Accelerated Memory Decline in Alzheimer s Disease With Apolipoprotein e4 Allele

Similar documents
Anosognosia, or loss of insight into one s cognitive

ORIGINAL CONTRIBUTION. Change in Cognitive Function in Older Persons From a Community Population

New life Collage of nursing Karachi

Mild Cognitive Impairment (MCI)

8/14/2018. The Evolving Concept of Alzheimer s Disease. Epochs of AD Research. Diagnostic schemes have evolved with the research

WHAT IS DEMENTIA? An acquired syndrome of decline in memory and other cognitive functions sufficient to affect daily life in an alert patient

Behavioral and psychological symptoms of dementia characteristic of mild Alzheimer patients

Confusional state. Digit Span. Mini Mental State Examination MMSE. confusional state MRI

Erin Cullnan Research Assistant, University of Illinois at Chicago

Brain imaging for the diagnosis of people with suspected dementia

ORIGINAL CONTRIBUTION. Response of Patients With Alzheimer Disease to Rivastigmine Treatment Is Predicted by the Rate of Disease Progression

Fact Sheet Alzheimer s disease

Regulatory Challenges across Dementia Subtypes European View

Apolipoprotein E ε4 Allele and Whole Brain Atrophy in Late-Onset Alzheimer s Disease

Estimating the Validity of the Korean Version of Expanded Clinical Dementia Rating (CDR) Scale

ALZHEIMER S DISEASE OVERVIEW. Jeffrey Cummings, MD, ScD Cleveland Clinic Lou Ruvo Center for Brain Health

Imaging of Alzheimer s Disease: State of the Art

Alzheimer's disease (AD), also known as Senile Dementia of the Alzheimer Type (SDAT) or simply Alzheimer s is the most common form of dementia.

The current state of healthcare for Normal Aging, Mild Cognitive Impairment, & Alzheimer s Disease

ORIGINAL CONTRIBUTION. Correlation of Longitudinal Cerebrospinal Fluid Biomarkers With Cognitive Decline in Healthy Older Adults

Validity of Family History for the Diagnosis of Dementia Among Siblings of Patients With Late-onset Alzheimer s Disease

SUPPLEMENTARY INFORMATION In format provided by Frank et al. (JULY 2010)

Article. Does Donepezil Treatment Slow the Progression of Hippocampal Atrophy in Patients With Alzheimer s Disease?

NIH Public Access Author Manuscript J Int Neuropsychol Soc. Author manuscript; available in PMC 2006 October 23.

Supplementary Note. Patient #1 Additional Details

DISCLOSURES. Objectives. THE EPIDEMIC of 21 st Century. Clinical Assessment of Cognition: New & Emerging Tools for Diagnosing Dementia NONE TO REPORT

Mild Cognitive Impairment

ORIGINAL ARTICLE Neuroscience INTRODUCTION MATERIALS AND METHODS

An integrated natural disease progression model of nine cognitive and biomarker endpoints in patients with Alzheimer s Disease

Hallucinations, delusions, and cognitive decline in Alzheimer s disease

NEUROPSYCHOMETRIC TESTS

Introduction, use of imaging and current guidelines. John O Brien Professor of Old Age Psychiatry University of Cambridge

Dementia. Stephen S. Flitman, MD Medical Director 21st Century Neurology

The Primary Care Guide To Understanding The Role Of Diabetes As A Risk Factor For Cognitive Loss Or Dementia In Adults

D ementia is the most common neurodegenerative condition

Alzheimer s Disease. Clinical characteristics of late-onset Alzheimer s disease (LOAD) A/Prof David Darby

ApoE, Brain Networks and Behavior: A Cautionary Tale

Role of TDP-43 in Non-Alzheimer s and Alzheimer s Neurodegenerative Diseases

Nutrition and Water for Dementia Prevention

Alzheimer s disease dementia: a neuropsychological approach

Yong-Bum Kim, M.D., Kwang-Ho Lee, M.D., Soo-Joo Lee, M.D., Duk-L. Na, M.D., Soo-Jin Cho, M.D., Chin-Sang Chung, M.D., Won-Yong Lee M.D.

ALZHEIMER S DISEASE. Mary-Letitia Timiras M.D. Overlook Hospital Summit, New Jersey

APOE-E4 is associated with memory decline in cognitively impaired elderly

The Reliability and Validity of the Korean Instrumental Activities of Daily Living (K-IADL)

Efficacy of Donepezil Treatment in Alzheimer Patients with and without Subcortical Vascular Lesions

ORIGINAL CONTRIBUTION. Comparison of the Short Test of Mental Status and the Mini-Mental State Examination in Mild Cognitive Impairment

UDS Progress Report. -Standardization and Training Meeting 11/18/05, Chicago. -Data Managers Meeting 1/20/06, Chicago

How can the new diagnostic criteria improve patient selection for DM therapy trials

Dementia. Assessing Brain Damage. Mental Status Examination

I n recent years, the concept of mild cognitive impairment

MR Imaging of the Hippocampus in Normal Pressure Hydrocephalus: Correlations with Cortical Alzheimer s Disease Confirmed by Pathologic Analysis

Dementia mimicking Alzheimer s disease Owing to a tau mutation: CSF and PET findings

.. Mini-Mental State Examination MMSE TPQ

Diagnostic accuracy of the Preclinical AD Scale (PAS) in cognitively mildly impaired subjects

Dementia Update. October 1, 2013 Dylan Wint, M.D. Cleveland Clinic Lou Ruvo Center for Brain Health Las Vegas, Nevada

C holinomimetic drugs constitute the first line of treatment

ORIGINAL CONTRIBUTION. Apolipoprotein E 4 and Age at Onset of Sporadic and Familial Alzheimer Disease in Caribbean Hispanics

The effect of education and occupational complexity on rate of cognitive decline in Alzheimer s patients

A Dynamic Model of Care for Late Onset Cognitive Impairment. Linda CW Lam Department of Psychiatry The Chinese University of Hong Kong

Supplementary Online Content

review of existing studies on ASL in dementia Marion Smits, MD PhD

RESEARCH AND PRACTICE IN ALZHEIMER S DISEASE VOL 10 EADC OVERVIEW B. VELLAS & E. REYNISH

Chapter 1. Introduction

Cognitive Reserve and the Relationship Between Depressive Symptoms and Awareness of Deficits in Dementia

Subject Index. Band of Giacomini 22 Benton Visual Retention Test 66 68

Dementia and Alzheimer s disease

New diagnostic criteria for Alzheimer s disease and mild cognitive impairment for the practical neurologist

Pocket Reference to Alzheimer s Disease Management

V ariables that might predict the outcome of cholinesterase

DEMENTIA WITH LEWY bodies (DLB) is the

Assessing and Managing the Patient with Cognitive Decline

Diabetes Mellitus and Dementia. Andrea Shelton & Adena Zadourian

TGF-ß1 pathway as a new pharmacological target for neuroprotection in AD. Filippo Caraci

Neuropsychiatric disturbances such as delusions,

Quantitative analysis for a cube copying test

Clinicopathologic and genetic aspects of hippocampal sclerosis. Dennis W. Dickson, MD Mayo Clinic, Jacksonville, Florida USA

The course of neuropsychiatric symptoms in dementia. Part II: relationships among behavioural sub-syndromes and the influence of clinical variables

Infiltrative Brain Mass Due To Progressive Alzheimer's Disease

Alzheimer's Disease. Dementia

HOW TO PREVENT COGNITIVE DECLINE.AT MCI STAGE?

Yin-Hui Siow MD, FRCPC Director of Nuclear Medicine Southlake Regional Health Centre

Overview of neurological changes in Alzheimer s disease. Eric Karran

Clinical Genetics & Dementia

NIH Public Access Author Manuscript AJNR Am J Neuroradiol. Author manuscript; available in PMC 2014 January 16.

Primary alcoholic dementia and alcohol-related dementia

Understanding Symptoms, Causes, and Risks for Alzheimer s Disease

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London

Corporate Medical Policy Genetic Testing for Alzheimer s Disease

Published February 2, 2012 as /ajnr.A2935

Diagnosis and Treatment of Alzhiemer s Disease

SHARED CARE OF MCI/EARLY DEMENTIA

S ubjects with mild cognitive impairment (MCI) often

Mild Cognitive Impairment or Mild Neurocognitive Disorder: Implications for Clinical Practice. Hypothesized Key Players in the Pathogenesis of AD

Cognition in Schizophrenia: Natural History, Assessment, and Clinical Importance Richard C. Mohs, Ph.D.

Chapter 7. Depression and cognitive impairment in old age: what comes first?

ORIGINAL CONTRIBUTION. Visuoperceptual Impairment in Dementia With Lewy Bodies

Mild cognitive impairment: historical development and summary of research

Dementia Past, Present and Future

Transcription:

Accelerated Memory Decline in Alzheimer s Disease With Apolipoprotein e4 Allele Nobutsugu Hirono, M.D., Ph.D. Mamoru Hashimoto, M.D., Ph.D. Minoru Yasuda, M.D., Ph.D. Hirokazu Kazui, M.D., Ph.D. Etsuro Mori, M.D., Ph.D. To investigate a possible effect of the apolipoprotein (APOE) e4 allele on memory decline in Alzheimer s disease (AD),we examined 64 AD patients with the APOE e3/3, e3/4,or e4/4 allele using the Alzheimer Disease Assessment Scale- Cognitive subscale (ADAS-Cog) and its subtests at the initial examination and at the 1-year follow-up visit. One-year changes in the scores of the Word Recall subtest,word Recognition subtest,and total ADAS-Cog were significantly correlated with the number of APOE e4 alleles after controlling for the effects of age,sex,education, test interval,and baseline scores. Findings revealed that APOE e4 allele is related to an accelerated memory decline in AD. (The Journal of Neuropsychiatry and Clinical Neurosciences 2003; 15:354 358) T he apolipoprotein (APOE) e4 allele is a well-known risk factor for developing Alzheimer s disease (AD) and lowers the age at onset in a dose-dependent fashion 1 4 (i.e., the risk for developing AD becomes bigger and the age at onset becomes lower as the number of APOE e4 alleles increase). These facts suggest that the APOE e4 allele accelerates the degenerative process for developing AD and leads to the hypothesis that cognitive decline in AD should progress more rapidly in patients who carry this allele. However, this latter issue (i.e., whether the APOE e4 allele is associated with a faster rate of cognitive decline) remains open to debate. While some studies have found such a relationship, 5,6 others have not, 7 18 and some studies have even reported a converse effect. 19,20 Among the elderly, both those who are healthy 21 and those who suffer from mild cognitive impairment, 22 the APOE e4 allele has been reported to be associated with greater memory decline. Longitudinal change in hippocampal volume is also reportedly greater in e4-positive subjects than in e4-negative subjects in nondemented elderly 23 and in patients with AD. 18 Several cross-sectional studies of patients with AD have reported that the APOE e4 allele is associated with Received April 3, 2002; revised June 26, 2002; accepted July 11, 2002. From the Departments of Clinical Neurosciences and Basic Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders and Faculty of Health Sciences, Ehime University School of Medicine, Japan. Address correspondence to Dr. Nobutsugu Hirono, Faculty of Health Sciences, Ehime University School of Medicine, Shitsukawa, Shigenobu-Cho, Onsen-gun, 791-0295 Japan; hirono@m.ehime-u.ac.jp (E-mail). Copyright 2003 American Psychiatric Publishing, Inc. 354 J Neuropsychiatry Clin Neurosci 15:3, Summer 2003

HIRONO et al. poorer memory function 24,25 and more severe atrophic changes 24,26 29 and hypometabolism 30 in the medial temporal lobe structures. At autopsy, the APOE e4 allele is also reported to be associated with greater densities of Ab deposition, senile plaques, and neurofibrillary tangles, especially in the hippocampus. 31,32 These longitudinal and cross-sectional studies suggest that the APOE e4 allele mainly affects the medial temporal lobe and memory function. If so, the possible effect of APOE e4 allele on the rate of cognitive decline may be detected in one neuropsychological test but not in others. It is noteworthy that most studies using the Mini-Mental State Examination (MMSE), 33 which is one of the most common tests, to examine the effect of the APOE e4 allele on the rate of cognitive decline 7 9,11 14 failed to find a positive effect. The failure might be explained by the property of MMSE, which is highly susceptible to floor effects in the memory items on the test. Another possible explanation for the failure to demonstrate the effect of the APOE e4 allele on the rate of cognitive decline in previous studies is the disregard for the dose effect of the APOE e4 allele (e3/3, e3/4, or e4/ 4 alleles). The dose effect of the APOE e4 allele on developing AD has been reported in several studies. 1 4 A dose effect of the APOE e4 allele is highly expected in the rate of cognitive decline in AD. Most studies based on the presence/absence of the APOE e4 allele 7,9,11,14,15 18 have also failed to demonstrate the effect of the APOE e4 allele on the rate of cognitive decline. An analysis in which a dose effect is taken into consideration would be more sensitive to detect the effect of the APOE e4 allele on cognitive decline than an analysis based on its presence or absence. The Alzheimer Disease Assessment Scale-Cognitive subscale (ADAS-Cog), in which approximately 40% of the possible total points pertained to memory items, 34 is very sensitive to memory dysfunction and commonly used in clinical drug trials. The aim of this longitudinal study was to elucidate the possible effect of the APOE e4 allele on the rate of cognitive decline using the ADAS-Cog and its subtests. Additionally, we used a sensitive statistical method in order to take the dose effect into consideration. METHODS This study was conducted at the infirmary of the Hyogo Institute for Aging Brain and Cognitive Disorders (HI- ABCD), a research-oriented hospital for dementia. All procedures followed the 1993 Clinical Study Guidelines of the Ethical Committee of HI-ABCD, and were approved by the Institutional Review Board. Written, informed consent was obtained from all participants and their caregivers according to the Declaration of Human Rights, Helsinki, 1975. Subjects Among patients who were given short-term admission into the infirmary of the HI-ABCD for the examination and management of cognitive impairments from August 1993 to October 1999, we selected 64 AD patients aged 60 or older who fulfilled the criteria of the National Institute of Neurological Disease and Stroke/Alzheimer s Disease and Related Disorders Association for probable AD 35 and had any one of the APOE e3/3, e3/ 4, or e4/4 alleles. They were given follow-up ADAS-Cog tests after an interval of 1-year (11-13 months). At the initial examination, all patients were examined by both neurologists and psychiatrists using standardized medical history inquiries, neurological examinations, routine laboratory tests, standard neuropsychological examinations, electroencephalography, magnetic resonance imaging (MRI) of the brain, magnetic resonance (MR) angiography of the neck and head, and cerebral perfusion/metabolism studies using position emission tomography (PET) or single photon emission tomography (SPECT), which were all incorporated in the diagnosis. None of the patients had any other medical illnesses that might cause cognitive impairment, including thyroid diseases, vitamin deficiencies, and malignant diseases, or the complication of developmental abnormalities, mental diseases, substance abuse, or significant neurological antecedents such as brain traumas, brain tumors, epilepsies, and inflammatory diseases. None of the patients showed focal brain lesions on MR imaging, including lacunar infarcts, hematoma, and obvious autosomal dominant transmission traits. We began conducting the study before the use of donepezil hydrochloride in Japan. (Donepezil hydrochloride is the only anti-ad drug that is presently being approved for use in Japan). None of the patients received any anti-ad drugs during the follow-up period. Cognitive Measures To evaluate cognitive change, ADAS-Cog was administered by trained psychometrists at the initial examination and at the 1-year (11-13 months) follow-up visit. ADAS-Cog is scored by errors (with a total error score range of 0 to 70). Therefore, a higher score indicates a poorer performance. The test consists of the following 11 subtests: Word Recall, Word Recognition, Orientation, Recall of Test Instructions, Following Commands, Naming Objects and Fingers, Word Finding Difficulty, Spoken Language Ability, Comprehension, Construction, and Praxis. The maximum error point in each sub- J Neuropsychiatry Clin Neurosci 15:3, Summer 2003 355

MEMORY DECLINE IN ALZHEIMER S DISEASE test is shown in Table 2. We also calculated the subtotal of the language subtests, such as Following Commands, Naming Objects and Fingers, Word Finding Difficulty, Spoken Language Ability, and Comprehension. Determination of APOE Genotype The detailed method for APOE genotyping is described elsewhere. 36 In brief, genomic DNA was extracted from peripheral blood with a Genomix deoxyribonucleic acid (DNA) extraction kit (Talent Corp., Trieste, Italy) according to the manufacturer s protocol. The APOE genotype was determined using polymerase chain reaction-restriction fragment length polymorphism according to the procedure described by Wenham et al. 37 Statistical Analyses The differences in the demographic variables and baseline ADAS-Cog scores among these three APOE genotype groups were tested by the Kruskal-Wallis test, Spearman rank correlation coefficients, and the v 2 test. Since a dose-effect of the APOE e4 alleles is postulated, 1 4 we tested the relationship between 1-year changes of scores of ADAS-Cog and its subtests and the number of APOE e4 alleles by using the Spearman rank correlation coefficients before and after controlling for the effects of age, sex, education, test interval, and baseline scores. The significance level was set at p 0.05. All statistical analyses were conducted on SAS release 6.10 (SAS Institute Inc., Cary, NC). RESULTS The mean age of the patients was 74.2 6.2 (SD) years for 48 women and 16 men. The mean educational level was 9.1 2.4 years, and the mean interval of tests was 370.7 20.2 days. Twenty-three patients had APOE e3/ 3, 33 had APOE e3/4, and eight had e4/4 allele. Table 1 summarizes the demographic factors of each APOE genotype. Age showed a significant negative correlation with APOE e4 dose (rs -0.28, p 0.02). The sex ratio of the patients with APOE e4/4 significantly differed from that of the other two genotype patients groups (v 2 TABLE 1. Demographic factors of probable AD patients having different APOE genotypes No e4 Allele One e4 Allele Two e4 Alleles Age (years) 76.3 6.8 73.6 5.8 70.8 4.2 Sex (Female:Male) 17:6 29:4 2:6 Education (years) 8.3 1.8 9.6 2.7 9.6 2.1 Interval of tests (days) 376.7 17.9 365.4 21.7 375.1 15.4 mean SD (df 2) 13.6, p 0.011). Males were predominant in the patients with the APOE e4/4, whereas females were predominant in the patients with the APOE e3/3 and 3/4. There were no significant differences in the educational level or in the test interval among the three groups of patients. The baseline scores of ADAS-Cog and its subtests were not significantly different among the three groups (Table 2). Table 3 summarizes the 1-year changes of ADAS-Cog and its subtests scores of each genotype group and shows the Spearman rank correlation coefficients between these changes and the number of APOE e4 alleles before and after controlling the effects of the possible confounders including age, sex, education, test interval, and baseline scores. A significant positive correlation was noted between the number of APOE e4 alleles and the one-year change of the Word Recall subtest score. This correlation remained significant after controlling the effects of possible confounders. The 1-year changes of the Word Recognition subtest score and of the total ADAS-Cog score were significantly correlated with the number of APOE e4 alleles after controlling the effects of the possible confounders. None of the other subtests, including the subtotal score of the language subtests, showed significant correlation with the number of APOE e4 alleles. DISCUSSION The present study demonstrated that the number of APOE e4 alleles was significantly correlated with cognitive decline in AD over 1 year, as measured by the ADAS-Cog total score and memory subtest scores. The rates of decline of the subtests of language, construction, and praxis disturbances were not correlated with the number of APOE e4 alleles. In our subjects, mean ages negatively correlated with APOE e4 number and probably reflected the effects of APOE e4 on disease onset; the proportion of males was different among the APOE e4 status groups. However, the different ages and sex distributions among the APOE e4 status groups are not likely to account for the effect of APOE e4 allele on the rate of the test performance decline because statistically controlling these variables did not alter the results. Furthermore, the rate of cognitive decline in AD patients, as measured by the ADAS-Cog, is reportedly independent of sex and age. 38 Our finding is compatible with the findings in previous cross-sectional studies, 24 30 which reported that poorer memory function and more severe medial temporal atrophy and hypometabolism are associated with the APOE e4 allele. Our finding is also compatible with our previous longitudinal MRI 356 J Neuropsychiatry Clin Neurosci 15:3, Summer 2003

HIRONO et al. volumetric study, which demonstrated that the APOE e4 allele is associated with rapid progression of hippocampal atrophy in AD patients. 18 Memory decline is reportedly found in subjects carrying the APOE e4 allele, even before developing dementia. 21,22 Taken together, these results suggest that the effect of the APOE e4 allele on the cognitive disturbances in AD patients is domain specific (i.e., the effect is predominant in memory functions and is found both before and after the development of dementia). It is noteworthy that the rate of progression of the total ADAS-Cog score was also significantly influenced by the APOE genotypes after controlling the effects of age, sex, education, test interval, and baseline scores. Because memory tests account for almost 40% of the ADAS-Cog total score, this result is not surprising. ADAS-Cog has been used as the principal measure of cognitive outcome in clinical trials of potential treatments for AD and is even recommended to be used as the primary outcome measure by the U.S. Food and Drug Administration. 39 Our findings suggest that the effects of the APOE e4 allele on the change of ADAS- Cog scores should be taken into consideration in clinical trials and longitudinal studies. In conclusion, the APOE e4 allele plays an important role not only in the development of AD but also in the progression of certain aspects of cognitive functions. The APOE e4 allele is significantly associated with an accelerated memory decline in AD in a dose-dependent fashion. Although the effect of the APOE e4 on the decline of ADAS-Cog is modest, the longitudinal change of ADAS-Cog would be substantially affected by the number of APOE e4 alleles. Therefore, the effect of the APOE e4 allele on ADAS-Cog should be considered in longitudinal studies, including clinical drug trials. The APOE e4 allele would be recommended to be determined as a significant confounding variable affecting patients cognitive outcome in clinical trials. TABLE 2. Baseline scores of ADAS-Cog and its subtests of probable AD patients having different APOE genotypes Possible Range No e4 Allele One e4 Allele Two e4 Alleles ADAS-Cog total 0 70 25.0 10.4 21.9 9.0 25.7 11.6 Word recall 0 10 6.9 1.7 6.2 1.5 7.1 1.9 Word recognition 0 12 5.3 3.6 3.8 3.6 5.0 5.2 Orientation 0 8 4.2 2.2 4.3 1.5 5.5 1.5 Recall of test instructions 0 5 0.6 1.5 0.6 1.5 0.4 1.1 Following commands 0 5 1.6 0.9 1.4 1.1 1.1 1.0 Naming objects/fingers 0 5 0.2 0.6 0.2 0.5 0.5 1.4 Word finding difficulty 0 5 1.3 1.0 0.9 0.8 1.4 1.4 Spoken language ability 0 5 0.7 0.9 0.7 0.8 0.5 1.4 Comprehension 0 5 1.0 1.0 0.8 0.9 0.5 1.1 Total of language subtests 0 25 4.7 3.5 4.0 2.8 4.0 5.8 Construction 0 5 0.7 0.8 0.8 0.6 1.1 1.4 Praxis 0 5 2.6 1.9 2.2 1.7 2.6 1.8 TABLE 3. One-year changes of ADAS-Cog and its subtests scores of the patients having different APOE genotypes and Spearman rank correlation coefficients between the number of APOE e4 alleles and the one-year changes of ADAS-Cog and its subtests scores before and after controlling the effects of age, sex, education, tests interval, and baseline scores. Before Control After Control ADAS-Cog items No e4 Allele One e4 Allele Two ee4 Alleles rs pvalue rs pvalue ADAS-Cog total 1.6 7.9 2.5 5.8 4.8 5.0 0.242 0.054 0.268 0.040 Word recall 0.2 1.4 0.4 1.0 1.0 0.6 0.330 0.008 0.281 0.031 Word recognition 0.6 3.1 0.3 1.7 1.5 5.3 0.210 0.095 0.282 0.031 Orientation 0.4 1.4 0.4 1.6 0.4 1.1 0.119 0.349 0.010 0.940 Recall of instructions 0.1 0.5 0.2 1.1 0.4 0.7 0.082 0.520 0.003 0.984 Following commands 0.3 1.1 0.0 1.0 0.5 0.9 0.012 0.928 0.097 0.466 Naming objects/fingers 0.2 0.5 0.4 0.8 0.1 0.4 0.002 0.988 0.015 0.913 Word finding difficulty 0.3 1.0 0.4 0.8 0.3 0.5 0.090 0.481 0.065 0.627 Spoken language ability 0.6 1.1 0.2 0.8 0.5 0.8 0.099 0.439 0.049 0.715 Comprehension 0.2 0.9 0.1 0.9 0.8 0.7 0.111 0.384 0.123 0.355 Total of language subtests 1.6 3.2 1.0 2.6 2.1 2.5 0.046 0.719 0.052 0.695 Construction 0.2 1.0 0.2 0.5 0.1 0.4 0.024 0.850 0.199 0.130 Praxis 0.0 2.0 0.0 1.8 0.1 1.2 0.033 0.794 0.010 0.939 mean SD rs Spearman correlation coefficients J Neuropsychiatry Clin Neurosci 15:3, Summer 2003 357

MEMORY DECLINE IN ALZHEIMER S DISEASE References 1. Corder EH, Saunders AM, Strittmatter WJ, et al: Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer s disease in late onset families. Science 1993; 261:921 923 2. Poirier J, Davignon J, Bouthillier D, et al: Apolipoprotein E polymorphism and Alzheimer s disease. Lancet 1993; 342:697 699 3. Lucotte G, Turpin JC, Landais P: Apolipoprotein E-e4 allele doses in late-onset Alzheimer s disease. Ann Neurol 1994; 36:681 682 4. Blacker D, Haines JL, Rodes L, et al: ApoE-4 and age at onset of Alzheimer s disease: The NIMH Genetics Initiative. Neurology 1997; 48:139 147 5. Craft S, Teri L, Edland SD, et al: Accelerated decline in apolipoprotein E-epsilon4 homozygotes with Alzheimer s disease. Neurology 1998; 51:149 153 6. Kanai M, Shizuka M, Urakami K, et al: Apolipoprotein E4 accelerates dementia and increases cerebrospinal fluid tau levels in Alzheimer s disease. Neurosci Lett 1999; 267:65 68 7. Basun H, Grut M, Winblad B, et al: Apolipoprotein epsilon 4 allele and disease progression in patients with late-onset Alzheimer s disease. Neurosci Lett 1995; 183:32 34 8. Dal Forno G, Rasmusson DX, Brandt J, et al: Apolipoprotein E genotype and rate of decline in probable Alzheimer s disease. Arch Neurol 1996; 53:345 350 9. Kurz A, Egensperger R, Haupt M, et al: Apolipoprotein E epsilon 4 allele, cognitive decline, and deterioration of everyday performance in Alzheimer s disease. Neurology 1996; 47:440 443 10. Growdon JH, Locascio JJ, Corkin S, et al: Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer s disease. Neurology 1996; 47:444 448 11. Holmes C, Levy R, McLoughlin DM, et al: Apolipoprotein E: noncognitive symptoms and cognitive decline in late onset Alzheimer s disease. J Neurol Neurosurg Psychiatry 1996; 61:580 583 12. Murphy GM Jr, Taylor J, Kraemer HC, et al: No association between apolipoprotein E epsilon 4 allele and rate of decline in Alzheimer s disease. Am J Psychiatry 1997; 154:603 608 13. Lehtovirta M, Kuikka J, Helisalmi S, et al: Longitudinal SPECT study in Alzheimer s disease: relation to apolipoprotein E polymorphism. J Neurol Neurosurg Psychiatry 1998; 64:742 746 14. Slooter AJ, Houwing-Duistermaat JJ, van Harskamp F, et al: Apolipoprotein E genotype and progression of Alzheimer s disease: the Rotterdam Study. J Neurol 1999; 246:304 308 15. Farlow MR, Cyrus PA, Nadel A, et al: Metrifonate treatment of AD: influence of APOE genotype. Neurology 1999; 53:2010 2016 16. Raskind MA, Peskind ER, Wessel T, et al: Galantamine in AD: A 6-month randomized, placebo-controlled trial with a 6-month extension. Neurology 2000; 54:2261 2268 17. Aerssens J, Raeymaekers P, Lilienfeld S, et al: APOE genotype: no influence on galantamine treatment efficacy nor on rate of decline in Alzheimer s disease. Dement Geriatr Cogn Disord 2001; 12:69 77 18. Mori E, Lee K, Yasuda M, et al: Accelerated hippocampal atrophy in Alzheimer s disease with Apolipoprotein E e4 allele. Ann Neurol 2002; 51:209 214 19. Frisoni GB, Govoni S, Geroldi C, et al: Gene dose of the epsilon 4 allele of apolipoprotein E and disease progression in sporadic late-onset Alzheimer s disease. Ann Neurol 1995; 37:596 604 20. Stern Y, Brandt J, Albert M, et al: The absence of an apolipoprotein epsilon4 allele is associated with a more aggressive form of Alzheimer s disease. Ann Neurol 1997; 41:615 620 21. Mayeux R, Small SA, Tang M, et al: Memory performance in healthy elderly without Alzheimer s disease: effects of time and apolipoprotein-e. Neurobiol Aging 2001; 22:683 689 22. Dik MG, Jonker C, Bouter LM, et al: APOE-epsilon4 is associated with memory decline in cognitively impaired elderly. Neurology 2000; 54:1492 1497 23. Moffat SD, Szekely CA, Zonderman AB, et al: Longitudinal change in hippocampal volume as a function of apolipoprotein E genotype. Neurology 2000; 55:134 136 24. Lehtovirta M, Laakso MP, Soininen H, et al: Volumes of hippocampus, amygdala and frontal lobe in Alzheimer s patients with different apolipoprotein E genotypes. Neuroscience 1995; 67:65 72 25. Lehtovirta M, Soininen H, Helisalmi S, et al: Clinical and neuropsychological characteristics in familial and sporadic Alzheimer s disease: relation to apolipoprotein E polymorphism. Neurology 1996; 46:413 419 26. Lehtovirta M, Soininen H, Laakso MP, et al: SPECT and MRI analysis in Alzheimer s disease: relation to apolipoprotein E e4 allele. J Neurol Neurosurg Psychiatry 1996; 60:644 649 27. Geroldi C, Pihlajamaki M, Laakso MP, et al: APOE-epsilon4 is associated with less frontal and more medial temporal lobe atrophy in AD. Neurology 1999; 53:1825 1832 28. Bigler ED, Lowry CM, Anderson CV, et al: Dementia, quantitative neuroimaging, and apolipoprotein E genotype. AJNR Am J Neuroradiol 2000; 21:1857 1868 29. Hashimoto M, Yasuda M, Tanimukai S, et al: Apolipoprotein E e4 and the pattern of regional brain atrophy in Alzheimer s disease. Neurology 2001; 57:1461 1466 30. Hirono N, Hashimoto M, Yasuda M, et al: The effect of APOE e4 allele on cerebral glucose metabolism in AD is a function of age at onset. Neurology 2002; 58:743 750 31. Schmechel DE, Saunders AM, Strittmatter WJ, et al: Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90:9649 9653 32. Berg L, McKeel DW Jr, Miller JP, et al: Clinicopathologic studies in cognitively healthy aging and Alzheimer s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 1998; 55:326 335 33. Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state for the clinician. J Pschiatr Res 1975; 12:189 198 34. Mohs RC, Rosen WG, Davis KL: The Alzheimer s Disease Assessment Scale; An instrument for assessing treatment efficacy. Psychopharmacol Bull 1983; 19:448 450 35. McKhann G, Drachman D, Folstein M, et al: Clinical diagnosis of Alzheimer s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer s disease. Neurology 1984; 34:939 944 36. Yasuda M, Maeda K, Shimada K, et al: Apolipoprotein E e4 allele and gender difference in risk of Alzheimer s disease. Alzheimer Res 1995; 1:77 81 37. Wenham PR, Price WH, Blandell G: Apolipoprotein E genotyping by one-stage PCR. Lancet 1991; 337:1158 1159 38. Stern RG, Mohs RC, Davidson M, et al: A longitudinal study of Alzheimer s disease: measurement, rate, and predictors of cognitive deterioration. Am J Psychiatry 1994; 151:390 396 39. Mayeux R, Sano M: Treatment of Alzheimer s disease. N Engl J Med 1999; 341:1670 1679 358 J Neuropsychiatry Clin Neurosci 15:3, Summer 2003