Class *GENETIC NOTES & WORKSHEETS

Similar documents
Name Class Date *PACKET NOTES & WORKSHEETS LAB GRADE

GENETICS PREDICTING HEREDITY

Semester 2- Unit 2: Inheritance

GENETICS NOTES. Chapters 12, 13, 14, 15 16

You are who you are because of a combination of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

11-1: Introduction to Genetics

Name Period. Keystone Vocabulary: genetics fertilization trait hybrid gene allele Principle of dominance segregation gamete probability

Biology Unit 7 Genetics 7:1 Genetics

Mendelian Genetics. Biology 3201 Unit 3

When Mendel crossed 2 plants that were different in a single trait, he called that a monohybrid cross. The resulting offspring were called the F1

Unit 5: Genetics Notes

.the science that studies how genes are transmitted from one generation to the next.

Semester 2- Unit 2: Inheritance

Genes and Inheritance

Mendelian Genetics. You are who you are due to the interaction of HEREDITY and ENVIRONMENT. ENVIRONMENT: all outside forces that act on an organism.

Mendel and Heredity. Chapter 12

MENDELIAN GENETICS. Law of Dominance: Law of Segregation: GAMETE FORMATION Parents and Possible Gametes: Gregory Mendel:

Mendel and Heredity. Chapter 12

Genetics. by their offspring. The study of the inheritance of traits is called.

Genetics WS Part 7 Name Part 7: Incomplete Dominance or Codominance

Mendelian Genetics. Vocabulary. M o l e c u l a r a n d M e n d e l i a n G e n e t i c s

Unit 3. Intro. Genetics The branch of biology that deals with variation (differences) and inheritance. Genetics. Sep 6 5:24 PM.

Fundamentals of Genetics

HEREDITY. def: the passing of traits from parent to offspring.

Introduction to Genetics

Genetics. the of an organism. The traits of that organism can then be passed on to, on

Name Class Date. Review Guide. Genetics. The fundamental principles of genetics were first discovered by. What type of plant did he breed?.

Unit 7 Section 2 and 3

Genetics. Why do offspring resemble their parents? What role can technology play in genetics? Let s explore the answers to these questions.

Gregor Mendel. What is Genetics? the study of heredity

Labrador Coat Color Similar to coat color in mice: Black lab is BxEx Yellow lab is xxee Chocolate lab is bbex Probable pathway:

Genetics & Heredity 11/16/2017

Genetics and Diversity Punnett Squares

Genes and Inheritance (11-12)

Chapter 11. Introduction to Genetics

Mendelian Genetics. Activity. Part I: Introduction. Instructions

Introduction to Genetics

Introduction to Genetics

Genetics. The study of heredity. Father of Genetics: Gregor Mendel (mid 1800 s) Developed set of laws that explain how heredity works

Question 2: Which one of the following is the phenotypic monohybrid ratio in F2 generation? (a) 3:1 (b) 1:2:1 (c) 2:2 (d) 1:3 Solution 2: (a) 3 : 1

Who was Gregor Mendel and what did he do?

Unit 5 Review Name: Period:

Guided Notes: Simple Genetics

MENDELIAN GENETIC CH Review Activity

The passing of traits from parents to offspring. The scientific study of the inheritance

Genetics Practice Questions:

Patterns of Heredity Genetics

Patterns of Heredity - Genetics - Sections: 10.2, 11.1, 11.2, & 11.3

Test Booklet. Subject: SC, Grade: HS Genetics Assessment. Student name:

Genetics Unit Outcomes

Extra Review Practice Biology Test Genetics

Gallery Walk. Fundamentals of Genetics

Genetics Honors NOtes 2017 SHORT p2.notebook. May 26, 2017

Genetics: CH9 Patterns of Inheritance

UNIT III (Notes) : Genetics : Mendelian. (MHR Biology p ) Traits are distinguishing characteristics that make a unique individual.

Genetics and Heredity Notes

Objectives. ! Describe the contributions of Gregor Mendel to the science of genetics. ! Explain the Law of Segregation.

Introduction to Genetics & Heredity Gregor Mendel Mendel s Pea Plant Experiments self-pollination cross-pollinated Principle of Dominance

Genetics. *** Reading Packet

Mendel explained how a dominant allele can mask the presence of a recessive allele.

Notes: Mendelian Genetics

draw and interpret pedigree charts from data on human single allele and multiple allele inheritance patterns; e.g., hemophilia, blood types

Ch 10 Genetics Mendelian and Post-Medelian Teacher Version.notebook. October 20, * Trait- a character/gene. self-pollination or crosspollination

OCTOBER 21 Unit 5 Heredity 1. What is Heredity

Introduction to Genetics and Heredity

Science Olympiad Heredity

Gregor Mendel Father of Genetics

MENDELIAN GENETICS. Punnet Squares and Pea Plants

Section 1 MENDEL S LEGACY

Chapter 11 Introduction to Genetics

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

Gregor Mendel father of heredity

Fundamentals of Genetics

Name: Period: Date: T F 1. Certain acquired characteristics, such as mechanical or mathematical skill, may be inherited.

REVIEW SHEET: Units 11 Meiosis, Fertilization, & Genetics

Meiosis and Genetics

Pre-AP Biology Unit 7 Genetics Review Outline

Genetics and heredity. For a long time, general ideas of inheritance were known + =

Meiotic Mistakes and Abnormalities Learning Outcomes

PREDICTING INHERITED TRAITS & PUNNETT SQUARE ANALYSIS

For a long time, people have observed that offspring look like their parents.

MENDEL S LAWS AND MONOHYBRID CROSSES. Day 1 UNIT 6 : GENETICS

Genetics- The field of biology that studies how characteristics are passed from one generation to another.

The Experiments of Gregor Mendel

VOCABULARY. TRAITS a genetic (inherited) characteristic. HEREDITY The passing of traits from parent to offspring

Chapter 8 Heredity. Learning Target(s):

Mendelian Genetics and Beyond Chapter 4 Study Prompts

Ch 9 Assignment. 2. According to the blending theory of inheritance, a white rabbit crossed with a red rabbit would produce what kind of offspring?

Ch 8 Practice Questions

Genetics & The Work of Mendel. AP Biology

Section 11 1 The Work of Gregor Mendel (pages )

Mendel rigorously followed various traits in the pea plants he bred. He analyzed

Mendel and Genetics. Mr. Nagel Meade High School

Name Lab 5-B. Phenotype refers to the expression (what you can see) of a person s genotype.

Chapter 10 Notes Patterns of Inheritance, Part 1

100% were red eyed = red is dominant - He then bred 2 offspring from the F1 generation F1 = Rr x Rr

UNIT 6 GENETICS 12/30/16

Inheritance. What is inheritance? What are genetics? l The genetic characters transmitted from parent to offspring, taken collectively

Chapter 13: Patterns of Inheritance

Patterns of Inheritance. { Unit 3

Transcription:

Name Class *GENETIC NOTES & WORKSHEETS DAY 1: Mendelian Genetics Vocabulary A. Genetics- Study of B. Heredity- The passing on of characteristics (traits) from to C. Trait A particular that can vary from one individual to another. Ex: D. Fertilization- Joining of male and female (reproductive cells) during reproduction E. Genes- Section of a chromosome that determine the trait we will inherit Ex: Sally has the gene for brown hair F. Alleles- of one gene Ex: Brown, red, or blond hair are all different forms the hair color gene G. Dominant Gene- expressed if present for a trait Dominant allele = capital letter (B) H. Recessive Gene- Only expressed if are present for that trait Recessive allele = lowercase letter (b) PRACTICE! Use the term Dominant or Recessive to identify the type of trait shown. 1. TT 2. tt 3. Tt 4. SS 5. ss 6. Ss SPERM EGG I. Homozygous- Organisms have alleles for a trait Ex: RR (BIG/BIG) or rr (small/small) J. Heterozygous- Organisms have alleles for a trait EX: Rr (BIG/small) PRACTICE! Use the term Homozygous or Heterozygous to identify each of the following: 1. AA 2. Aa 3. Mm 4. gg 5. GG 6. Gg K. Genotype- the genetic makeup ( ) or combination of (one from mom and one from dad) Ex: QQ, Qq, qq L. Phenotype- characteristics of the trait Ex: Brown Hair (what you see) Gregor Mendel (1822-1884) A. Austrian Monk B. The C. Cross Bread common to study the inheritance of traits through each generation. Mendel s Pea Plant Experiment A. P1 B. F1- C. F2- PAP

Mendel s Conclusions: A. Biological Inheritance is from one to the next. Ex: your traits were determined by your parents genes that were passed onto you. B. Law of During, the pairs of so that each gamete receives only one gene for each trait C. Law or Principal of Some alleles are and some are. Recessive traits will only show up if dominant is present Punnett Squares following Mendelian Rules of Genetics A. A Punnett Square is a used to the outcome of a particular cross or breeding experiment B. Used to determine the of offspring s genotypes and phenotypes C. This does determine how many offspring will be produced or exactly what the offspring s genotype and phenotype will be just the chances! D. There are five steps (you must always show your work) 1. Key- List the trait, Both alleles, and which phenotype corresponds with each allele 2. Parents- List the genotypes of each parent 3. Draw the Punnett square 4. Determine the genotype ratio 5. Determine the phenotype ratio Complete the following Punnett squares using all 5 steps SAMPLE PROBLEM: Wavy hair is dominant to straight hair. Cross two heterozygous parents. X 3. Punnett Square Worksheet Problems: YES, THIS IS FOR A GRADE. YOU need to complete it! For each phenotype below, list the POSSIBLE genotypes (remember to use the letter of the dominant trait) Brown eyes are dominant to blue eyes Homozygous Brown Heterozygous Brown blue Widow s peak is dominant to straight hair line Widow s peak Widow s peak straight hair line PAP

1. In rabbits, black hair color is dominant to white. Cross homozygous black rabbit with a white rabbit. X 2. In roses, red is dominant to yellow. Cross a homozygous red rose with a heterozygous red rose X 3. In cats, long tails are dominant to short tails. Cross two heterozygous long tail cats. X 5: 4. In lizards, green skin color is dominant to purple. Cross a heterozygous green lizard with a purple lizard. 1. Key 4: Genotype Ratio 5: Phenotype Ratio Match the terms with the definitions. 1. Genetics A. the weaker of a pair of genes 2. Dominant B. When the pair of genes are identical 3. Genes C. the study of heredity 4. Homozygous D. The passing of traits from parents to their young 5. Gamete E. the stronger of a pair of genes 6. Recessive F. sex cells, wither male or female 7. Heterozygous G. segment of DNA that codes for a particular protein 8. Heredity H. the physical appearance of an organism 9. Phenotype I. the actual genetic make-up of an organism 10. Genotype J. when the pair of genes are different

DAY 1 1. In humans, a widow s peak is dominant to a straight hair line. Cross homozygous widow s peak with a straight hair line. X 2. In humans, a widow s peak is dominant to a straight hair line. Cross a straight hair line with a straight hair line. X 3. Mendel discovered that yellow pea color is dominant to green pea color. Cross a green pea plant with a heterozygous yellow pea plant. X 4. Using Mendel s information about pea plants, (yellow is dominant to green) cross a homozygous yellow pea plant with a heterozygous yellow pea plant. X PAP

Mendelian Genetics- Dihybrid Crosses (Crossing 2 Traits/Factors) Review of Monohybrid Crosses Remember, monohybrid crosses involve only trait Example: In fruit flies, red eyes are dominant over white eyes. RR x rr In this example you are only examining the trait. Dihybrid Cross: the study of pairs of contrasting traits at the same time Example: Fur color WITH Coat Texture Fur Color: Coat Texture: B: Black R: Rough b: White r: Smooth Mother is black fur AND rough coat BbRr Father is black fur AND rough coat BbRr Notice that each parent has so that results in (1 trait= 2 alleles) The Law of Independent Assortment During formation, segregating pairs of unit (alleles) assort of each other when on different chromosomes. The two traits are inherited totally independently of each other. Example: Fur color is inherited independently of coat texture. Sample problem 1: We will cross a heterozygous individual with another heterozygous individual. Their genotypes will be BbRr x BbRr Step 1: Find ALL possible gametes that can be made from each parent. Remember, each gamete must have one B and one R. USE THE FOIL METHOD B b R r x B b R r Step 2: Arrange all possible gametes for one parent on the top of your Punnett Square and the other parent on the side Fur Color: B: Black b: White Coat Texture: R: Rough r: Smooth Step 3: Fill in the Punnett Square (find the possible genotypes of the offspring) Step 4: Figure out the genotypic and phenotypic ratios:

How many of the offspring would have a black, rough coat? How many of the offspring would have a black, smooth coat? How many of the offspring would have a white, rough coat? How many of the offspring would have a white, smooth coat? Phenotypic ratio : : : Sample Problem 2: What are the genotypic and phenotypic ratios in the offspring resulting from a cross between two people heterozygous for eye color and eyelash length? What is the phenotype of the parents in this cross? B Brown b Blue L - Long l short Parents are heterozygous for both traits. The cross is B b L l x B b L l. STEP 1: Determine the possible gametes that the parents can produce. USE FOIL for independent assortment STEP 2: Enter the possible gametes at the top and side of the Punnett square. Always keep the same letter first and capitals of each first. STEP 3: Complete the Punnett square by writing the alleles from the gametes in the appropriate boxes. The alleles from the gamete above the box and the alleles from the gamete to the side of the box are combined inside each of the boxes. The letters inside each box represent the probably genotypes of the offspring resulting from the cross. STEP 4: Determine the genotypes of the offspring. Count each row from left to right (as you read). Mark each one as it is used. Determine the phenotypes of the offspring. Count each row vertically (top to bottom). Genotypes Phenotypes

Practice Problems: In mice, the ability to run normally is a dominant trait. Mice with this trait are called running mice (R). The recessive trait causes mice to run in circles only. Mice with the trait are called waltzing mice (r). Hair color is also inherited in mice. Black hair (B) is dominant over brown hair (b). For each of the following problems, draw a Punnett Square in the space provided and fill in the information on the indicated lines. CREATE THE KEY: 1. Cross a heterozygous running, heterozygous black mouse with a homozygous running, homozygous black mouse. Parents: X 2. Cross a homozygous running, homozygous black mouse with a heterozygous running, brown mouse. Parents: X 3. Cross a waltzing, brown mouse with a waltzing, brown mouse. Parents: X 4. Cross a homozygous running, heterozygous black mouse with a waltzing brown mouse. Parents: X

5. Cross a heterozygous running, brown mouse with a heterozygous running, homozygous black mouse. Parents: X 6. Cross a hemophilic man with blood type AB with a hemophilic-carrier woman with blood type A (homozygous). Parents: X 7. A colorblind man with type B blood, whose dad was type O marries a normal woman with no colorblindness in her family and has type AB blood. What are the possible ratios for future children? Parents: X 8. A woman whose dad has Duchenne s muscular dystrophy and type AB blood marries a man that is normal with type AB. What are the possible outcomes for their future family? Parents: X

Name: Date Period PAP Non-Mendelian Incomplete Dominance *Exceptions to the Mendel Rule* Notes: Incomplete Dominance A. A cross between organisms with phenotypes Ex: Red x White B. Produce offspring with a phenotype that is a of the parental traits Ex: Pink is a blend of red & white C. EXAMPLE: If a homozygous flowered snap dragon plant (RR) is crossed with a homozygous the F1 offspring will have flowered snap dragon plant (WW), all of flowers. 1. RED flower x WHITE flower PINK flower *be careful- notice that the alleles are ALL capitalized D. The of individuals is (in the middle) between those of two homozygotes Sample Problem: In another flower, if red (RR) and blue (BB) flowers are crossed, they produce a 3 rd purple (RB) flower What would be the genotype ratio and phenotype ratio if you crossed two purple flowers? Cross of two purple flowers (parents) X What are gamete possibilities? genotype ratio phenotype ratio Can you have a heterozygous red or hybrid blue flower? Section 1: Incomplete dominance in four-o clocks - When a four-o clock plant homozygous for red flowers is crossed with one homozygous for white flowers, all of the offspring bear pink flowers. Cross a homozygous red flowered plant with a homozygous white flower plant. What is the genotype of the F 2 generation from the problem above? Explain how the red or white variety of four-o clocks is maintained:

Section 2: Inheritance of color in MInk The same principle of inheritance of coat color in Shorthorns also applies to mink. When a mink homozygous for white fur is crossed with one homozygous for black fur, the offspring are all Koh-i-nur or shiny black cross. Show the result in crossing two Koh-i-nur minks. Show your work. Explain how people who raise mink could maintain only minks with white fur: Section 3: Practice Incomplete Dominance show all work. 1. In noses, dry nostrils are incompletely dominant to runny nostrils. A cross will result in a slimy nostril. a. Cross a slimy nostril with a dry nostril. Key: Parents: Key: b. Cross a dry nostril with a runny nostril. Parents: c. Cross two slimy nostrils. Key: Parents: 2. In people, happy people are incompletely dominant to sad people. A cross between the happy and sad people results in a grumpy person. Cross two grumpy people. Key: Parents: PAP

Name Date Period PAP Non-Mendelian Genetics: Codominant Traits with Blood Typing Codominance A. A cross between organisms with _ phenotypes 1. Ex: Red x White B. Produce offspring with a phenotype that displays traits at the same time 1. Ex: Red and White striped C. EXAMPLE: If a homozygous flowered snap dragon plant (RR) is crossed with a homozygous flowered snap dragon plant (WW), all of the F1 offspring will have flowers. 1. RED flower x WHITE flower RED AND WHITE flower Human Codominance A. Sickle-Cell Anemia 1. An individual who is heterozygous for sickle-cell alleles will express BOTH and blood cells. The oxygen carrying protein hemoglobin differs by one amino acid than the regular cause the shape to change: Normal RBC are and abnormal are or sickle shaped. 2. Abnormally shaped blood cells,, and result in tissue damage and. 3. Heterozygous individuals are said to have the sickle-cell trait because they show signs of sickle-cell related disorders if the availability of oxygen is reduced. B. Blood types 1. Blood type is determined by alleles. This means there are more than two types of alleles possible that can make up a paring. : red blood cells produce A antigens (protein) on the outside of the cell A. Allele is expressed I A because it is : red blood cells produce B antigens (protein) on the outside of the cell B. Allele is expressed I B because it is : red blood cells will produce an antigen (protein) C. Allele is expressed i because it is 2. Determining Blood types is necessary before you receive a blood transfusion because incompatible red blood cells together or clot causing death. 3. Your immune system or antibodies recognizes the red blood cells belonging to you. If cells with a of antigen enter your body your immune system will attack them. PAP

Complete the following chart: Phenotype or blood type Type A All genotypes possible Type B Type AB (Codominant) Type O (recessive) ***The true universal blood donor are O- ***The true universal recipient is AB+ SAMPLE PROBLEMS: Cross a parent with Type AB blood with a parent that has heterozygous type A blood. Parents: X Cross a heterozygous type A blood father with a heterozygous type B blood mother. Parents: X Practice Problems: Include all steps. 1. Is it possible for parents with type A blood to have a child with type O blood? Show your work and PROVE your answer. A. If it is possible, list the necessary genotypes of the parents and explain why their child could have a different blood type. B. What is the genotype of a child with type O blood? C. Work the following cross: Heterozygous type A x heterozygous type B Parents: X PAP

2. A man with homozygous A blood has children with a woman with heterozygous B blood. What are the possible blood types for their children? Parents: X 3. Pick one child from problem #2 and cross that person with a person with heterozygous A blood. Parents: X 4. Suppose that a man with type A blood marries a young woman who has type AB blood. What blood types would you expect to find among their children. Remember to take all possibilities into account. 5. Mr. Jones was taken to court and charged with being the father of a woman s child. He is homozygous type A blood. She is heterozygous type B blood. The child is type O blood. Is Mr. Jones the father? Show all your work. 6. Two newborn babies were accidentally switched in a hospital. In an effort to correct the mistake blood types of the babies and parents were determined. Here are the results of the blood types. Which baby belongs to which parent? Baby 1 type O Mrs. Brown type B Mrs. Smith type B Baby 2 type B Mr. Brown type AB Mr. Smith type B A. Baby 1 belongs to the parents. Prove your answer with 4 steps. B. Baby 2 belongs to the parents. Prove your answer with 4 steps. PAP

Non- Mendelian Genetics: SEX- LINKED TRAITS A. Determining Sex 1. Humans have a number of chromosomes or 2. 22 of the pairs are autosomes, they are the for males and females 3. The 23 rd pair of chromosomes in males and females These are the sex chromosomes and are indicated by and determine the baby s sex. B. Inheriting Sex linked traits 1. Genes located on the are called sex- linked traits 2. Because the Y chromosome is small it carries, including the male determinant sex gene. 3. Males who receive a on the X chromosomes will express the because he cannot inherit on the Y chromosome. There is dominant allele to the recessive gene 4. have a higher percent chance of expressing the recessive trait C. Examples in Humans 1. Hemophilia Causes a problem with Caused by a allele on the chromosomes Males: 1/10,000 Need recessive allele from carrier mom Females: 1/10,000,000 Need recessive alleles; one from mom and one from dad Sex- Linked Traits 2. Color Blindness People who have red-green color blindness cannot differentiate between the two colors. Caused by a allele on the X chromosomes

Sample problem 1: A colorblind man marries a woman who is not colorblind. Assuming there is no colorblindness in the woman s ancestr what will most likely be the genotype and phenotypes of their sons and daughters? Show your work a. Key: e. Punnett Square b. Parents: c. Genotype Ratio: d. Phenotype Ratio: USE THIS CHART TO HELP YOU ANSWER THE PRACTICE PROBLEMS THAT FOLLOW!! Colorblindness- C= normal c = colorblindness Hemophilia- H=normal h=hemophilia PHENOTYPE GENOTYPE PHENOTYPE GENOTYPE Female normal X X Female normal, Carrier Female, color-blind Male normal X Y Male, color-blind Female normal X X Female normal, Carrier Female, hemophiliac Male normal X Y Male hemophiliac *Males either have colorblindness or they don t. They only have one X chromosome that was received from the mothe ** More males have hemophilia and color blindness because males need one gene for hemophilia or Color-blindness to occur. PRACTICE PROBLEMS: SHOW ALL 5 STEPS! A. A normal woman marries a normal man producing two colorblind sons, two normal sons and three normal daughters. Show your work. 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio: B. A female carrier of hemophilia marries a normal male. What are the genotypes and phenotypes of the possible offspring? Show your work. 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio:

C. Normal man X Hemophiliac woman 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio: D. Hemophiliac man X Heterozygous normal woman 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio: E. Hemophiliac man X Homozygous normal woman 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio: F. If a normal woman marries a normal man and two of their three sons are hemophiliacs, what is her genotype? Is this possible? Show this problem. 3. Punnett Square 3. Geno Ratio: 4. Pheno Ratio: