Membrane Structure and Function

Similar documents
Membrane Structure and Function

Lecture Series 4 Cellular Membranes

Membrane Structure and Function. Selectively permeable membranes are key to the cell's ability to function

Lecture Series 5 Cellular Membranes

A. Membrane Composition and Structure. B. Animal Cell Adhesion. C. Passive Processes of Membrane Transport. D. Active Transport

MEMBRANE STRUCTURE & FUNCTION

Membrane Structure and Function

Membrane Structure and Function. Cell Membranes and Cell Transport

Lecture Series 4 Cellular Membranes. Reading Assignments. Selective and Semi-permeable Barriers

MEMBRANE STRUCTURE AND FUNCTION

CHAPTER 8 MEMBRANE STUCTURE AND FUNCTION

Membrane Structure and Function

Chapter 7: Membrane Structure and Function. Key Terms:

Membrane Structure and Function

MEMBRANE STRUCTURE AND FUNCTION

Lecture Series 4 Cellular Membranes

Phospholipids. Extracellular fluid. Polar hydrophilic heads. Nonpolar hydrophobic tails. Polar hydrophilic heads. Intracellular fluid (cytosol)

Concept 7.1: Cellular membranes are fluid mosaics of lipids and proteins

Membrane Structure and Function

Ch7: Membrane Structure & Function

Chapter 7 Membrane Structure and Function. The plasma membrane surrounds the living cells from their surroundings.

Cell Membranes and Signaling

Plasma Membrane Structure and Function

BSC Exam I Lectures and Text Pages

BIOLOGY. Membrane Structure and Function CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Cell Transport & the Cell Membrane

Chapter 7: Membrane Structure and Function

Membrane Structure and Function

What do you remember about the cell membrane?

Cell Membrane Structure and Function. What is the importance of having a cell membrane?

Cell Membranes. Q: What components of the cell membrane are in a mosaic pattern?

Bio 111 Study Guide Chapter 5 Membrane Transport and Cell Signaling

The Cell Membrane. Cell membrane separates living cell from nonliving surroundings. Controls traffic in & out of the cell

Ch. 7 Cell Membrane BIOL 222

Bio 111 Study Guide Chapter 7 Membrane Structure and Function

Chapter 4 Skeleton Notes: Membrane Structure & Function

What is the Surface Area to Volume Ratio of a sphere with a radius of 5mm? Of 10 mm? What sphere can eliminate wastes and move materials quicker?

The Cell Membrane AP Biology

Phospholipid Bilayer Hydrophilic head Hydrophobic tail Molecules with hydrophilic and hydrophobic parts are called Ampipathic molecules

Membrane Structure and Function

Membranes. Chapter 5. Membrane Structure

AP Biology. Overview. The Cell Membrane. Phospholipids. Phospholipid bilayer. More than lipids. Fatty acid tails. Phosphate group head

Chapter 7. Movement across the Cell Membrane

Plasma Membrane Structure and Function

Chapter 7: Membrane Structure & Function

Chapter 7: Membrane Structure & Function. 1. Membrane Structure. What are Biological Membranes? 10/21/2015. Why phospholipids? 1. Membrane Structure

Monday, September 30 th :

CWDHS Mr. Winch Grade 12 Biology

Chapter 8. Movement across the Cell Membrane. diffusion. Diffusion of 2 solutes. Cell (plasma) membrane. Diffusion 9/7/2012

Chapter 8 Cells and Their Environment

CH 7.2 & 7.4 Biology

Transport Movement across the Cell Membrane

10/28/2013. Double bilayer of lipids with imbedded, dispersed proteins Bilayer consists of phospholipids, cholesterol, and glycolipids

Chapter 4: Cell Membrane Structure and Function

CONCEPT 5.1: Cellular membranes are fluid mosaics of lipids and proteins

The Cell Membrane. Usman Sumo Friend Tambunan Arli Aditya Parikesit. Bioinformatics Group Faculty of Mathematics and Science University of Indonesia

Diffusion. Chapter 7. Movement across the Cell Membrane. Cell (plasma) membrane. diffusion. Building a membrane. Diffusion of 2 solutes

Membranes. Chapter 5

Membrane Structure. Membrane Structure. Membrane Structure. Membranes

Biology Kevin Dees. Chapter 7 Membrane Structure and Function

Membrane Structure and Function

Phospholipids. Phosphate head. Fatty acid tails. Arranged as a bilayer. hydrophilic. hydrophobic. Phosphate. Fatty acid. attracted to water

Describe the Fluid Mosaic Model of membrane structure.

The Plasma Membrane - Gateway to the Cell

Unit 1 Matter & Energy for Life

Membrane Structure and Membrane Transport of Small Molecules. Assist. Prof. Pinar Tulay Faculty of Medicine

Diffusion across cell membrane

3.2.3 Transport across cell membranes

I. Membrane Structure Figure 1: Phospholipid. Figure 1.1: Plasma Membrane. Plasma Membrane:

Unit 1 Matter & Energy for Life

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

Chapter 5Membrane Structure and. Function

Membrane Structure and Function

Membrane Structure and Function

Membrane Structure and Function

1.4 Page 1 Cell Membranes S. Preston 1

Chapter 7: Membrane Structure and Function

Chapter 7-3 Cell Boundaries

Cells: The Living Units

Cell Membrane: a Phospholipid Bilayer. Membrane Structure and Function. Fluid Mosaic Model. Chapter 5

Division Ave High School Ms. Foglia AP Biology

Gateway to the Cell 11/1/2012. The cell membrane is flexible and allows a unicellular organism to move FLUID MOSAIC MODEL

The Cell Membrane. Phospholipids. Chapter 7: Arranged as a Phospholipid bilayer. Cell membrane defines cell! Cell membrane separates living cell from

Cell Membranes Valencia college

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

CHAPTER 8 MEMBRANE STRUCTURE AND FUNCTION

Chapter 7: Membranes

Cells and Their Environment Chapter 8. Cell Membrane Section 1

TRANSPORT ACROSS MEMBRANES

Cell Biology. The Plasma Membrane

The Cell Membrane. Lecture 3a. Overview: Membranes. What is a membrane? Structure of the cell membrane. Fluid Mosaic Model. Membranes and Transport

Transport. Slide 1 of 47. Copyright Pearson Prentice Hall

The Cell Membrane & Movement of Materials In & Out of Cells PACKET #11

Membrane Structure. Membrane Structure. Membranes. Chapter 5

Membrane Structure and Function - 1

Cell Membrane Study Guide

Movement across the Membrane

Unit 1 Matter & Energy for Life

Membrane Structure & Function (Learning Objectives)

Transcription:

Membrane Structure and Function Chapter 7 Objectives Define the following terms: amphipathic molecules, aquaporins, diffusion Distinguish between the following pairs or sets of terms: peripheral and integral membrane proteins; channel and carrier proteins; osmosis, facilitated diffusion, and active transport; hypertonic, hypotonic, and isotonic solutions Explain how transport proteins facilitate diffusion Explain how an electrogenic pump creates voltage across a membrane, and name two electrogenic pumps Explain how large molecules are transported across a cell membrane 2 Introduction The plasma membrane is the boundary that separates the living cell from its nonliving surroundings exhibits selective permeability it allows some substances to cross it more easily than others partitions organelle function in eukaryotes provides reaction surfaces and organizes enzymes and their substrates 3 1

Membrane Structure Phospholipids of membranes form bilayers phospholipids have polar head and nonpolar tail amphipathic form stable bilayer in water with heads out and tails in hydrophobic interior forms a barrier to hydrophilic molecules 5 2

Membrane Models Membranes have been chemically analyzed and found to be composed of proteins and lipids scientists studying the plasma membrane reasoned that it must be a phospholipid bilayer 7 The Davson-Danielli sandwich model of membrane structure pictured the membrane as a phospholipid bilayer sandwiched between two protein layers supported by electron microscope pictures of membranes 8 In 1972, Singer and Nicolson proposed that membrane proteins are dispersed and individually inserted into the phospholipid bilayer 9 3

Freeze-fracture studies of the plasma membrane supported the fluid mosaic model of membrane structure 11 4

The Fluidity of Membranes Lipids in membrane are not fixed lipids can move in membrane - semi-fluid nature of membrane Cholesterol helps stabilize animal cell membranes at different temperatures maintains fluidity of membrane at low temperatures 13 Proteins are embedded in the phospholipid bilayer individual molecules free to move laterally can drift within the bilayer 15 5

Membrane Proteins and Their Functions A membrane is a collage of different proteins embedded in the fluid matrix of the lipid bilayer Two major classes of proteins in membrane integral transmembrane penetrate the hydrophobic core of the lipid bilayer peripheral - loosely associated with membrane surface 17 6

Membrane Function Proteins make membrane a mosaic of function identification tags-glycoproteins enzymes receptors-trigger cell activity when molecular messenger binds cell junctions transporters 19 The Role of Membranes in Cell- Cell Recognition Cells recognize each other by binding to surface molecules, often containing carbohydrates, on the extracellular surface of the plasma membrane Membrane carbohydrates may be covalently bonded to lipids (forming glycolipids) or more commonly to proteins (forming glycoproteins) Carbohydrates on the external side of the plasma membrane vary among species, individuals, and even cell types in an individual 21 7

Synthesis and Sidedness of Membranes Membranes have distinct inside and outside faces This affects the movement of proteins synthesized in the endomembrane system 23 8

The Permeability of the Lipid Bilayer A cell must exchange materials with its surroundings, a process controlled by the plasma membrane hydrophobic molecules are lipid soluble and can pass through the membrane rapidly polar molecules do not cross the membrane rapidly Transport proteins allow passage of hydrophilic substances across the membrane 25 Passive Diffusion Passive transport is diffusion across membrane diffusion is the tendency of molecules to spread out spontaneously from areas of high concentration to areas of low concentration passive diffusion across membrane occurs when molecule diffuses down concentration gradient at equilibrium molecules diffuse back and forth-no net gain or loss different molecules diffuse independently of each other 26 9

Effects of Osmosis on Water Balance Osmosis is passive diffusion of water selectively permeable membranes are permeable to water but not all solutes direction of osmosis is determined by differences in total solute concentrations 28 Water Balance of Cells Without Walls Tonicity is the ability of a solution to cause a cell to gain or lose water has a great impact on cells without walls If a solution is isotonic the concentration of solutes is the same as it is inside the cell there will be no net movement of water If a solution is hypertonic the concentration of solutes is greater than it is inside the cell the cell will lose water 30 10

If a solution is hypotonic the concentration of solutes is less than it is inside the cell the cell will gain water Animals and other organisms without rigid cell walls living in hypertonic or hypotonic environments must have special adaptations for osmoregulation 31 Water Balance of Cells with Walls Cell walls help maintain water balance If a plant cell is turgid it is in a hypotonic environment it is very firm, a healthy state in most plants If a plant cell is flaccid it is in an isotonic or hypertonic environment 33 11

Facilitated Diffusion: Passive Transport Aided by Proteins Specific proteins facilitate diffusion across membranes facilitated diffusion occurs when protein pore in membrane allows solute to diffuse down concentration gradient no energy required rate depends on number of transport proteins and strength of gradient 35 Channel proteins provide corridors that allow a specific molecule or ion to cross the membrane Carrier proteins undergo a subtle change in shape that translocates the solute-binding site across the membrane 36 12

Active Transport Cells expend energy for active transport transport protein involved in moving solute against concentration gradient energy from ATP-mediated phosphorylation changes protein shape and moves solute molecule across membrane active transport of two solutes in opposite directions often coupled 38 The sodium-potassium pump is one type of active transport system 39 13

Maintenance of Membrane Potential Membrane potential is the voltage difference across a membrane An electrochemical gradient is caused by the concentration and electrical gradients of ions across a membrane 42 14

Electrogenic pumps, like the Na + -K + pump and the H + pump, generate voltage (charge separation) across membranes. The resulting voltage, or membrane potential, can be used to drive the transport of ions against a chemical gradient 43 Cotransport: Coupled Transport by a Membrane Protein Cotransport occurs when active transport of a specific solute indirectly drives the active transport of another solute 45 15

Mass Transport Exocytosis and endocytosis transport large molecules exocytosis: membrane-bound vesicles containing large molecules fuse with plasma membrane and release contents outside cell endocytosis: plasma membrane surrounds materials outside cell, closes around materials, and forms membrane-bound vesicles 47 Exocytosis In exocytosis transport vesicles migrate to the plasma membrane, fuse with it, and release their contents 48 16

Endocytosis In endocytosis the cell takes in macromolecules by forming new vesicles from the plasma membrane three important types of endocytosis are: phagocytosis pinocytosis receptor-mediated endocytosis 49 17

Receptor-mediated endocytosis plays an important role in removing cholesterol from the bloodstream individuals with genetic predisposition to high cholesterol levels (hypercholesterolemia) have genetically determined low levels of cholesterol receptors on cell surfaces cholesterol poorly bound and removed from bloodstream 54 18

19