Assessment of Available and Stable Fluoride in Four Widely-Used Toothpastes in the Iranian Market

Similar documents
Timing of fluoride toothpaste use and enamel-dentin demineralization

Fluoride stability in dentifrices stored in schools in a town of northern Brazil

Comparative Evaluation of Fluoride Uptake Rate in the Enamel of Primary Teeth after Application of Two Pediatric Dentifrices

The effect of fluoride toothpaste on root dentine demineralization progression: a pilot study *

Fluoride Concentration in Toothpastes Marketed in Pakistan

Evidence-based recommendation on toothpaste use *

Anticaries effect of dentifrices with calcium citrate and sodium trimetaphosphate

journal of dentistry 41s (2013) s35 s41 Available online at journal homepage:

Association Between Socioeconomic Factors and the Choice of Dentifrice and Fluoride Intake by Children

Effect of Fluoridated Dentifrices on Surface Microhardness of the Enamel of Deciduous Teeth

Recommendation for a non-animal alternative to rat caries testing

Efficacy of Plaque Control by Tooth Brushing with and without Different Dentifrices: A Clinical Trial

Healing and Sealing Dental Caries: The Paradigm Has Shifted

Influence of Individual Saliva Secretion on Fluoride Bioavailability

Effects of Low-volume Mouth Rinsing after Toothbrushing with Newly Developed Fluoride Dentifrice on Salivary Fluoride Concentrations

High Fluoride Dentifrices for Elderly and Vulnerable Adults: Does It Work and if So, Then Why?

Evaluation of the fluoride stability of dentifrices sold in Manaus, AM, Brazil

Effects of miswak and nano calcium carbonate toothpastes on the hardness of demineralized human tooth surfaces

Effect of different frequencies of fluoride dentifrice and mouthrinse administration: an in situ study

DOSAGE FORMS AND STRENGTHS White toothpaste containing 1.1% sodium fluoride (3)

Linking Research to Clinical Practice

PRESS DOSSIER June 2011 WHITENING TOOTH PASTE

NEW ZEALAND DATA SHEET

sodium monofluorophosphate in oral hygiene products

Remineralizing Effect of Child Formula Dentifrices on Artificial Enamel Caries Using a ph Cycling Model

Policy on the use of fluoride

Fluoride varnishes play an important role in the prevention of dental caries, promoting

Fluor Protector Overview

Oral Care. Excellent cleaning performance, remineralization and whitening for toothpaste

The Effect of Mineralizing Fluorine Varnish on the Progression of Initial Caries of Enamel in Temporary Dentition by Laser Fluorescence

Effect of different fluoride concentrations on remineralization of demineralized enamel: an in vitro ph-cycling study

Effect of Dentifrice Containing Fluoride and/or Baking Soda on Enamel Demineralization/ Remineralization: An in situ Study

A 3-MONTH STUDY OF FLUORIDE RELEASE FROM DIFFERENT CALCIUM PHOSPHATE FLUORIDE VARNISHES ON PRIMARY TEETH

Enhancement of fluoride release from glass ionomer cement following a coating of silver fluoride

Omya Consumer Goods omya.com. Oral Care. Natural Minerals for Toothpaste Formulations

Is the fluoride intake by diet and toothpaste in children living in tropical semi-arid city safe?

Colgate-Palmolive Company, Piscataway, NJ. 2 Research Center, School of Dentistry, Medical Sciences Campus, University of Puerto Rico.

Uses of Fluoride in Dental Practices

Biochemical composition of carious dentin and different layers of sound dentin

Calcium binding to S. mutans grown in the presence or absence of sucrose

Comparative Analysis of Remineralizing Potential of Three Commercially Available Agents- An in Vitro Study

Remineralization Effect of Topical NovaMin Versus Sodium Fluoride (1.1%) on Caries-Like Lesions in Permanent Teeth

R EVIEWS OF S YSTEMATIC R EVIEWS

Analysis of fluoride levels retained intraorally or ingested following routine clinical applications of topical fluoride products

Comparative Evaluation of Remineralizing Potential of Three Pediatric Dentifrices

Original Research. Fluoride varnish and dental caries prevention Mohammadi TM et al. Contributors: 1

Linking Research to Clinical Practice

Formation and Its Anti- Cariogenic Action on Human Enamel: An in Vitro Study ABSTRACT

Downloaded from journal.qums.ac.ir at 20: on Friday March 22nd 2019

Fluoridens 133 Fluorosilicic acid 136 Fluorosis, see Dental fluorosis Foams 118 acute toxicity 71, 122 clinical efficacy 122 Free saliva 149, 150

ENHANCING REMINERALIZATION OF PRIMARY ENAMEL LESIONS WITH FLUORIDE DENTIFRICE CONTAINING TRICALCIUM PHOSPHATE

Everyday Relief. Everyday Protection.

journal of dentistry 41s (2013) s1 s11 Available online at journal homepage:

Evaluation of the remineralisation of enamel by different. formulations and concentrations of fluoride toothpastes in vitro.

A History and Update of Fluoride Dentifrices

Chapter 14 Outline. Chapter 14: Hygiene-Related Oral Disorders. Dental Caries. Dental Caries. Prevention. Hygiene-Related Oral Disorders

Therapeutic effect of two fluoride varnishes on white spot lesions: a randomized clinical trial

A History and Update of Fluoride Dentifrices

Comparative Investigation of the Desensitizing Efficacy of a New Dentifrice Containing 5.5% Potassium Citrate : An Eight-Week Clinical Study

TOTAL AND BIOAVAILABLE FLUORIDE CONCENTRATIONS IN COMMERCIALLY AVAILABLE TOOTHPASTES IN SOUTH AFRICA

Comparing the Effectiveness of Two Fluoride Mouthrinses on Streptococcus Mutans

EVALUATION OF THE TOTAL FLUORIDE INTAKE OF 4-7-YEAR-OLD CHILDREN FROM DIET AND DENTIFRICE

Effect of Low Fluoride Acidic Dentifrices on Dental Remineralization

Zurich Open Repository and Archive

5. BIOCHEMICAL COMPOSITION AND FOOD VALUE OF RIBBON FISH L. SAVALA

Evaluation of Oral Health Status in Mild to Moderate Mental Disabled Children in Comparison with Normal Children in Isfahan (Iran)

THE EFFECT OF CASEIN PHOSPHOPEPTIDE TOOTHPASTE VERSUS FLUORIDE TOOTHPASTE ON REMINERALIZATION OF PRIMARY TEETH ENAMEL

An estimation of fluoride release from various dental restorative materials at different ph: In vitro study

Health Promotion and Disease Prevention are the Foundation of Community Based Health Care

lactose-containing stevioside sweetener on biofilm acidogenicity

White Spot Lesions: A Hygiene Perspective in the Orthodontic Practice. 16 MAY 2016 // hygienetown.com. clinical orthodontics // feature

Margherita Fontana, DDS, PhD. University of Michigan School of Dentistry Department of Cariology, Restorative Sciences and Endodontics

Fluoride ion release from ultraviolet light-cured sealants containing sodium fluoride. Methods and Materials

Evaluation of Knowledge, Attitude and Practice of Parents of Children with Cardiac Disease about Oral Health

An In-vitro Comparison of Force Loss of Orthodontic Non-Latex Elastics

Qualitative chemical reaction of functional group in protein

Parental Attitudes and Tooth Brushing Habits in Preschool Children in Mangalore, Karnataka: A Cross-sectional Study

Australian Dental Journal

Tooth hypersensitivity and Dental erosion DR. KÁROLY BARTHA

Caries Experience of Fluoride-related and Unrelated Enamel Malformations

EFFICACY OF FLUORIDE MOUTHRINSE CONTAINING TRICALCIUM PHOSPHATE ON PRIMARY ENAMEL LESIONS : A POLARIZED LIGHT MICROSCOPIC STUDY

Systemic versus Topical Fluoride

CAries Management By Risk Assessment"(CAMBRA) - a must in preventive dentistry

PRESCHOOL CHILDREN IN PRIMARY CARE SETTINGS IN THAILAND

EFFECT OF ADDING TRICALCIUM PHOSPHATE TO FLUORIDE MOUTHRINSE ON MICROHARDNESS OF DEMINERALIZED PRIMARY HUMAN TOOTH

SmartCrown. The Cavity Fighting SmartCrown. Patient Education Booklet. SmartCrown.com Toll Free Local

v Review of how FLUORIDE works v What is FLUOROSIS v 2001 CDC Fluoride Guidelines v 2006 ADA Topical Fluoride Recommendation

Comparison of changes in salivary ph levels after consumption of plain milk and milk mixed with Sugar

Dental Research Journal

Remineralization Assessment of Early Childhood Caries using QLF-D: A Randomized Clinical Trial

Self-applied VS professional-applied fluoride: their effects on remineralization of artificial incipient proximal caries in situ

Vol. XXVI, No. 2 The Journal of Clinical Dentistry 45

quantitative light-induced fluorescence study. Caries research, 45(2), /

Alkali soluble fluoride deposits on bovine dental enamel after treatment with a mouthwash containing fluoride and chlorhexidine

ph-cycling Models to Evaluate the Effect of Low Fluoride Dentifrice on Enamel De- and Remineralization

Anticaries Potential of a Fluoride Mouthrinse Evaluated In Vitro by Validated Protocols

Change to read: BRIEFING

Comparative Evaluation of Effect of Chlorhexidine And Sodium Fluoride Mouthwashes on Plaque

What we know and don t know about fluoride*

The Cavity Fighting ProActive Crown

Transcription:

Original Article Assessment of Available and Stable Fluoride in Four Widely-Used Toothpastes in the Iranian Market Jaber Yaghini 1, Sima Kiani 2, Shiva Mortazavi 3, Bahareh Haghshenas 4, Ahmad Mogharehabed 5 1 Assistant Professor, Department of Periodontics, Torabinejad Research Center, Esfahan University of Medical Sciences, Isfahan, Iran 2 Postgraduate Student, Department of Periodontology, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran 3 Assistant Professor, Department of Pediatrics, Torabinejad Research Center, Esfahan University of Medical Sciences, Isfahan, Iran 4 Dentist, Privet Practice, Iran. 5 Associated Professor, Department of Periodontics, Torabinejad Research Center, Isfahan University of Medical Sciences, Esfahan, Iran. Corresponding author: A. Mogharehabed, Department of Periodontics, Faulty of Dentistry, Isfahan Univercity of Medical Science, Isfahan, Iran mogharehabed@dnt.mui.ac.ir Received: 12 March 2014 Accepted :2 August 2014 Abstract Objective: Presence of available and stable fluoride in a dentifrice formulation is a major requirement for an anti-caries effect. Although the available fluoride concentration in Iranian dentifrices has been reported in previous studies, there is little information on its stability; which is dependent upon dentifrice formulation. This study was done to assess the fluoride ion concentration and stability in four widely used dentifrices in Iran. Materials and Methods: In this analytical study, three samples of each brand of dentifrice (Nasim, Pooneh, Crest, and Signal) were purchased. Total fluoride (TF) and total soluble fluoride (TSF) concentrations were determined by ion specific electrodes. Data about TF were analyzed by one-way analysis of variance (ANOVA). Kruskal-Wallis and Mann-Whitney tests were used for nonparametric data (TSF). Results: All dentifrices had more than 1000 ppm of fluoride ions. TSF in Crest was significantly higher than in other dentifrices (P<0.0001) and was over the maximum permitted dose. Conclusion: The TF concentration in Iranian toothpastes was sufficient to prevent caries. Key Words: Dentifrice; Fluoride; Dental Caries Journal of Dentistry, Tehran University of Medical Sciences, Tehran, Iran (2014; Vol. 11, No. 5) INTRODUCTION The effect of fluoride (F) in caries prevention is well known. F-dentifrices are the most widely- accepted anti-caries substances [1]. It has been reported that F-containing toothpaste is the main factor responsible for caries reduction in developed countries [2, 3]. Thus, F-containing dentifrices are suggested for all populations [4]. Solubility of F in its ionic (free) form (F- of NaF) or ionizable form (MFP) ensures its bioavailability and abundance in the mouth. This organized and bioavailable active form of F guarantees anti-caries activity [5, 6]. 604 1

Journal of Dentistry, Tehran University of Medical Sciences In order to have a high bioavailability, chemical constituents, type of F and type of abrasive substances in the dentifrice are important [7]. F-dentifrices contain sodium F (NaF), mono fluoro-phosphate (MFP) or their combination. The abrasive substances i.e. aluminum (Al) and Ca ions can reduce the amount of fluoride in the presence of sodium fluoride (NaF) [8]. In MFP molecule, F is conjugated with phosphate by a covalent bond; however, this bond is not stable and can release F ions; which react with Ca ions in Ca-based dentifrices [9]. This reaction results in production of CaF 2 ; which is insoluble and does not have remineralization [10] or anti-caries effects [11]. It has been proven that in MFP-containing dentifrices, linking of free F ions with Ca-based abrasives can inactivate F ions [8]. Thus, use of insoluble silicon dioxide (SiO2) or heated pyrophosphate as abrasives has been proposed [12]. In order to have an anti-caries effect, a dentifrice should contain at least 1000 ppm of bioavailable F [13, 14]. The minimal amount of free F ions in a dentifrice should not be less than 60% of its total F content [10-15], and this amount should not exceed 1500 ppm [16]. Yaghini et. al Since a comprehensive study about fluoride availability and stability in widely used dentifrices in Iran is not available, the aim of the present study was to evaluate the available F concentration in 4 widely used dentifrices; which contain different types of fluoride compounds and abrasives. MATERIALS AND METHODS Study design: In this analytical study, TF and TSF concentrations were evaluated in four widely-used adult dentifrices in Iran. Table 1 shows the assessment data of the dentifrices. Three dentifrices of each brand were obtained and 2 cm was extracted from each tube. Then each tube was divided into 3 equal parts (top, middle and down) and each part was stored in a plastic box. In order to carry out a blind analysis, a 3-letter code was randomly allocated to each sample. The TF and TSF concentrations were measured under equal laboratory conditions (temperature 20º C). An ion specific electrode was used for all analyses. Determination of TF and TSF concentrations: The concentration of TF and TSF was determined as explained in previous studies [17]. Table1. Data relevant to the toothpastes studied Product Name Manufacturer Production Date Expiration Date Tube Weight Abrasive F formulation Amount of F Declared on Label Pooneh (3colored) Paksan-Iran 2011.11 2013.11 80± 1gr Di hydrated di calcium phosphate MFP* 1450 ppm Signal (whitening) Unilever-India 2011.8 2013.11 76/5gr Calcium glycerol phosphate -calcium carbonate - hydrated silica SMFP** 1450 ppm Gross Crest (3D) Germ- Germany 2011.12 2014.12 98gr Hydrated silica NaF*** 1450 ppm Nasim (conventional) Paksan-Iran 2012.1 2014.1 80± 1gr Di calcium phosphate-di hydrated silica MFP 1450 ppm *MFP=monofluorophosphate, **SMFP=sodium monofluorophosphate. ***NaF= sodium fluoride 2 605

Yaghini et. al Assessment of Available and Stable Fluoride in Four Widely-Used Toothpastes Fig 1. TF and TSF (mean and SD) concentrations in the four evaluated dentifrices (ppm) Four grams of deionized water (DDW) was used to homogenize 1 gram (±0.01) of dentifrice; and for determination of TSF concentration 0.1 gram (±0.01) of each dentifrice was weighed in scaled plastic centrifuge tubes. All tubes were homogenized in 0.9 g of DDW. After 20 seconds of shaking, a suspension of homogenous solution was produced. In the next step the suspension was centrifuged (3000 g, 10 min, room temperature) and the conjugated fluoride was removed. Then, the supernatant was transferred to a plastic tube and 9.9 cc DDW was added. Next, 0.25 cc of 2M HCl was added to both TF and TSF samples. The mixture was located at 50 c (50 degrees of centigrade) for 10 minutes and neutralized by adding 0.5 ml of 1M NaOH plus 1 ml of TISABII (0.75M Acetate buffer, ph=5 containing 1M NaCl and 0.4% CDTA). The analysis was performed by using a fluoride selective electrode (Thermo Orion, USA, 9609) and an Ion Meter (Thermo Orion, USA, 720A). Statistical analysis: The mean and standard deviation of TF and TSF concentrations in dentifrices were calculated and analyzed with SPSS version 11 software. One-way ANOVA was employed to analyze TF concentration in all groups, after confirming the normality of data distribution. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used for the comparison of TSF between groups. P-value less than 0.05 was considered significant. RESULTS In order to perform a true evaluation of TF and TSF in the four mentioned dentifrices, three tubes of each brand were provided and three samples were taken from each tube. Comparison of the TF concentration between 4 dentifrices: The highest (1605.45 ppm) and the lowest (1136.67 ppm) amount of TF were related to Crest and Signal toothpastes, respectively. But the difference in this respect between groups was not significant (P= 0.39, Table 2 and Figure1) Comparison of the TSF concentration between 4 dentifrices: The highest amount of TSF was related to Crest (2326.89 ppm) and the lowest to Pooneh (1188.86 ppm) toothpastes. 606 3

Journal of Dentistry, Tehran University of Medical Sciences Yaghini et. al The results of Kruskal-Wallis and Mann- Whitney tests revealed that the amount of TSF in Crest dentifrice was significantly more than in other dentifrices (P<0.001, Table 2, Figure 1). Comparative evaluation of the other dentifrices: Pooneh-Signal (P=0.233), Pooneh- Nasim (P=0.823) and Signal-Nasim (P=0.727) showed no significant difference regarding this variable. Comparison of both TF and TSF concentrations with limits set by the International Standard Institute revealed that all understudy dentifrices followed these standards except for Crest. It is notable that the amount of TF (1605.45 ppm) and TSF (2326.89 ppm) in Crest was above the maximum standard limit (1500 ppm). DISCUSSION Using fluoridated dentifrices is the most common method of dental caries prevention; it has caused a reduction in the prevalence of dental caries in all countries [18]. Two essential requirements need to be met in a fluoridated dentifrice namely availability and stability of F. The abrasives used in dentifrices play an essential role in inactivating F ions [17, 19-20]. The inactivation of F may lead to formation of a low soluble product with decreased anti-caries effect [21]. In our study, the main abrasive was silica in all dentifrices except for Pooneh; which contained a Ca-based abrasive. Signal and Nasim contained Ca-based abrasives in addition to Silica (Table 1). TSF concentration was the highest in Crest (which only contains silica abrasive) and the lowest in Pooneh (which only contains a Cabased abrasive). The fact that TSF concentration in Ca-containing dentifrices was less than the amount declared by their manufacturers indicates that Ca-based abrasives decrease F stability. In agreement with our findings, Filho et al, [17] and Cury et al. [21] showed that incompatibility between the abrasive agent (usually CaCO 3 ) and F type (usually MFP) leads to lower concentrations of TSF. A study by Condeh et al. showed that silicabased dentifrices either in combination with MFP or NaF had a greater amount of soluble F/TSF. These results verify our findings. On the other hand, the higher concentration of TSF in Crest led us to suppose that with regard to F availability, NaF is better than MFP and SMFP; albeit this advantage of Crest may not be solely due to the presence of NaF, and the compatibility between NaF and silica may also play a role in this regard. NaF-containing dentifrices are often formulated with silica. Similar findings were obtained by previous studies [22]. However, others showed no significant difference between MFP and NaF [23]. In another study by Arnold et al, [24] F availability and the remineralization effect of SMFP were shown to be greater than those of NaF. In our study, we found that TF and TSF concentrations in Nasim, Pooneh and Signal dentifrices were within the standard limit (1000-1500 ppm); but these concentrations were slightly higher than the maximum permitted limit in Crest. Table 2. The mean and SD of TF and TSF in evaluated dentifrices (ppm) Product Name TF Mean (±SD) TSF Mean (±SD) Pooneh 1252.00 (±336.5) a 1188.86 (±154.3) b Signal 1136.67 (±236.7) a 1305.72 (±235.4) b Crest 1605.45 (±646.3) a 2326.89 (±213.6) c Nasim 1364.66 (±377.3) a 1388.11 (±567.7) b P value 0.39 < 0.001 4 607

Yaghini et. al Assessment of Available and Stable Fluoride in Four Widely-Used Toothpastes Thus, all mentioned dentifrices had optimal anti-caries effect and none of them except for Crest can lead to F overdose. In contrast, Hassanzadeh et al [25] in 2004 demonstrated that F ion concentration in most of the Iranian and some of the foreign made dentifrices was less than the required threshold for having anti-caries effect. But the amount of soluble F ion in Crest and Signal was above this threshold. One of the limitations of our study was the small number of evaluated dentifrices which were different both in type of abrasive and F compound; thus, separate evaluation of the effects of different types of abrasives and F compounds on F stability was not feasible. Two factors may be responsible for the superiority of TSF over TF in some dentifrices in this study and other similar surveys [21] namely 1) Presence of non-homogenized parts of a dentifrice due to separate sampling from different parts of the tube and 2) A multistage laboratory system causing more confounding factors. With regard to the constraint of such studies and the small number of studies in this field, further surveys with larger sample size and more precise laboratory techniques are proposed. CONCLUSION The minimum amount of soluble fluoride required for anti-caries effect was available in the dentifrices evaluated in this study. Furthermore, the stable form of F had a higher concentration in silica/naf-containing dentifrice i.e. Crest compared to the Ca/ MFP containing dentifrices (Pooneh, Nasim, and Signal). ACKNOWLEDGMENTS The authors would like to thank Torabinejad Dental Research Center for helpful cooperation, and also Dr S. Khazaei, DMD, for his scientific assistance. REFERENCES 1- Ten Cate JM. Current concepts on the theories of the mechanism of action of fluoride. Acta Odontol Scand. 1999 Dec;57(6):325-9. 2- Bratthall D, Hänsel-Petersson G, Sundberg H. Raesons for the caries decline: what do the experts believe? Eur J Oral Sci. 1996;104:416-22. 3- Cury JA, Tenuta LM, Ribeiro CC, Paes Leme AF. The importance of fluoride dentifrices to the current dental caries prevalence in Brazil. Braz Dent J. 2004;15(3):167-74. 4- Bardal PA, Olympio KP, da Silva Cardoso VE, de Magalhaes Bastos JR, Buzalaf MA. Evaluation of total ph and soluble and ionic fluoride concentrations in dentifrices commercially available in Brazil. Oral Health Prev Dent. 2003;1(4):283-9. 5- Tenuta LM, Cury JA. Fluoride: its role in dentistry. Braz Oral Res. 2010;24 Suppl 1:9-17. 6- Ten Cate JM, Featherston JDB. physiochemical aspects of fluoride-enamel interactions. In: Fejerskov O, Estrand J, Burt BA, editors. fluoride in dentistry. 2nd ed. copenhagen: munksgaard; 1996. p. 352-272. 7- Ten Cate JM. In vitro studies on the effects of fluoride on de- and remineralization. J Dent Res. 1990 Feb;69 Spec No:614-9; discussion 34-6. 8- Hattab FN. The state of fluorides in toothpastes. J Dent. 1989 Apr;17(2):47-54. 9- Conde NC, Rebelo MA, Cury JA. Evaluation of the fluoride stability of dentifrices sold in Manaus, AM, Brazil. Pesqui Odontol Bras. 2003 Jul-Sep;17(3):247-53. 10- Walsh T WH, Glenny AM, Appelbe P, Marrinho VC, Shi X. Fluoride toothpaste of different concentration for preventing dental caries in children and adolescent. cochrane database syst rev; 2010. 11- Ellwood R, Fejerskov O, Cury J, Clarkson B. Fluoride in caries control. In: Fejerskov O, Kidd E, editors. Dental caries: the disease and 6085

Journal of Dentistry, Tehran University of Medical Sciences its clinical management: John Wiley & Sons; 2008. p. 287-323. 12- Städtler P, Höller H. Toothpastes. Int J Clin Pharmacol Ther Toxicol. 1992 May; 30 (5):167-72. 13- Oszwaldowski S, Jakubowska J. Simultaneous determination of zirconium and hafnium as ternary complexes with 5-Br- PADAP and fluoride using solid-phase extraction and reversed-phase liquid chromatography. Talanta. 2003 Jul 4;60(4):643-52. 14- Pendrys DG. Fluoride ingestion and oral health. Nutrition. 2001 Nov-Dec;17(11-12):979-80. 15- Hashizume LN, Lima YB, Kawaguchi Y, Cury JA. Fluoride availability and stability of Japanese dentifrices. J Oral Sci. 2003 Dec;45(4):193-9. 16- Ricomini Filho AP, Tenuta L, Fernandes F, Calvo A, Kusano SC, Cury JA. Fluoride concentration in the top-selling Brazilian toothpastes purchased at different regions. Braz Dent J. 2012;23(1):45-8. 17- Hattab FN. Analytical methods for the determination of various forms of fluoride in toothpastes. J Dent. 1989 Apr;17(2):77-83. 18- Rolla G, Ogaard B, Cruz Rde A. Clinical effect and mechanism of cariostatic action of fluoride-containing toothpastes: a review. Int Dent J. 1991 Jun;41(3):171-4. 19- Wilkinson JB, Moore RJ, Harry RG. Harry's cosmeticology: Chemical Pub; 1982. 20- Newbrun E. Current regulations and Yaghini et. al recommendations concerning water fluoridation, fluoride supplements, and topical fluoride agents. Journal of Dental Research. 1992;71(5):1255-65. 21- Nören B, Harse C. The stability of the monofluorphosphate and fluoride ions in dentifrice containing calcium carbonate. J Soc Cosmet Chem 1974;25:3-11. 22- Cury JA, Oliveira MJ, Martins CC, Tenuta LM, Paiva SM. Available fluoride in toothpastes used by Brazilian children. Braz Dent J. 2010;21(5):396-400. 23- Beiswanger BB, Lehnhoff RW, Mallatt ME, Mau MS, Stookey GK. A clinical evaluation of the relative cariostatic effect of dentifrices containing sodium fluoride or sodium monofluorophosphate. ASDC J Dent Child. 1989 Jul-Aug;56(4):270-60. 24- Stookey GK, DePaola PF, Featherstone JD, Fejerskov O, Moller IJ, Rotberg S, et al. A critical review of the relative anticaries efficacy of sodium fluoride and sodium monofluorophosphate dentifrices. Caries Res. 1993;27(4):337-60. 25- Arnold WH, Dorow A, Langenhorst S, Gintner Z, Banoczy J, Gaengler P. Effect of fluoride toothpastes on enamel demineralization. BMC Oral Health. 2006;6:8. 26- Hasanzadeh -Khayyat M, Khashayarmanesh Z, Masoomi Shahrbabak S. Comparison of the amount of fluoride ion in domestic Iranian toothpastes with few foreign commercial brands and international standards. J Dent Sch 2004; 22(1): 26-37. 6 609