mir 324 3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma

Similar documents
mir-185-3p regulates the invasion and metastasis of nasopharyngeal carcinoma by targeting WNT2B in vitro

Downregulation of serum mir-17 and mir-106b levels in gastric cancer and benign gastric diseases

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Long noncoding RNA CASC2 inhibits metastasis and epithelial to mesenchymal transition of lung adenocarcinoma via suppressing SOX4

Long noncoding RNA linc-ubc1 promotes tumor invasion and metastasis by regulating EZH2 and repressing E-cadherin in esophageal squamous cell carcinoma

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

Decreased expression of mir-490-3p in osteosarcoma and its clinical significance

Overexpression of long-noncoding RNA ZFAS1 decreases survival in human NSCLC patients

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Expression of long non-coding RNA linc-itgb1 in breast cancer and its influence on prognosis and survival

Expression of lncrna TCONS_ in hepatocellular carcinoma and its influence on prognosis and survival

mir-218 tissue expression level is associated with aggressive progression of gastric cancer

Circular RNA_LARP4 is lower expressed and serves as a potential biomarker of ovarian cancer prognosis

Type of file: PDF Size of file: 0 KB Title of file for HTML: Supplementary Information Description: Supplementary Figures

LncRNA RGMB-AS1 is activated by E2F1 and promotes cell proliferation and invasion in papillary thyroid carcinoma

MiR-508-5p is a prognostic marker and inhibits cell proliferation and migration in glioma

Prognostic significance of overexpressed long non-coding RNA TUG1 in patients with clear cell renal cell carcinoma

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

MicroRNA-132 inhibits migration, invasion and epithelial-mesenchymal transition by regulating TGFβ1/Smad2 in human non-small cell lung cancer

Expression of mir-146a-5p in patients with intracranial aneurysms and its association with prognosis

Effect of lncrna LET on proliferation and invasion of osteosarcoma cells

Long non-coding RNA ROR is a novel prognosis factor associated with non-small-cell lung cancer progression

mir-542-3p targets sphingosine-1-phosphate receptor 1 and regulates cell proliferation and invasion of breast cancer cells

mir-26a inhibits invasion and metastasis of nasopharyngeal cancer by targeting EZH2

Original Article Increased LincRNA ROR is association with poor prognosis for esophageal squamous cell carcinoma patients

LncRNA LET function as a tumor suppressor in breast cancer development

An epithelial-to-mesenchymal transition-inducing potential of. granulocyte macrophage colony-stimulating factor in colon. cancer

Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients

Original Article MicroRNA-27a acts as a novel biomarker in the diagnosis of patients with laryngeal squamous cell carcinoma

Original Article Up-regulation of mir-10a and down-regulation of mir-148b serve as potential prognostic biomarkers for osteosarcoma

Increased long noncoding RNA LINP1 expression and its prognostic significance in human breast cancer

mir-509-5p and mir-1243 increase the sensitivity to gemcitabine by inhibiting

MicroRNA-590-5p suppresses the proliferation and invasion of non-small cell lung cancer by regulating GAB1

Clinical significance of up-regulated lncrna NEAT1 in prognosis of ovarian cancer

Up-regulation of long non-coding RNA BCAR4 predicts a poor prognosis in patients with osteosarcoma, and promotes cell invasion and metastasis

Reduced mirna-218 expression in pancreatic cancer patients as a predictor of poor prognosis

Epstein-Barr virus driven promoter hypermethylated genes in gastric cancer

Long noncoding RNA LINC01510 is highly expressed in colorectal cancer and predicts favorable prognosis

Original Article Reduced serum mir-138 is associated with poor prognosis of head and neck squamous cell carcinoma

CircMTO1 inhibits cell proliferation and invasion by regulating Wnt/β-catenin signaling pathway in colorectal cancer

Association between downexpression of mir-1301 and poor prognosis in patients with glioma

LncRNA NKILA suppresses colon cancer cell proliferation and migration by inactivating PI3K/Akt pathway

Clinicopathologic and prognostic relevance of mir-1256 in colorectal cancer: a preliminary clinical study

Review Article Effect of mir-200b on metastasis of gastric cancer

The lncrna MIR4435-2HG is upregulated in hepatocellular carcinoma and promotes cancer cell proliferation by upregulating mirna-487a

Clinical significance of serum mir-196a in cervical intraepithelial neoplasia and cervical cancer

Analysis of circulating long non-coding RNA UCA1 as potential biomarkers for diagnosis and prognosis of osteosarcoma

Original Article Reduced expression of mir-506 in glioma is associated with advanced tumor progression and unfavorable prognosis

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Supplementary Table 3. 3 UTR primer sequences. Primer sequences used to amplify and clone the 3 UTR of each indicated gene are listed.

Knockdown of Long Noncoding RNA LUCAT1 Inhibits Cell Viability and Invasion by Regulating mir-375 in Glioma

Long non-coding RNA Loc is a potential prognostic biomarker in non-small cell lung cancer

Original Article Tissue expression level of lncrna UCA1 is a prognostic biomarker for colorectal cancer

Original Article MiR-506 suppresses proliferation and invasion of bladder cancer by targeting FOXQ1

Original Article Downregulation of microrna-26b functions as a potential prognostic marker for osteosarcoma

Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating mirnas

Long non-coding RNA CCHE1 overexpression predicts a poor prognosis for cervical cancer

Original Article MiR-130a regulates the proliferation and metastasis of HCC cells through targeting ZEB1/2

Down-regulation of long non-coding RNA MEG3 serves as an unfavorable risk factor for survival of patients with breast cancer

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer

mir-204 suppresses non-small-cell lung carcinoma (NSCLC) invasion and migration by targeting JAK2

mir-132 inhibits lung cancer cell migration and invasion by targeting SOX4

High Expression of Forkhead Box Protein C2 is Related to Poor Prognosis in Human Gliomas

ROLE OF TGF-BETA SIGNALING IN PIK3CA-

Mir-138-5p acts as a tumor suppressor by targeting pyruvate dehydrogenase kinase 1 in human retinoblastoma

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer

Original Article High serum mir-203 predicts the poor prognosis in patients with pancreatic cancer

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Original Article microrna-217 was downregulated in ovarian cancer and was associated with poor prognosis

Original Article MicroRNA-101 is a novel biomarker for diagnosis and prognosis in breast cancer

Plasma Bmil mrna as a potential prognostic biomarker for distant metastasis in colorectal cancer patients

LncRNA AB promotes the proliferation and inhibits apoptosis of cervical cancer cells by repressing RBM5

Up-regulation of LINC00161 correlates with tumor migration and invasion and poor prognosis of patients with hepatocellular carcinoma

95% CI: , P=0.037).

Knockdown of long noncoding RNA linc-it- GB1 suppresses migration, invasion of hepatocellular carcinoma via regulating ZEB1

Long non-coding RNA XLOC_ correlates with poor prognosis and promotes tumorigenesis of hepatocellular carcinoma

Clinical impact of serum mir-661 in diagnosis and prognosis of non-small cell lung cancer

mir 140 5p inhibits cell proliferation and invasion in colorectal carcinoma by targeting SOX4

mir-19a promotes invasion and epithelial to mesenchymal transition of bladder cancer cells by targeting RhoB

GLI-1 facilitates the EMT induced by TGF-β1 in gastric cancer

Serum mir-200c expression level as a prognostic biomarker for gastric cancer

Clinical value of combined detection of mir 1202 and mir 195 in early diagnosis of cervical cancer

Diagnostic and prognostic value of CEA, CA19 9, AFP and CA125 for early gastric cancer

MicroRNA 124 3p inhibits cell growth and metastasis in cervical cancer by targeting IGF2BP1

Increasing expression of mir-5100 in non-small-cell lung cancer and correlation with prognosis

RNA-Seq profiling of circular RNAs in human colorectal Cancer liver metastasis and the potential biomarkers

Effect of Survivin-siRNA on Drug Sensitivity of Osteosarcoma Cell Line MG-63

LncRNA GHET1 predicts a poor prognosis of the patients with non-small cell lung cancer

MiR-181a promotes epithelial to mesenchymal transition of prostate cancer cells by targeting TGIF2

mir 375 inhibits the proliferation of gastric cancer cells by repressing ERBB2 expression

Lack of association between an insertion/ deletion polymorphism in IL1A and risk of colorectal cancer

Association of mir-21 with esophageal cancer prognosis: a meta-analysis

Value of serum galectin-3 and midkine level determination for assessing tumor severity in patients with thyroid cancer

Increased expression of the lncrna BANCR and its prognostic significance in human osteosarcoma

mir-125a-5p expression is associated with the age of breast cancer patients

Chronic Diseases Prevention Review 5 (2018) 19-24

Regulatory role of microrna184 in osteosarcoma cells

Review Article Long Noncoding RNA H19 in Digestive System Cancers: A Meta-Analysis of Its Association with Pathological Features

http / /cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology A431 . Western aza-dC FUT4-siRNA

Transcription:

DOI 10.1186/s12935-016-0372-8 Cancer Cell International PRIMARY RESEARCH Open Access mir 324 3p suppresses migration and invasion by targeting WNT2B in nasopharyngeal carcinoma Chao Liu 1,2, Guo Li 1,2, Nianting Yang 1,2, Zhongwu Su 1,2, Shuiting Zhang 1,2, Tengbo Deng 1,2, Shuling Ren 1,2, Shanhong Lu 1,2, Yongquan Tian 1,2, Yong Liu 1,2* and Yuanzheng Qiu 1,2* Abstract Background: Nasopharyngeal carcinoma (NPC) is a malignant epithelial carcinoma of the head and neck with strong ability of invasion and metastasis. Our previous study indicated that mir-324-3p, as a tumor-suppressive factor, could regulate radioresistance of NPC cells by targeting WNT2B. The purpose of this study is to investigate the role of mir- 324-3p on migration and invasion in NPC cells. Methods: Quantitative real time PCR was applied to measure the expression level of mir-324-3p and WNT2B mrna in both cells and tissues, and the expression level of WNT2B protein was determined by western blotting. The capacity of migration and invasion were tested by using wound healing and transwell invasion assay. Results: Ectopic expression of mir-324-3p or silencing its target gene WNT2B could dramatically suppress migration and invasion capacity of NPC cells. Meanwhile, the alterations of mir-324-3p in NPC cells could influence the expression level of the biomarkers of epithelial-mesenchymal transition (EMT), including E-cadherin and Vimentin. Moreover, the expression of mir-324-3p was obviously downregulated and WNT2B was significantly upregulated in NPC tissues. The expression levels of mir-324-3p and WNT2B were closely correlated with T stage, clinic stage and cervical lymph node metastasis of NPC (P < 0.05). Conclusion: mir-324-3p could suppress the migration and invasion of NPC by targeting WNT2B and the mir-324-3p/ WNT2B pathway possibly provide new potential therapeutic clues for NPC. Keywords: Nasopharyngeal carcinoma, mir-324-3p, WNT2B, Invasion Background Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus associated cancer that mostly occurs in Southern China and South-Eastern Asia [1]. Despite great improvements in chemoradiotherapy over the past few decades, the overall 5-year survival rate for NPC still remains poor [2]. Strong ability to migrate and invade is a leading cause for the dismay prognosis of advanced NPC patients [3]. For this reason, exploring the molecular mechanisms *Correspondence: liuyongent@csu.edu.cn; xyqyz@hotmail.com Yong Liu and Yuanzheng Qiu are the co-corresponding authors 1 Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China Full list of author information is available at the end of the article underlying NPC migration and invasion is essential for the development of novel therapeutic strategies. micrornas (mirnas) are a kind of small non-protein-coding RNA, which consist of 19 25 nucleotides [4]. They can inhibit target gene expression at the posttranscriptional level by pairing with the 3 untranslated regions (3 UTRs), 5 UTRs or coding region of mrnas [5, 6]. Accumulated evidences prove that dysregulated mirnas can function as oncogenes or tumour suppressors in the initiation and progression of various human cancers [7]. In NPC, mirnas are also reported to play important regulatory roles in many critical biological processes including cell proliferation, apoptosis, radiosensitivity and chemosensitivity [8 10]. As to migration and invasion of NPC, a series of mirnas like mir-145 or The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Page 2 of 7 mir-744 can inhibit or enhance NPC migration and invasion by targeting SMAD3 or ARHGAP5, respectively [11, 12]. These above findings indicated that mirnas provide a new perspective for the investigation of migration and invasion in NPC. In our preliminary study, we have found that mir- 324-3p could regulate the radioresistance of NPC cells and further confirmed WNT2B was the target gene of mir-324-3p [13]. Here, we focused on the roles of mir- 324-3p involved in NPC migration and invasion. Our results showed that mir-324-3p inhibited migration and invasion of NPC cells and affected epithelial-mesenchymal transition (EMT) biomolecules, and the target gene WNT2B could enhance the migration and invasion ability of NPC. Currently, in NPC tissue specimens, mir- 324-3p was found to be downregulated while WNT2B was upregulated. Moreover, the expression levels of mir- 324-3p and WNT2B were associated with stages of NPC, as well as with lymph node metastasis. These results provide valuable clues toward understanding the molecular mechanisms of NPC migration and invasion. Methods Cell cultures NPC cell lines 5-8F and 6-10B were purchased from the Cell Center of Central South University, Changsha, China. The cells were cultured in RPMI medium 1640 (Hyclone, Logan, UT, USA) with 10% foetal bovine serum (Gibco BRL, Gaithersburg, MD, USA) and were incubated at 37 C in a humidified chamber with 5% CO 2. Cells in an exponential growth state were used for subsequent experiments. Patients and tissue preparation Primary NPC (n = 39) and normal nasopharyngeal epithelium (NPE) (n = 21) tissues were obtained from the the Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China. All patients had no history of previous malignancies. Staging was performed by the 2008 NPC staging system of China. The study protocol was approved by the Research Ethics Committee of the Central South University, Changsha, China. Informed consents were obtained from all of the patients. Oligonucleotides and transfection mir-324-3p mimics, WNT2B sirna and negative control (NC) were chemically synthesized from Gene- Pharma Co., Shanghai, China. The NPC cells 5-8F and 6-10B were transfected with Lipofectamine 2000 reagent (Invitrogen, Burlington, ON, Canada) according to the manufacturer s instructions. The transfection efficiency was observed by fluorescence microscopy, and the expression level of mir-324-3p and WNT2B were evaluated using the qrt-pcr examination System (Bio-Rad, Hercules, CA, USA). RNA extraction and quantitative real time PCR (qrt PCR) analyses TRIzol reagent (Invitrogen, Carlsbad, CA, USA) was used to extract the total RNA from NPC cells and tissues. The All-in-One mirna qrt-pcr Detection Kit (GeneCopoeia Inc., MD, USA) was applied in reverse transcription and quantitative detection of mirnas according to the user manual. The detection of mrnas was carried out with TaqMan Reverse Transcription Reagents and SYBR Green PCR Master Mix (Applied Biosystems, CA, USA). PCR quantification was conducted using the 2 ΔΔCT method and normalized to U6 for mirna or GAPDH for mrna. The sequences of the primers used for the PCR are as follows: WNT2B forward, 5 -TGG CGT GCA CTC TCA GAT TT-3 and reverse, 5 -GAC AAG ATC AGT CCG GGT GG-3 ; GAPDH forward, 5 -TCC AAA ATC AAG TGG GGC GA-3, and reverse, 5 -AGT AGA GGC AGG GAT GAT GT-3. The technical documentation of qrt-pcr was listed in Additional file 1, and representative data of standard and melt curves of the premirs were listed in Additional file 2: Figure S1. And the validation of the stability of the reference genes between NPC and NPE was showed in Additional file 2: Figure S2. Wound healing assay Wound-healing assay was used to examine the cell migration activity. When the cells were grown to reach almost total confluence (nearly 36 48 h after transfection), a 10 μl plastic pipette tip was adopted to creat an artificial wound. Then the cells were cultured in serumfree medium. The initial gap length (0 h) and the residual gap length 24 72 h after scratching were observed under the inverted microscope. Experiments were performed in triplicate. Cell invasion assay A transwell invasion assay was performed according to the operating instruction. Briefly, 1 10 4 cells with serum-free medium were seeded to the top chamber with Matrigel-coated membrane (BD Biosciences, Bedford, MA, USA). After a 48 h incubation period, noninvading cells on the surface of the upper chamber were removed with a cotton swab. Cells on the lower side of the chamber were fixed in paraformaldehyde, stained with crystal violet, and then counted in five random fields under microscope. Each experiment was done three times.

Page 3 of 7 Western blotting analysis Western blotting was carried out as described previously. Total cell or tissue proteins were extracted and separated on 10% SDS-PAGE gels, and electroblotted onto PVDF (polyvinylidene fluoride) membranes (Millipore, Billerica, MA, USA). Then, the protein expression was detected by incubation with the relevant primary antibody followed by an appropriate secondary antibody. The primary antibody in current study included anti-wnt2b (1:800, Boiss Inc., Woburn, MA, USA), anti-e-cadherin and anti-vimentin (1:800, Cell Signaling Technology, Danvers, MA, USA). Anti-β-Actin or anti- GAPDH (1:1000, Beyotime, Shanghai, China) were used as the loading control. The relative expression of WNT2B protein was calculated by the image intensity of the ratio of WNT2B and β-actin. Statistical analysis All data shown are representative results of at least three independent experiments and were expressed as mean ± standard deviation (SD). Statistical analyses were performed using a two-sided unpaired Student s t test (for equal variances) or Mann Whitney U test (for unequal variances) with SPSS 18.0 software. P < 0.05 was considered statistically significant. Results Ectopic expression of mir 324 3p inhibits migration and invasion of NPC cells To investigate the role of mir-324-3p on NPC migration and invasion, we upregulated the expression of mir- 324-3p by transfecting mir-324-3p mimic into NPC 5-8F and 6-10B cells. A transfection efficiency of 93.8 ± 2.1 and 92.7 ± 3.3% was observed under fluorescence microscopy in 5-8F and 6-10B cells, respectively, and the expression of mir-324-3p was successfully increased (P < 0.01; Fig. 1a, b). The wound healing assay showed that cell migratory abilities of mir-324-3p overexpressing cells were greatly inhibited compared with uninfected mock and control cells (P < 0.01, Fig. 1c, d). The transwell invasion assay showed that the number of invading cells was significantly decreased in mir-324-3p upregulated cells (P < 0.01, Fig. 1e, f). These results indicated that ectopic expression of mir-324-3p could inhibit migration and invasion of NPC cells. Silencing expression of WNT2B suppresses migration and invasion of NPC cells Our previous study had shown that WNT2B was the target gene of mir-324-3p, so we transfected WNT2B sirna plasmids into NPC cells to confirm its role on migration and invasion of NPC. The expression of WNT2B was obviously decreased in 5-8F and 6-10B cells by qrt-pcr detection (Fig. 2a, b). The wound healing assay demonstrated that cell migration ability was inhibited when WNT2B was downregulated (P < 0.01, Fig. 2c, d). The transwell invasion assay showed that the number of invading cells was significantly reduced in WNT2B sirna transfected cells (P < 0.01, Fig. 2e, f). These data confirmed that the target gene WNT2B could also affect the migration and invasion of NPC cells. mir 324 3p alters the expression of EMT biomarkers E cadherin and Vimentin EMT was a classical mechanism of tumour invasion and metastasis, and we had confirmed that WNT2B could affect the expression of EMT biomarkers in previous study [14]. Here, we found following the upregulation of mir-324-3p in both NPC 5-8F and 6-10B cells, the expression of epithelial markers E-cadherin was upregulated while mesenchymal markers Vimentin was downregulated (Fig. 3), which suggested that EMT might participate in the process of mir-324-3p mediated migration and invasion of NPC. mir 324 3p is downregulated and its target gene WNT2B is upregulated in NPC specimens We have validated that both mir-324-3p and target gene WNT2B could affect migration and invasion of NPC, so we further quantified the expressions of mir-324-3p and WNT2B in 39 freshly frozen NPC and 21 normal NPE tissues. The results showed that in NPC tissues, the expression of mir-324-3p was significantly decreased and both WNT2B mrna and protein were upregulated (Fig. 4). And the expression of mir-324-3p was negative correlated with WNT2B mrna and protein (Additional file 2: Figure S3). Correlationship between mir 324 3p/WNT2B expression and clinicopathological parameters The relationship between mir-324-3p/wnt2b expression and clinicopathological characteristics of NPC was explored. As summarized in Table 1, mir-324-3p lower expression was associated with tumour T classification, clinic stage and lymph node metastasis (P < 0.05), respectively. And WNT2B mrna/protein overexpression was also associated with tumour T classification, clinic stage and lymph node metastasis (P < 0.05). However, no significant relationship existed between these markers and variables such as gender and age (P > 0.05). More expression data of NPE and NPC with two differential stratifications of T and clinic stage forms was shown in Additional file 2: Figure S4.

Page 4 of 7 Fig. 1 Ectopic expression of mir-324-3p inhibits migration and invasion of NPC cells. The transfection efficiency and expression of mir-324-3p were determined under fluorescent microscope and qrt-pcr in 5-8F (a) and 6-10B (b) cells. The migration of different cell groups was examined by wound healing experiments in 5-8F (c) and 6-10B (d) cells. The invasion of different cell groups was detected by transwell invasion assays in 5-8F (e) and 6-10B (f) cells. The results represent the average of three independent experiments ± standard deviation (S.D). (**P < 0.01) Discussion To understand the underlying molecular mechanisms involved in NPC migration and invasion is beneficial to develop better therapeutic strategies for NPC patients. Recently, as important regulatory factors, mirnas have been shown to play crucial roles in various malignant biobehaviours of tumours, including NPC migration and invasion. Our previous study indicated that mir-324-3p could target WNT2B to affect the radioresistance of NPC in vitro [13]. In this study, we further demonstrated that mir-324-3p could also regulate the migration and invasion of NPC, which contributes to illustrate the complex molecular mechanisms of migration and invasion in NPC. mir-324-3p was located in the region of human chromosome 17p13.1 and firstly identified in mammalian neurons [15]. Up to now, with the rapid development of microarray and sequencing technology, some researchers have found that mir-324-3p was dysregulated in a variety of tumours such as breast cancer [16], hepatocellular carcinoma [17] and pancreatic cancer [18]. However, none of these studies further explored the roles of mir-324-3p on tumour maglinant biobehaviours. More specifically, previous investigations into the function of mir-324-3p were limited, and only several reports showed mir- 324-3p was a target of ACE inhibition to promote renal fibrosis and mir-324-3p could target RelA promoter to induce its expression in an Ago2 dependent manner in cells of neural origin [19, 20]. Functional analyses of mir- 324-3p on tumour were just seen in our preceding study [13] and another similar report of NPC radioresistance, in which SMAD7 was validated as the target of mir- 324-3p [21]. In this study, we further confirmed the role of mir-324-3p on NPC migration and invasion, which suggests mir-324-3p as an anti-tumour mirna. mirnas usually exert their function by interacting with their target genes via base pairing. In our previous research, we found that WNT2B was a direct target gene of mir-324-3p and confirmed WNT2B could affect radioresistance of NPC cells [13]. WNT2B was known to stimulate the canonical WNT/β-catenin pathway and affected various malignant tumour progression [22]. In head and

Liu et al. Cancer Cell Int (2017) 17:2 Page 5 of 7 Fig. 2 Silencing expression of WNT2B suppresses migration and invasion of NPC cells. WNT2B was successfully downregulated by WNT2B sirna in 5-8F (a) and 6-10B (b) cells. The migration of different cell groups was examined by wound healing experiments in 5-8F (c) and 6-10B (d) cells. The invasion of different cell groups was examined using matrigel invasion assays in 5-8F (e) and 6-10B (f) cells. The results represent the average of three independent experiments ± standard deviation (S.D). (**P < 0.01) Fig. 3 mir-324-3p alters the expression of EMT biomarkers E-cadherin and Vimentin. Following ectopic expression of mir-324-3p, the expression of E-cadherin was upregulated and Vimentin was downgrelated, shown by Western blotting neck squamous cell carcinoma, WNT2B played a role in tumourigenesis and chemotherapy resistance in vivo and in vitro [23]. Intratumoural WNT2B was reported to be correlated with the expression of Survivin and c-myc, tumour proliferation and prognosis in malignant pleural mesothelioma [24]. Jiang et al. also found that the highexpression level of WNT2B was associated with the progression and worse outcome of pancreatic cancer [25]. In addition, WNT2B can increase the ability of metastasis and chemoresistance of ovarian cancer through the caspase-9/bcl2/bcl-xl pathway and EMT/p-AKT pathways [26]. All these studies highlighted the role of WNT2B on tumour malignant processes. However, the function of WNT2B on NPC was only seen in our preliminary work, and here we further found that WNT2B played roles on migration and invasion of NPC, and revealed that both WNT2B mrna and protein was positively correlated with higher stages of NPC, which indicated the possibility of WNT2B to be the novel biomarker of NPC. EMT was defined as a process that epithelial cells transformed into a mesenchymal phenotype, in which the expression of epithelial marker E-cadherin and

Page 6 of 7 Fig. 4 The expression of mir-324-3p and WNT2B in NPC specimens. a mir-324-3p was downregulated in NPC tissues compared with NPE tissues. b WNT2B mrna was upregulated in NPC tissues compared with NPE tissues. c WNT2B protein was upregulated in NPC tissues compared with NPE tissues. mir-324-3p, WNT2B mrna and protein were normalized with the internal control U6, GAPDH and β-actin, respectively. (**P < 0.01) Table 1 Clinicopathological features of the cases of NPC Variables Cases mirna-324-3p WNT2B mrna WNT2B protein Sex Male 28 0.717 ± 0.463 1.028 ± 0.461 1.001 ± 0.369 Female 11 0.613 ± 0.245 1.052 ± 0.305 1.010 ± 0.320 Age <45 19 0.731 ± 0.386 1.055 ± 0.372 1.008 ± 0.301 45 20 0.647 ± 0.443 1.016 ± 0.468 0.999 ± 0.402 T stage T3 + T4 9 0.476 ± 0.296 1.306 ± 0.324 1.312 ± 0.340 T1 + T2 30 0.751 ± 0.426* 0.953 ± 0.414* 0.911 ± 0.303** Clinic stage III + IV 23 0.466 ± 0.283 1.237 ± 0.341 1.199 ± 0.304 I + II 16 1.006 ± 0.362** 0.743 ± 0.347** 0.722 ± 0.187** Lymph node metastasis Yes 28 0.539 ± 0.324 1.171 ± 0.316 1.099 ± 0.284 No 11 1.067 ± 0.381** 0.687 ± 0.461** 0.761 ± 0.403* Data was shown as mean ± SD. mir-324-3p, WNT2B mrna and protein were normalized with the internal control U6, GAPDH and β-actin, respectively * P < 0.05 ** P < 0.01 mesenchymal marker Vimentin was considered as the classical indicators [27]. And EMT had been widely investigated to be classical mechanism of tumour invasion and metastasis [27, 28]. Moreover, recent researchers reported that mir-544a could induce EMT through the activation of WNT signaling pathway in gastric cancer [29]. In other tumours such as ovarian [30], colorectal [31] and tongue cancer [32], EMT was also associated with the activation of the WNT signalling pathway. With regard to NPC, we found that WNT2B was able to change the expression of E-cadherin and Vimentin [14]. In this study, we validated that mir-324-3p also had the ability of altering the expression of EMT biomarkers, which showed that mir-324-3p might regulate the migration and invasion of NPC through EMT. In summary, we have demonstrated that mir-324-3p can target WNT2B to regulate migration and invasion in NPC, and both mir-324-3p and target gene WNT2B were associated with T stage, clinic stage and cervical lymph node metastasis. Therefore, mir-324-3p/wnt2b axis may be potential therapeutic target for the treatment of patients with NPC. Conclusion mir-324-3p is a tumor-suppressive mirna in NPC and inhibit NPC cell migration and invasion by targeting WNT2B. Complete understanding of the mir-324-3p/wnt2b pathway might contribute to discover new potential therapeutic clues for NPC. Additional files Additional file 1. qrt-pcr technical documentation. Additional file 2: Figure S1. Representative data of standard and melt curves of the premirs. (A) Standard curves of GAPDH and WNT2B. (B) Melt curves of GAPDH. (C) Melt curves of WNT2B. (D) Standard curves of U6 and mir-324-3p. (E) Melt curves of U6. (F) Melt curves of mir-324-3p. Figure S2. Validation of the stability of the reference genes. (A) Amplification plot and CT values of U6 between NPC and NPE. (B) Amplification plot and CT values of GAPDH between NPC and NPE. Figure S3. Spearman correlation analysis between the expression of mir-324-3p and WNT2B. (A) mir- 324-3p was negative correlated with WNT2B mrna. (B) mir-324-3p was negative correlated with WNT2B protein. Figure S4. The expression data of NPE and NPC with two differential stratifications of T and clinic stage forms. (A) The expression of mir-324-3p between NPE and NPC. (B) The expression of WNT2B mrna between NPE and NPC. (C) The expression of WNT2B mrna between NPE and NPC. Abbreviations NPC: nasopharyngeal carcinoma; NPE: nasopharyngeal epithelium; NC: negative control; EMT: epithelial-mesenchymal transition; UTR: untranslated regions; qrt-pcr: quantitative real time PCR. Authors contributions LC, LY and QYZ conceived and designed the experiments. LC, LY, QYZ, LG and YNT performed the experiments. LC, SZW, ZST and DTB analyzed the data. RSL, LSH and TYQ contributed reagents and tissues collection. LC and LY wrote the paper. All authors read and approved the final manuscript.

Page 7 of 7 Author details 1 Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, China. 2 Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha 410008, Hunan, China. Acknowledgements None. Competing interests The authors declare that they have no competing interests. Availability of data and materials The datasets supporting the conclusions of this article are included within the article. Ethics approval and consent to participate This research was reviewed and approved by the Ethic Committee of Xiangya Hospital, Central South University (Study ID number 201303151). Informed consent was obtained from all individual participants included in the study. Funding Grants were provided by the National Natural Science Foundation of China (No. 81372426), the National Natural Science Foundation of Hunan Province (No. 2015JJ3137), the Youth Fund of Xiangya Hospital (No. 2015Q04) and the Open Fund of Key Laboratory of Molecular Radiation Oncology, Hunan Province. Received: 12 September 2016 Accepted: 15 December 2016 References 1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics 2012. CA Cancer J Clin. 2015;65:87 108. 2. Razak AR, Siu LL, Liu FF, Ito E, O Sullivan B, Chan K. Nasopharyngeal carcinoma: the next challenges. Eur J Cancer. 2010;46:1967 78. 3. Bensouda Y, Kaikani W, Ahbeddou N, Rahhali R, Jabri M, Mrabti H, Boussen H, Errihani H. Treatment for metastatic nasopharyngeal carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128:79 85. 4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281 97. 5. Lytle JR, Yario TA, Steitz JA. Target mrnas are repressed as efficiently by microrna-binding sites in the 5 UTR as in the 3 UTR. Proc Natl Acad Sci USA. 2007;104:9667 72. 6. Gu W, Wang X, Zhai C, Zhou T, Xie X. Biological basis of mirna action when their targets are located in human protein coding region. PLoS ONE. 2013;8:e63403. 7. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287 314. 8. Ou H, Li Y, Kang M. Activation of mir-21 by STAT3 induces proliferation and suppresses apoptosis in nasopharyngeal carcinoma by targeting PTEN gene. PLoS ONE. 2014;9:e109929. 9. Qu JQ, Yi HM, Ye X, Li LN, Zhu JF, Xiao T, Yuan L, Li JY, Wang YY, Feng J, He QY, Lu SS, Yi H, Xiao ZQ. MiR-23a sensitizes nasopharyngeal carcinoma to irradiation by targeting IL-8/Stat3 pathway. Oncotarget. 2015;6:28341 56. 10. Peng X, Cao P, Li J, He D, Han S, Zhou J, Tan G, Li W, Yu F, Yu J, Li Z, Cao K. MiR-1204 sensitizes nasopharyngeal carcinoma cells to paclitaxel both in vitro and in vivo. Cancer Biol Ther. 2015;16:261 7. 11. Huang H, Sun P, Lei Z, Li M, Wang Y, Zhang HT, Liu J. MiR-145 inhibits invasion and metastasis by directly targeting Smad3 in nasopharyngeal cancer. Tumour Biol. 2015;36:4123 31. 12. Fang Y, Zhu X, Wang J, Li N, Li D, Sakib N, Sha Z, Song W. MiR-744 functions as a proto-oncogene in nasopharyngeal carcinoma progression and metastasis via transcriptional control of ARHGAP5. Oncotarget. 2015;6:13164 75. 13. Li G, Liu Y, Su Z, Ren S, Zhu G, Tian Y, Qiu Y. MicroRNA-324-3p regulates nasopharyngeal carcinoma radioresistance by directly targeting WNT2B. Eur J Cancer. 2013;49:2596 607. 14. Li G, Wang Y, Liu Y, Su Z, Liu C, Ren S, Deng T, Huang D, Tian Y, Qiu Y. MiR- 185-3p regulates nasopharyngeal carcinoma radioresistance by targeting WNT2B in vitro. Cancer Sci. 2014;105:1560 8. 15. Kim J, Krichevsky A, Grad Y, Hayes GD, Kosik KS, Church GM, Ruvkun G. Identification of many micrornas that copurify with polyribosomes in mammalian neurons. Proc Natl Acad Sci USA. 2004;101:360 5. 16. Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, Tang J, Chen X, Dai J, Wei Q, Zhang C, Shen H. Serum microrna profiling and breast cancer risk: the use of mir-484/191 as endogenous controls. Carcinogenesis. 2012;33:828 34. 17. Wen Y, Han J, Chen J, Dong J, Xia Y, Liu J, Jiang Y, Dai J, Lu J, Jin G, Han J, Wei Q, Shen H, Sun B, Hu Z. Plasma mirnas as early biomarkers for detecting hepatocellular carcinoma. Int J Cancer. 2015;137:1679 90. 18. Namkung J, Kwon W, Choi Y, Yi SG, Han S, Kang MJ, Kim SW, Park T, Jang JY. Molecular subtypes of pancreatic cancer based on mirna expression profiles have independent prognostic value. J Gastroenterol Hepatol. 2016;31:1160 7. 19. Macconi D, Tomasoni S, Romagnani P, Trionfini P, Sangalli F, Mazzinghi B, Rizzo P, Lazzeri E, Abbate M, Remuzzi G, Benigni A. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol. 2012;23:1496 505. 20. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA mir- 324-3p induces promoter-mediated expression of RelA gene. PLoS ONE. 2013;8:e79467. 21. Xu J, Ai Q, Cao H, Liu Q. MiR-185-3p and mir-324-3p predict radiosensitivity of nasopharyngeal carcinoma and modulate cancer cell growth and apoptosis by targeting SMAD7. Med Sci Monit. 2015;21:2828 36. 22. Katoh M. Differential regulation of WNT2 and WNT2B expression in human cancer. Int J Mol Med. 2001;8:657 60. 23. Li SJ, Yang XN, Qian HY. Antitumor effects of WNT2B silencing in GLUT1 overexpressing cisplatin resistant head and neck squamous cell carcinoma. Am J Cancer Res. 2015;5:300 8. 24. Kobayashi M, Huang CL, Sonobe M, Kikuchi R, Ishikawa M, Kitamura J, Miyahara R, Menju T, Iwakiri S, Itoi K, Yasumizu R, Date H. Intratumoral Wnt2B expression affects tumor proliferation and survival in malignant pleural mesothelioma patients. Exp Ther Med. 2012;3:952 8. 25. Jiang H, Li F, He C, Wang X, Li Q, Gao H. Expression of Gli1 and Wnt2B correlates with progression and clinical outcome of pancreatic cancer. Int J Clin Exp Pathol. 2014;7:4531 8. 26. Wang H, Fan L, Xia X, Rao Y, Ma Q, Yang J, Lu Y, Wang C, Ma D, Huang X. Silencing Wnt2B by sirna interference inhibits metastasis and enhances chemotherapy sensitivity in ovarian cancer. Int J Gynecol Cancer. 2012;22:755 61. 27. Iwatsuki M, Mimori K, Yokobori T, Ishi H, Beppu T, Nakamori S, Baba H, Mori M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010;101:293 9. 28. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition in cancer pathology. Pathology. 2007;39:305 18. 29. Yanaka Y, Muramatsu T, Uetake H, Kozaki K, Inazawa J. MiR-544a induces epithelial-mesenchymal transition through the activation of WNT signaling pathway in gastric cancer. Carcinogenesis. 2015;36:1363 71. 30. Baldwin LA, Hoff JT, Lefringhouse J, Zhang M, Jia C, Liu Z, Erfani S, Jin H, Xu M, She QB, van Nagell JR, Wang C, Chen L, Plattner R, Kaetzel DM, Luo J, Lu M, West D, Liu C, Ueland FR, Drapkin R, Zhou BP, Yang XH. CD151- alpha3beta1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling. Oncotarget. 2014;5:12203 17. 31. Vincan E, Barker N. The upstream components of the Wnt signalling pathway in the dynamic EMT and MET associated with colorectal cancer progression. Clin Exp Metastasis. 2008;25:657 63. 32. Liang J, Liang L, Ouyang K, Li Z, Yi X. MALAT1 induces tongue cancer cells EMT and inhibits apoptosis through Wnt/beta-catenin signaling pathway. J Oral Pathol Med. 2016. doi:10.1111/jop.12466.