAISED PAPER (CAP)

shows syntax in his language. has a large neocortex, which explains his language abilities. shows remarkable cognitive abilities. all of the above.

Role of handedness in flying performance

Multi-joint Mechanics Dr. Ted Milner (KIN 416)

A test between two hypotheses and a possible third way for the control of prehension

Long-Term Effects of Thalamic Deep Brain Stimulation on Force Control in a Patient with Parkinson s Disease-Driven Action Tremor

Twelve right-handed subjects between the ages of 22 and 30 were recruited from the

Report. Responsibility Assignment in Redundant Systems

Kinesthetic and Visual Imagery Questionnaire (KVIQ) Administration procedures

Clinical examination of the wrist, thumb and hand

Asymmetrical intermanual transfer of learning in a sensorimotor task

REFERENCES. Hemispheric Processing Asymmetries: Implications for Memory

6.4 The Ankle. Body Divided into Planes. Health Services: Unit 6 Arms and Legs. Body Movement Vocabulary

Humerus. Ulna. Radius. Carpals

The Pennsylvania State University. The Graduate School. College of Health and Human Development

Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands

Speeded right-to-left information transfer: the result of speeded transmission in right-hemisphere axons?

Planning movements well in advance

A Clinicians Guide To The Active Movement Scale (AMS) An Evaluative Tool For Infants With Obstetrical Brachial Plexus Palsy

CRITICALLY APPRAISED PAPER (CAP)

Body Planes & Positions

Solution Manual For Cognitive Psychology Connecting Mind Research and Everyday Experience 3rd Edition E Bruce Goldstein

RIGHT-LEFT ORIENTATION, MENTAL ROTATION, AND PERSPECTIVE- TAKING: WREN CAN CHILDREN IMAGINE WHA T PEOPLE SEE FROM THEIR OWN VIEWPOINT?

Robotic assessment of manual asymmetries in unimanual and bimanual wrist joint position sense

WEEKEND 2 Elbow. Elbow Range of Motion Assessment

Validity of HAMIS: A Test of Hand Mobility in Scleroderma

Constraint Induced Movement Therapy (CI or. is a form of rehabilitation therapy that improves upper

Body Organizations Flashcards

The Effects of Handedness and Reachability on Perceived Distance

Ben Cipollini & Garrison Cottrell

Dave Juehring DC, DACRB Director Rehabilitation and Sport Injury Department and Rehabilitation Residency Palmer Chiropractic Clinics Davenport IA

What is Kinesiology? Basic Biomechanics. Mechanics

Visual and motor constraints on trajectory planning in pointing movements

REACH-TO-GRASP OF OBJECTS is a key feature of normal

3/3/2016. International Standards for the Neurologic Classification of Spinal Cord Injury (ISNCSCI)

ORTHOSCAN MOBILE DI POSITIONING GUIDE

An object for an action, the same object for other actions: evects on hand shaping

Handedness: Dominant Arm Advantages in Control of Limb Dynamics

Published 21 May 2009 Cite this as: BMJ Case Reports 2009 [doi: /bcr ] Copyright 2009 by the BMJ Publishing Group Ltd.

THROWER S TEN EXERCISE PROGRAM David Andrew Parker, MD

Vision and precision reaching in 15-month-old infants

Interlimb coupling in the proximal and distal joints : a comparison

Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort

MOTOR LEARNING AND ITS TRANSFER DURING BILATERAL ARM REACHING

The influence of reducing intermediate target constraints on grasp posture planning during a three segment object manipulation task

HANDEDNESS, LIMB SELECTION, AND REACH CONTROL: A TEST OF THE DYNAMIC DOMINANCE HYPOTHESIS. A Dissertation WON DAE KIM

The Language of Anatomy. (Anatomical Terminology)

The Relation Between Perception and Action: What Should Neuroscience Learn From Psychology?

Right hemisphere. Left hemisphere. Demonstration: Contralateral processing. Motor functions on left side of body Perceives left side of space

Choice of Contact Points during Multidigit Grasping: Effect of Predictability of Object Center of Mass Location

Medical Terminology. Unit 2

CRITICALLY APPRAISED PAPER (CAP)

A Double Dissociation Between Action and Perception in the Context of Visual Illusions

Inter-limb transfer of ballistic motor skill following non-dominant limb training in young and older adults

Medical Terminology. Anatomical Position, Directional Terms and Movements

ELBOW - 1 FLEXION: ROM (Supine / Sitting)

Relationship of Proximal and Distal Function in Motor Development

The vast majority of our physical interactions with the world

Inhibition Associated with somatic dysfunctions, no matter which components are impaired Implies consideration of all components in treatment planning

Notes: Organization. Anatomy of the Nervous System. Cerebral cortex. Cortical layers. PSYC 2: Biological Foundations - Fall Professor Claffey

The influence of visual motion on fast reaching movements to a stationary object

Anticipatory Control of Grasping: Independence of Sensorimotor Memories for Kinematics and Kinetics

Dominant Limb Motor Impersistence Associated with Anterior Callosal Disconnection

Transcription:

Short Communication TheScientificWorldJOURNAL (2006) 6, 1805 1809 ISSN 1537-744X; DOI 10.1100/tsw.2006.291 Interlimb Transfer of Grasp Orientation is Asymmetrical V. Frak 1,2, *, D. Bourbonnais 2, I. Croteau 2, and H. Cohen 3 1 Département de Kinanthropologie, Université du Québec à Montréal; 2 Institut de Réadaptation de Montréal,-CRIR, Université de Montréal; 3 Memory and Motor Skills Disorders Research Centre, Clinique Sainte Anne, Québec E-mail: frak.victor@uqam.ca Received July 27, 2006; Revised December 9, 2006; Accepted December 11, 2006; Published December 28, 2006 One the most fundamental aspects of the human motor system is the hemispheric asymmetry seen in behavioral specialization. Hemispheric dominance can be inferred by a contralateral hand preference in grasping. Few studies have considered grasp orientation in the context of manual lateralization and none has looked at grasp orientation with natural prehension. Thirty right-handed adults performed precision grasps of a cylinder using the thumb and index fingers, and the opposition axis (OA) was defined as the line connecting these two contact points on the cylinder. Subjects made ten consecutive grasps with one hand (primary hand movements) followed by ten grasps with the other hand (trailing movements). Differences between primary and trailing grasps revealed that each hemisphere is capable of programming the orientation of the OA and that primary movements with the right hand significantly influenced OA orientation of the trailing left hand. These results extend the hemispheric dominance of the left hemisphere to the final positions of fingers during prehension. KEYWORDS: Prehension. Interlimb transfer. Opposition axis. Hemispheric dominance. Visuomotor transformation INTRODUCTION Reaching and grasping an object is a complex motor task involving the proximal and distal joints. One of the most influential theories of prehensile movements in both primates and humans is that proposed by Jeannerod[1]. In this theory, Jeannerod claims that two distinct processing components are involved in prehension movements: one responsible for the transport of the arm to the object (more dependent on proximal segments of the upper limb) and one for the grip of the object (more dependent on distal segments of the upper limb). It has been presumed that interhemispheric communication is required for the coordination of reaching and grasping[2], supporting the notion that each hemisphere has a predominant involvement during reaching to grasp actions. Previous work supports the idea that grasping is not a purely distal phenomenon, as it also involves the proximal segments of the upper limb. For example, Paulignan et al.[3] studied the action of grasping an object located at different positions in the work field. They found that although the grasp orientation was constant for all positions, the shape of the whole arm changed from one position to another. A study by Stelmach et al.[4] also showed that the *Corresponding author. 2006 with author. Published by TheScientificWorld, Ltd.; www.thescientificworld.com 1805

orientation of the distal part of the movement (finger grip) is not independent from the organization of the proximal part of the movement (reach). In their work, a relatively small change in the orientation of an object, allowing only one possible grasp orientation, resulted in a major reconfiguration of the arm, including wrist pronation and shoulder abduction. Few studies have considered grasp orientation in the context of manual lateralization[5] and none has looked at grasp orientation in free-precision grasp, i.e., with no constraint of finger position on the object. Grasp orientation, defined by the opposition axis (OA), is the final expression of a composite mechanism reach and grasp resulting in the controlled precision prehension of an object. In a precision grip formed by the thumb and index fingers, the OA is defined as the line connecting the final position of the fingers on the object. The fingers involved in the grasp represent the effector of the movement and their final position on the object is a main parameter to be controlled for completing a grasp[6]. Location, size (from 3 9 cm), and weight (from 30 300 g) of cylinders do not impact on grasp orientation, which remains stable, with respect to an egocentric reference frame in right-handed individuals[3,7]. In this perspective, the main objective of this study was to examine whether a dominant arm advantage exists in controlling the OA orientation when natural prehension occurs. We used a cylinder where the thumb and index finger could be placed at any position on its surface. METHODS Subjects Thirty, healthy, right-handed adults (14 women and 16 men) volunteered to participate in this investigation. Handedness was determined using the ten-item version of the Edinburgh inventory[8]. Only subjects scoring a laterality quotient of 100 were selected. Subjects ranged in age from 19 70 years (mean = 49). Subjects were recruited and tested following ethical considerations in accordance with the Centre for Interdisciplinary Research in Rehabilitation of Montréal procedures. Before the experiment, subjects were given explanations of the methods used. The purpose of the study was revealed to them once the experiment was over. Procedure The subjects were comfortably seated in front of a table. Subjects were asked to reach, grasp, lift, and return to its original position a smooth 300-g resin cylinder (6 cm in diameter, 10 cm high) placed at the center of the table at a distance of 32 cm from the body plane, using a precision grip formed by the thumb and index fingers only. The OA was defined as the line connecting these two contact points on the cylinder and the OA orientation was calculated with a protractor with respect to the frontal plane. Subjects made ten consecutive grasps with one hand (primary hand movements) followed by ten consecutive grasps with the other hand (trailing hand movements). Fifteen subjects performed the first block of grasps with their right hand and the second block with their left hand. This order was reversed for the other 15 subjects. The initial position of the right hand was 13 cm right of the sagittal axis and 13 cm to the left of the axis for left-hand movements. RESULTS Mean OA orientation from an egocentric frame of reference for primary hand movements was 32 (ranging from 24 40 ) for the right and 17 (ranging from 6 23 ) for the left. The right-hand OA orientation observed here is in agreement with previous experiments with cylinders of different size, 1806

weight, and positions[3,7]. Mean OA orientation for trailing hand movements was 26 (ranging from 14 38 ) for the right and 32 (ranging from 20 42 ) for the left (Fig. 1). FIGURE 1. Mean OA orientation from an egocentric frame of reference for primary hand movements was 32 for the right and 17 for the left. Mean OA orientation for trailing hand movements was 26 for the right and 32 for the left. A two-factor ANOVA, hand sequence (primary hand, trailing hand) laterality (right hand, left hand), with repeated measures on both factors and conducted on OA measures, revealed an interaction between hand sequence and laterality (F( 1,4 ) = 12.06; p < 0.0037) (Fig. 2). FIGURE 2. An interaction between hand sequence and laterality (F (1,4) = 12.06; p < 0.0037). Newman-Keuls post hoc multiple comparisons indicated that this interaction was due to significant differences between primary right and left hands (p < 0.008). OA orientation was also different between primary and trailing left-hand movements (p < 0.013) and between primary left- and trailing right-hand movements (p < 0.038). However, there was no difference between primary right- and trailing left-hand (p = 0.956) and between primary and trailing right-hand conditions (p = 0.220). These results showed that trailing left-hand movements are mirroring right primary hand movements and that the left primary hand has a poor influence on the right trailing hand OA orientation. 1807

No difference in OA orientation was found within each hand trailing condition when comparing the five grasping movements soon after the switch between the hands with the following five trials. Mean OA orientation for trailing hand movements was 27 for the earlier and 26 for the later (p = 0.11) grasps for the right hand, and 33 for the earlier and 31 for the later (p = 0.241) for the left hand. DISCUSSION The OA orientation was found to differ between primary right and left hands, revealing a specific OA for each hand, suggesting that the left OA orientation is not merely a mirror orientation of the right hand. It must be noted that the displacement of grasp orientation between the first and second grasp conditions occurs with both subject and object in the same fixed positions throughout the duration of the experiment. This indicates that the final position of the thumb and the index finger is computed from an egocentric reference frame and not from an invariant visual landmark on the object. These observations extend to the left hand previous results seen with the right hand[3]. Thus, we understand that both hemispheres are capable of contralateral motor programming. However, there is a clear advantage of the left hemisphere over the right; the left hemisphere can alter the motor programming of the ipsilateral upper limb to reach a similar orientation, but with different points of contact. The visuomotor transformation to grasp requires coding of the object's intrinsic properties (size and shape) and the transformation of these properties into a pattern of distal movements[9]. A nondominant hemisphere/limb system has been proposed for controlling static limb position to specify the final position of a reaching movement[10]. These authors show, for some target positions, that the nondominant hand reached the target with smaller final position errors than the dominant hand. Sainburg s model[11] is supported on experiments that have calculated intersegmental dynamics on reaching to pointing, at a single circle in a plane. However, grasp orientation in a precision grip is defined by two contact points in a three-dimensional space. As the prehension of a cylinder necessitates a grasping orientation computed from an egocentric referential frame and not from a point on the object, our results do not contradict the notion related to the nondominant hemisphere advantage in final position seen in experimentally induced final position. In some cases, the preferred hand does not constantly produce the best performance. For example, Kimura and Vanderwolf [12] found that during isolated flexion of a single sequence of digits, the task was performed better with the nondominant hand in right handers. Also, Carey et al.[13] showed that subjects are more accurate at an index finger tracking task with their nondominant hand compared to the dominant hand. In the present research, since no difference in grasping performance was observed between the right and left hands, without once letting the cylinder slip or drop over the duration of the experiment, this suggests that it is hand preference and not efficiency that impacts on the change in OA orientation during cylinder grasp. The first grasping movements soon after the switch between the hands were not influenced more than those in the later trials, indicating that the change induced in the left-grasp orientation has been integrated from the beginning in the motor programming and during the experiment. The fact that the OA of the primary left hand is different from the OA of the primary right hand indicates that this influence is transitory. To date, there is ample evidence showing bilateral CNS involvement during unimanual motor acts (for an extensive review, see Carson[14]). For the duration of the experiment, the displacement of the left OA orientation reflects a mirror movement produced in-phase, i.e., there is a facilitation of the same muscle group. These behavioral observations would support an asymmetrical transfer via a transcallosal facilitatory connection between the upper limb motor areas in the two hemispheres[15]. 1808

REFERENCES 1. Jeannerod, M. (1981) Intersegmental coordination during reaching at natural visual objects. In Attention and Performance. Long, J. and Baddeley, A., Eds. Lawrence Erlbaum, Hillsdale, NJ. pp. 153 168. 2. Gazzaniga, M.S. (2000) Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 123, 1293 1326. 3. Paulignan, Y., Frak, V.G., Toni, I., and Jeannerod, M. (1997) Influence of object position and size on human prehension movements. Exp. Brain Res. 114(2), 226 234. 4. Stelmach, G.E., Castiello, U., and Jeannerod, M. (1994) Orienting the finger opposition space during prehension movements. J. Mot. Behav. 26, 178 186. 5. Flanagan, J.R., Burstedt, M.K., and Johansson, R.S. (1999) Control of fingertip forces in multidigit manipulation. J. Neurophysiol. 81(4), 1706 1717. 6. Jeannerod, M. and Gallagher, S. (2002) From action to interaction: an interview with Marc Jeannerod. J. Conscious. Stud. 9(1), 3 26. 7. Frak, V., Cohen, H., and Pourcher, E. (2004) A dissociation between real and simulated movements in Parkinson's disease. Neuroreport 15(9), 1489 1492. 8. Oldfield, R.C. (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychology 9, 97 113. 9. Jeannerod, M., Arbib, M.A., Rizzolatti, G., and Sakata, H. (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18(7), 314 320. 10. Sainburg, R.L. and Kalakanis, D. (2000) Differences in control of limb dynamics during dominant and nondominant arm reaching. J. Neurophysiol. 83, 2661 2675. 11. Sainburg, R.L. (2002) Evidence for a dynamic-dominance hypothesis of handedness. Exp. Brain Res. 142(2), 241 258. 12. Kimura, D. and Vanderwolf, C.H. (1970) The relation between hand preference and the performance of individual finger movements by left and right hands. Brain 93(4), 769 774. 13. Carey, J.R., Bogard, C.L., King, B.A., and Suman, V.J. (1994) Finger-movement tracking scores in healthy subjects. Percept. Mot. Skills 79, 563 576. 14. Carson, R.G. (2005) Neural pathways mediating bilateral interactions between the upper limbs. Brain Res. Rev. 49, 641 662. 15. Hanajima, R., Ugawa, Y., Machii, K., Mochizuki, H., Terao, Y., Enomoto, H., Furubayashi, T., Shiio, Y., Uesugi, H., and Kanazawa, I. (2001) Interhemispheric facilitation of the hand motor area in humans. J. Physiol. 531(Pt 3), 849 859. This article should be cited as follows: Frak, V., Bourbonnais, D., Croteau, I., and Cohen, H. (2006) Interlimb transfer of grasp orientation is asymmetrical. TheScientificWorldJOURNAL 6, 1805 1809. DOI 10.1100/tsw.2006.291. 1809