Types of Skeletal Systems. Hydrostatic Skeletons. Hydrostatic Skeletons. Hydrostatic Skeletons. The Musculoskeletal System

Similar documents
The Musculoskeletal System. Chapter 46

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS.

Structural Support and Movement. Chapter 36

Chapter 30 How Animals Move

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

BIOL 1030 Introduction to Biology: Organismal Biology. Fall 2009 Sections B & D. Steve Thompson:

Action and Support: The Muscles and Skeleton

Protection, Support, and Movement-Skin, Skeleton, and Muscle Notes

Animal Locomotion. Lots of ways to get around. What are the advantages of locomotion? Why Do We Need All That ATP?

Chapter 19 Musculoskeletal

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Animal Skeletons. Earthworm peristaltic movement. Hydrostatic Skeletons

MUSCLE & MOVEMENT C H A P T E R 3 3

BIO 130 Anatomy and Physiology Spring, 2016 Exam 3 Name: Course ID Number. Section 1 Answer questions 1 40 on the scan sheet.

MUSCULAR TISSUE. Dr. Gary Mumaugh

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

December 3, Name five bones in your body. Are bones living or dead? Explain. What is the function of bone marrow?

Muscles & Motor Locomotion Why Do We Need All That ATP?

Muscle Tissue- 3 Types

The organization of skeletal muscles. Excitation contraction coupling. Whole Skeletal Muscles contractions. Muscle Energetics

36 1 The Skeletal System Slide 1 of 40

AP Biology. Animal Locomotion. Muscles & Motor Locomotion. Why Do We Need All That ATP? Lots of ways to get around. Muscle

Chapter 8 Notes. Muscles

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

Locomotion: The act or power of moving from place to place

Skeletal Muscle. Skeletal Muscle

Chapter 9 - Muscle and Muscle Tissue

STD.6 (2015) MOVEMENT IN THE BODY. When an organism moves from one place to another, it is termed as locomotion. locomotion.

Human Anatomy and Physiology - Problem Drill 09: The Muscular System

ANATOMY & PHYSIOLOGY 1 ( ) For Intensive Nursing PAUL ANDERSON SAMPLE TEST

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Name: Teacher: Olsen Hour:

Ability to distinguish stimuli depends on the brain:

Class XI Chapter 20 Locomotion and Movement Biology

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Skeletal Muscle Qiang XIA (

Microanatomy of Muscles. Anatomy & Physiology Class

sliding filament mechanism cross-bridges myosin actin tropomyosin troponin transverse tubules (T tubules) motor unit

11.2 Muscles and Movement

Session 3-Part 2: Skeletal Muscle

Anatomy & Physiology Muscular System Worksheet

Amplification Strengthening of stimulus signal. (1) Reception Receptor detects stimuli

Vikasana Bridge Cource 2012

Nerve Cell (aka neuron)

Chapter 10 Muscle Tissue Lecture Outline

Muscle and Muscle Tissue

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

AP Biology

Chapter 49. Muscles & Motor Locomotion. AP Biology

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

HL Topic 11.2: Movement. Chapter 49.5

Chapter 8: Skeletal Muscle: Structure and Function

Anatomy & Physiology. Unit Two. Muscular System URLs Frog Dissection

The Skeletal System PART A

Essentials of Human Anatomy & Physiology. The Muscular System

Table of Contents # Date Title Page # /27/14 Ch 7: Skeletal System 01/29/14 Ch 8: Muscular System

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

Namma Kalvi NEW CHALLENGE TUITION CENTRE 11 TH BIO-ZOOLOGY UNIT- 4 STUDY MATERIAL 9. LOCOMOTION AND MOVEMENT

Structural Support and Movement. Chapter 33

Extension: The Role of the Skeleton

(c) sarcolemma with acethylcholine (protein) receptors

High School Biology - Problem Drill 20: Skeletal, Muscular, and Integumentary Systems

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Unit 7: Skeletal and muscular systems

Muscles & Muscle Tissue

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

Muscular System- Part 1. Unit 5 Miss Wheeler

10/4/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Anatomy. Physiology. Skeletal Muscle Anatomy

Chapter 10 -Muscle Tissue

Choroid Retina Fovea. Sclera. Suspensory ligament Cornea Iris. Optic nerve. Pupil. Aqueous humor Lens. Central artery and vein of the retina

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

MODULE 6 MUSCLE PHYSIOLOGY

Chapter 9 The body and its movement

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Ch 10: Skeletal Muscle Tissue (Myology)

The All-or-None Principle Motor units also comply to a rule known as the all-ornone principle (or law).

3 muscle function_scr.notebook April 20, 2015

Muscles and Muscle Tissue

2/28/18. Muscular System. 1 Copyright 2016 by Elsevier Inc. All rights reserved. Introduction. Physiology. Anatomy. Muscle Fiber

2/28/18. Muscular System. Introduction. Anatomy. Chapter 20

Human Anatomy. Muscle Tissue and Organization. DR.SADIQ ALI (K.E Medalist) 10-1

BCH 450 Biochemistry of Specialized Tissues. V. Muscle Tissues

CLASS SET Unit 4: The Muscular System STUDY GUIDE

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

REVISION: STRUCTURE & SUPPORT IN ANIMALS 25 JUNE 2014

Muscular system MOVE ME!

2/19/2018. Learn and Understand:

SKELETAL MUSCLE CHARACTERISTICS

Chapter 29 The Skeletal and Muscular Systems

Assignment 4: Muscle Structure and Function

Transcription:

The Musculoskeletal System Chapter 47 Types of Skeletal Systems Changes in movement occur because muscles pull against a support structure, called the skeletal system -Zoologists recognize three types: -Hydrostatic skeletons -Exoskeletons -Endoskeletons 2 Hydrostatic Skeletons Hydrostatic Skeletons Are found primarily in soft-bodied invertebrates, both terrestrial and aquatic Locomotion in earthworms -Involves a fluid-filled central cavity and surrounding circular & longitudinal muscles -A wave of circular followed by longitudinal muscle contractions move fluid down body -Produces forward movement 3 4 Hydrostatic Skeletons Locomotion in aquatic invertebrates -Occurs by fluid ejections or jetting -Jellyfish produce regular pulsations in bell -Squeezing some of water contained beneath it -Squids fill mantle cavity with sea water -Muscular contractions expel water forcefully through the siphon, and the animal shoots backward 5 6 1

Exoskeletons The exoskeleton surrounds the body as a rigid hard case -Composed of chitin in arthropods An exoskeleton provides protection for internal organs and a site for muscle attachment -However, it must be periodically shed, in order for the animal to grow -It also limits body size 7 8 Endoskeletons Endoskeletons are rigid internal skeletons that form the body s framework and offer surfaces for muscle attachment -Echinoderms have calcite skeletons, that are made of calcium carbonate -Bone, on the other hand, is made of calcium phosphate Endoskeletons Vertebrate endoskeletons have bone and/or cartilage -Bone is much stronger than cartilage, and much less flexible Unlike chitin, bone and cartilage are living tissues -They can change and remodel in response to injury or physical stress 9 10 Endoskeletons The vertebrate endoskeleton is divided into: -Axial skeleton = Forms axis of the body -Supports the body and protects internal organs -Appendicular skeleton = Set of limb bones and their associated pectoral girdle (forelimbs) or pelvic girdle (hindlimbs) 11 12 2

Bone Bone is a hard but resilient connective tissue that is unique to vertebrates Bones can be classified by the two fundamental modes of development -Intramembranous development (simple) -E.g.: External bones of skull -Endochondral development (complex) -E.g.: Bones that are deep in the body 13 Bone Intramembranous development -Osteoblasts initiate bone development -Some cells become trapped in the bone matrix that they have produced -Change into osteocytes, which reside in tight spaces called lacunae -The cells communicate through little canals termed canaliculi -Osteoclasts break down the bone matrix 14 15 16 Bone Endochondral development -Endochondral bones begin as tiny cartilaginous models -Bone development consists of adding bone to the outside of a cartilaginous model, while replacing interior cartilage with bone -Calcification begins with the fibrous sheath, later called the periosteum 17 Bone Endochondral development -Cartilage that remains after the development of epiphyses serves as a pad between bone surfaces -Bones grow by lengthening and widening -Growth in length usually ceases in humans by late adolescence -Growth in width continues by bone addition just beneath the periosteum 18 3

Bone Structure In most mammals, bones retain internal blood vessels and are called vascular bones -These typically have osteocytes and are also called cellular bones -Vascular bone has a special internal organization termed the Haversian system In birds and fishes, bones are avascular -These typically lack osteocytes and are also called acellular bones 19 20 Bone Structure Based on density and structure, bone falls into three categories -Compact bone = Outer dense layer -Medullary bone = Lines the internal cavity -Contains bone marrow in vertebrates -Spongy bone = Honeycomb structure -Forms the epiphyses inside a thick shell of compact bone 21 Bone Remodeling The phenomenon of remodeling is known for all bones -Small forces may not have a great effect -But larger forces if frequent enough can initiate remodeling by osteoblasts It is possible that mechanical stress in bones deforms the hydroxyapatite crystal, thus producing a piezoelectric effect 22 Bone Remodeling Joints Joints are the locations where one bone meets another -1. Immovable joints = Join bones -2. Slightly movable joints = Involve fibrous connective tissue or cartilage -3. Freely movable joints = Also called synovial joints -Contain a lubricating fluid 23 24 4

25 26 Joints Movable joints can be divided into four types -Ball-and-socket joints = Permit movement in all directions -Hinge joints = Allow movement in only one plane -Gliding joints = Permit sliding of one surface over another -Combination joints = Allow rotation and side-to-side sliding 27 28 29 30 5

Skeletal Muscle Movement Skeletal muscle fibers are attached to the periosteum of bones in one of two ways -Directly; or through a strong, fibrous cord called the tendon One attachment of the muscle, the origin, remains stationary during contraction -The other end, the insertion, is attached to a bone that moves when muscle contracts 31 Skeletal Muscle Movement Skeletal muscles occur in antagonistic pairs -Agonist = Muscle group causing an action -Antagonist = Muscle group that counters movement Isotonic contraction The force of contraction remains relatively constant as the muscle shorten in length Isometric contraction The length of the muscle does not change as force is exerted 32 33 34 Skeletal Muscle Structure Each skeletal muscle contains numerous muscle fibers -Each muscle fiber encloses a bundle of 4 to 20 elongated structures called myofibrils -Each myofibril in turn is composed of thick and thin myofilaments 35 36 6

Skeletal Muscle Structure A bands = Stacked thick & thin myofilaments -Dark bands H bands = Center of the A band, consisting of thick bands only I bands = Consist only of thin myofilaments -Light bands -Divided into two halves by a disc of protein called the Z line Sarcomere = Distance between two Z lines A muscle contracts and shortens because the myofibrils contract and shorten -Myofilaments themselves do not shorten -Instead, the thick and thin filaments slide relative to each other -Sliding filament mechanism -Z lines move closer together, as the I and H bands become shorter -Smallest subunit of muscle contraction 37 -A band does not change in size 38 39 40 A thick filament is composed of several myosin subunits packed together -Myosin consists of two polypeptide chains wrapped around each other -Each chain ends with a globular head A thin filament is composed of two chains of actin proteins twisted together in a helix 41 42 7

Muscle contraction involves a series of events called the cross-bridge cycle -Hydrolysis of ATP by myosin, activates the head for the later power stroke -The ADP and P i remain bound to the head, which binds to actin forming a cross-bridge -During the power stroke, myosin returns to its original shape, releasing ADP and P i -ATP binds to the head which releases actin 43 44 45 46 When a muscle is relaxed, its myosin heads cannot bind to actin because the attachment sites are blocked by tropomyosin -In order for muscle to contract, tropomyosin must be removed by troponin -This process is regulated by Ca 2+ levels in the muscle fiber cytoplasm -In low Ca 2+ levels, tropomyosin inhibits cross-bridge formation -In high Ca 2+ levels, Ca 2+ binds to troponin -Tropomyosin is displaced, allowing the formation of actin-myosin cross-bridges 47 48 8

A muscle fiber is stimulated to contract by motor neurons, which secrete acetylcholine at the neuromuscular junction -The membrane becomes depolarized -Depolarization is conducted down the transverse tubules (T tubules) -Stimulate the release of Ca 2+ from the sarcoplasmic reticulum (SR) 49 50 A motor unit consists of a motor neuron and all of the muscle fibers it innervates -All fibers contract together when the motor neuron produces impulses Muscles that require precise control have smaller motor units Muscles that require less precise control but exert more force, have larger motor units Recruitment is the cumulative increase in motor unit number and size leading to a stronger contraction 51 52 Types of Muscle Fibers A muscle stimulated with a single electric shock quickly contracts and relaxes in a response called a twitch Summation is a cumulative response when a second twitch piggy-backs on the first Tetanus occurs when there is no relaxation between twitches -A sustained contraction is produced 53 54 9

Types of Muscle Fibers Skeletal muscle fibers can be divided based on their contraction speed -Slow-twitch, or Type I, fibers -Rich in capillaries, mitochondria and myoglobin (red fibers) -Sustain action for long periods of time -Fast-twitch, or Type II, fibers -Poor in capillaries, mitochondria and myoglobin (white fibers) Types of Muscle Fibers Skeletal muscles have different proportions of fast-twitch and slow-twitch fibers -Adapted for rapid power generation 55 56 Types of Muscle Fibers Skeletal muscles at rest obtain most of their energy from aerobic respiration of fatty acids -During muscle use, energy comes from glycogen and glucose The maximum rate of oxygen consumption in the body is called the aerobic capacity Muscle fatigue is the use-dependent decrease in the ability to generate force -Usually correlated with the production of 57 lactic acid by the exercising muscle Modes of Animal Locomotion Locomotion in large animals involves: -Appendicular locomotion -Produced by appendages that oscillate -Axial locomotion -Produced by bodies that undulate, pulse or undergo peristaltic waves The physical constraints to movement gravity and frictional drag occur in every environment, differing only in degree 58 Locomotion in Water Water s buoyancy reduces effect of gravity Some marine invertebrates move about using hydraulic propulsion All aquatic invertebrates swim -Swimming involves using the body or its appendages to push against the water -An eel uses its whole body -A trout uses only its posterior half 59 60 10

Locomotion in Water Locomotion on Land Many terrestrial tetrapod vertebrates are able to swim, usually through limb movement -Most birds that swim propel themselves by pushing against water with their hind legs -These typically have webbed feet -Animals that swim with their forelegs usually have these modified as flippers and pull themselves through the water Terrestrial locomotion deals mainly with gravity Mollusks glide along a path of mucus Vertebrates and arthropods have a raised body, and move forward by pushing against the ground with jointed appendages legs -Vertebrates are tetrapods; all arthropods have at least six limbs -Having extra legs increases stability, but -Sea turtles and penguins reduces the maximum speed 61 62 Locomotion on Land Locomotion on Land The basic walking pattern of quadrupeds generates a diagonal pattern of foot falls -Left hind leg, right foreleg, right hind leg, left foreleg -Allows running by a series of leaps Some vertebrates are also effective leapers -Kangaroos, rabbits and frogs have powerful leg muscles 63 64 Locomotion in Air Flight has evolved among animals four times -Insects, pterosaurs (extinct flying reptiles), birds, and bats -Propulsion is achieved by pushing down against the air with wings In birds and most insects, wing raising and lowering is achieved by alternate contraction of extensor muscles (elevators) and flexor muscles (depressors) 65 Locomotion in Air These different vertebrates all have lightened bones and forelimbs transformed into wings 66 11