Silent kidney stones in asymptomatic primary hyperparathyroidism a comparison of multidetector computed tomography and ultrasound

Similar documents
Elena Castellano, Roberto Attanasio, Laura Gianotti, Flora Cesario, Francesco Tassone, and Giorgio Borretta

Research Article Primary Hyperparathyroidism: 11-Year Experience in a Single Institute in Thailand

Hyperparathyroidism: Operative Considerations. Financial Disclosures: None. Hyperparathyroidism. Hyperparathyroidism 11/10/2012

ORIGINAL ARTICLE. Novel Parathyroid Hormone (1-84) Assay as Basis for Parathyroid Hormone Monitoring in Renal Hyperparathyroidism

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

hypercalcemia of malignancy hyperparathyroidism PHPT the most common cause of hypercalcemia in the outpatient setting the second most common cause

4/20/2015. The Neck xt Exploration: Intraoperative Parathyroid Hormone (IOPTH) Testing During Surgical Parathyroidectomy. Learning Objectives

PRIMARY HYPERPARATHYROIDISM PRIMARY HYPERPARATHYROIDISM. Hyperparathyroidism Etiology. Common Complex Insidious Chronic Global Only cure is surgery

Normal PTH Levels in Primary Hyperparathyroidism: Still the Same Disease?

Radiographic Appearance Of Primary Hyperparathyroidism With Atypical Parathyroid Adenoma

Complementary sestamibi scintigraphy and ultrasound for primary hyperparathyroidism

ORIGINAL ARTICLE. Persistent Parathyroid Hormone Elevation Following Curative Parathyroidectomy for Primary Hyperparathyroidism

"Asymptomatic" Hyperparathyroidism: Reasons for Parathyroidectomy

Disclosure. Primary Hyperparathyroidism 4 th IW. Topic Outline. Calcium, Vitamin D, PTH Disorders. I have nothing to disclose related to this topic

Coexistence of parathyroid adenoma and papillary thyroid carcinoma. Yong Sang Lee, Kee-Hyun Nam, Woong Youn Chung, Hang-Seok Chang, Cheong Soo Park

Bone and Renal Stone Disease in Patients Operated for Primary Hyperparathyroidism in Pakistan: Is the Pattern of Disease different from the West?

Case 2: 30 yr-old woman with 7 yr history of recurrent kidney stones

Marcin Barczynski, 1 Aleksander Konturek, 2 Alicja Hubalewska-Dydejczyk, 2. Filip Gołkowski, 1 Stanislaw Cichon, 1 Piotr Richter, 1 Wojciech Nowak

EVALUATION OF SUSPECTED RENAL COLIC PATIENTS WITH UNENHANCED LOW-DOSE MULTI-DETECTOR COMPUTED TOMOGRAPHY

Accuracy of ultrasonography for renal stone detection and size determination: is it good enough for management decisions?

Parathyroid Imaging. A Guide to Parathyroid Surgery

AUA Guidelines for Imaging Known or Suspected Ureteral Calculi. Michael Ferrandino, MD Assoc Professor of Urology Duke University Medical Center

2016 Arizona AACE Meeting: Updated Guidelines for the Management of Primary Hyperparathyroidism (PHPT)

Bedside Ultrasound in the Emergency Department to Detect Hydronephrosis for the Evaluation of Suspected Ureteric Colic

Predictors of Renal Function in Primary Hyperparathyroidism

RADIOGUIDED PARATHYROIDECTOMY IS SUCCESSFUL IN 98.7% OF SELECTED PATIENTS

Persistent post transplant hyperparathyroidism. Shiva Seyrafian IUMS-97/10/18-8/1/2019

Hyperparathyroidism. When to Suspect, How to Diagnose, When and How to Intervene. Johanna A. Pallotta, MD, FACP, FACE

Outline. Parathyroid Localization Studies. Mira Milas MD, FACS Associate Professor of Surgery Director, The Thyroid Center

Preoperative Localization and Intraoperative Parathyroid Hormone Assay in Korean Patients with Primary Hyperparathyroidism

Ultra-low dose CT of the acute abdomen: Spectrum of imaging findings

UPDATES ON PRIMARY HYPERPARATHYROIDISM. Natalie E. Cusano, MD, MS Director, Bone Metabolism Program Lenox Hill Hospital New York, NY

PRIMARY HYPERPARATHYROIDISM

Current Concepts in the Evaluation and Management of Abnormal Parathyroid Hormone (PTH) Levels Shireen Fatemi, M.D. April, 2012.

Primary Hyperparathyroidism

Approach to a patient with hypercalcemia

Parathyroid Disease Scenarios for the Practicing Clinician. Vijaya Chockalingam MD Faculty Endocrinologist Banner University Medical Center- Phoenix

CALCIUM CREATININE CLEARANCE RATIO IS NOT HELPFUL IN DIFFERENTIATING PRIMARY

The 82 nd UWI/BAMP CME Conference November 18, Jeetu Nebhnani MBBS D.M. Urology Consultant Urologist

HYPERPARATHYROIDIS M FAISAL GHANI SIDDIQUI MBBS; FCPS; PGDIP-BIOMEDICAL ETHICS; MCPS-HPE

Hyperparathyroidism (primary): diagnosis, assessment and initial management

Effects of surgery on outcome of primary hyperparathyroidism

Dual Energy CT: a new tool in evaluation of the urinary tract stones composition in clinical practice - initial study

Research Article The Capabilities and Limitations of Clinical Magnetic Resonance Imaging for Detecting Kidney Stones: A Retrospective Study

ORIGINAL ARTICLE. An Optimal Algorithm for Intraoperative Parathyroid Hormone Monitoring

US in non-traumatic acute abdomen. Lalita, M.D. Radiologist Department of radiology Faculty of Medicine ChiangMai university

The CaPTHUS Scoring Model revisited: Applicability from. with Primary Hyperparathyroidism

PTH > 60pg/ml PRIMARY HYPERPARATHYROIDISM. Introduction Biochemical Diagnosis. Normal Parathyroid. Parathyroid Glands

Supplementary Appendix

Acute renal colic Radiological investigation in patients with renal colic

CT staging in sigmoid diverticulitis

Minimally invasive parathyroidectomy with or without intraoperative parathyroid hormone for primary hyperparathyroidism

Peroperative PTH testing:

Papers. Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: controlled retrospective follow up study

Diagnosis and Management of Primary Hyperparathyroidism Clinical Practice Today CME

Potential conflicts of interest: None

Non-calculus causes of renal colic on CT KUB

Definition Elevated Adjusted Calcium > 2.6 mmol/l (adjusted for albumin), taken without using a cuff.

Normocalcemic Primary Hyperparathyroidism: A Comparison with the Hypercalcemic Form in a Tertiary Referral Population

Research Article Usefulness of Nonenhanced Computed Tomography for Diagnosing Urolithiasis without Pyuria in the Emergency Department

In highly resourced health care systems, in which serum calcium is

HPI joint pain/arthritis serum calcium 11.5 PTH 147pg/ml

Cases in Endocrinology

Case 4: 27 yr-old woman with history of kidney stones and hyperparathyroidism.

Perioperative parathormone assessment during surgery for primary hyperparathyroidism;

Definition Elevated Adjusted Calcium > 2.6 mmol/l (adjusted for albumin), taken without using a cuff.

RADIOLOGIC TECHNOLOGY (526)

INTRALUMINAL GAS IN NON-PERFORATED ACUTE APPENDICITIS: A predictor of gangrenous appendicitis

ORIGINAL ARTICLE. Severity, Clinical Significance, Relationship to Primary Hyperparathyroidism, and Response to Parathyroidectomy

Dual energy computed tomography for non-invasive differentiation of renal stone composition

Natpara (parathyroid hormone) Prior Authorization with Quantity Limit Program Summary

Case Report Spontaneous Pelvic Rupture as a Result of Renal Colic in a Patient with Klinefelter Syndrome

Is Structured Reporting More Accurate Than Conventional Reporting in CT Reporting of the Abdomen and Pelvis?

Hypercalcemia may be detected incidentally. Practice CMAJ. Primary hyperparathyroidism. Primer. Key points. The case. What causes hypercalcemia?

Detection of Renal Stones on Portal Venous Phase CT: Comparison of Thin Axial and Coronal Maximum- Intensity-Projection Images

Investigating the Impact of the Amount of Contrast Material used in Abdominal CT Examinations Regarding the Diagnosis of Appendicolith

Iperparatiroidismo normocalcemico: vero o falso?

Surgical treatment of primary hyperparathyroidism due to parathyroid tumor: A 15-year experience

Length Measurements of the Aorta After Endovascular Abdominal Aortic Aneurysm Repair

Performance of low-dose, digital X-ray scanning (LODOX) compared to conventional radiography (CR) in the diagnostics of ureteral stones

SURGERY FOR PRIMARY HYPERPARATHYROIDISM DIAGNOSED AS ACUTE RENAL FAILURE

Do We Do Too Many Parathyroidectomies in Dialysis? Sagar Nigwekar MD, MMSc Massachusetts General Hospital

Ureteropelvic Junction Obstruction (UPJO) syndrome: imaging with Multidetector CT (MDCT) prior to minimally invasive treatment

Primary hyperparathyroidism. Thierry Pepersack MD PhD Medical Oncology Clinic Institut Jules Bordet Université Libre de Bruxelles (U.L.B.

Hypercalcemia. Hypercalcemia: When to Worry, When to Treat! Mineral Metabolism : A Short Course

Parathyroid Imaging: Current Concepts. Maria Gule-Monroe, M.D. Nancy Perrier, M.D.

Role of the Radiologist

Low-Dose Versus Standard-Dose CT Protocol in Patients with Clinically Suspected Renal Colic

Case Report Rare Skeletal Complications in the Setting of Primary Hyperparathyroidism

Case 9799 Stanford type A aortic dissection: US and CT findings

Secondary Hyperparathyroidism: Where are we now?

PARATHYROID NUCLEAR MEDICINE IMAGING REVIEW DISCLOSURES

Viral N. Shah*, Chirag S. Shah, Sanjay K. Bhadada and D. Sudhakar Rao

Primary hyperparathyroidism in Hong Kong: an analysis of 44 cases

Since the advent of multichannel serum chemistry

Clinical Policy: Cinacalcet (Sensipar) Reference Number: CP.PHAR.61 Effective Date: Last Review Date: Line of Business: Medicaid

Abdomen Sonography Examination Content Outline

Demographic and radiologic characteristics of patients with an accessory spleen: An octennial experience

Case Report Crossed Renal Ectopia without Fusion An Unusual Cause of Acute Abdominal Pain: A Case Report

Transcription:

Langenbecks Arch Surg (2017) 402:289 293 DOI 10.1007/s00423-016-1520-2 ORIGINAL ARTICLE Silent kidney stones in asymptomatic primary hyperparathyroidism a comparison of multidetector computed tomography and ultrasound Andreas Selberherr 1 & Marcus Hörmann 2 & Gerhard Prager 1 & Philipp Riss 1 & Christian Scheuba 1 & Bruno Niederle 1 Received: 22 April 2016 /Accepted: 2 October 2016 /Published online: 12 October 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Purpose The purpose of this study was to demonstrate the high number of kidney stones in primary hyperparathyroidism (PHPT) and the low number of in fact asymptomatic patients. Methods Forty patients with PHPT (28 female, 12 male; median age 58 (range 33 80) years; interquartile range 17 years [51 68]) without known symptoms of kidney stones prospectively underwent multidetector computed tomography (MDCT) and ultrasound (US) examinations of the urinary tract prior to parathyroid surgery. Images were evaluated for the presence and absence of stones, as well as for the number of stones and sizes in the long axis. The MDCT and US examinations were interpreted by two experienced radiologists who were blinded to all clinical and biochemical data. Statistical analysis was performed using the Wilcoxon signed-rank test. Results US revealed a total of 4 kidney stones in 4 (10 %) of 40 patients (median size 6.5 mm, interquartile range 11.5 mm). MDCT showed a total of 41 stones (median size was 3 mm, interquartile range 2.25 mm) in 15 (38 %) of 40 patients. The number of kidney stones detected with MDCT was significantly higher compared to US (p =0.00124). This paper is not based on a previous communication to a society or a meeting. * Andreas Selberherr andreas.selberherr@meduniwien.ac.at 1 2 Section Endocrine Surgery, Division of General Surgery, Department of Surgery, Medical University, Währinger Gürtel 18-20, A-1090 Vienna, Austria Department of Radiology, Medical University, Währinger Gürtel 18-20, A-1090 Vienna, Austria Conclusions MDCT is a highly sensitive method for the detection of silent kidney stones in patients with PHPT. By widely applying this method, the number of asymptomatic courses of PHPT may be substantially reduced. MDCT should be used primarily to detect kidney stones in PHPT and to exclude asymptomatic PHPT. Keywords Asymptomatic hyperparathyroidism. Kidney stones. Primary hyperparathyroidism. PHPT Introduction Asymptomatic primary hyperparathyroidism (PHPT) is defined as biochemically verified PHPT that lacks specific symptoms or signs traditionally associated with hypercalcemia or parathyroid hormone excess [1]. Therefore, patients with PHPT and kidney stone disease are symptomatic by definition. Those patients are at a 15 to 30 % higher risk to develop kidney stones than the general population, in which an incidence of 1 % is described [2 6]. A valid detection tool for kidney stones is crucial at the initial diagnosis of PHPT especially in patients with mildly elevated laboratory findings [7, 8] and in the course of follow-up to detect patients with symptomatic disease. The only cure then is parathyroidectomy with a restoration of normocalcemia which, in the majority of patients, results in a resolution of organic manifestation [9]. Nevertheless, postoperative persistent and recurrent stone disease has been reported in up to 17 % in long-term follow-up [2, 9 11]. Calculi burden and new stone formation is important in the clinical evaluation of patients with kidney stone disease in PHPT [12]. Thus, the most sensitive method for evaluation of kidney stones has to be used to reveal persistent or recurrent (newly formed) kidney stones after successful parathyroid surgery [13 15].

290 Langenbecks Arch Surg (2017) 402:289 293 The current guidelines on diagnosis and treatment of asymptomatic PHPT [1] recommend evaluation of kidney stone disease and nephrocalcinosis with either abdominal x- ray, ultrasound or computed tomography as equivalent modalities to differentiate between the asymptomatic and the classically symptomatic variant. Ultrasound (US) is continuously performed in the search of kidney stones despite such limiting factors as overlying bowel gas [16]. Non-enhanced helical computed tomography (CT) is a widespread and established method in the detection of kidney stones in patients with acute flank pain [16 18]. With an increase in the use of CT intravenous pyelography, US is currently playing a secondary role in the evaluation of kidney stones [19]. We hypothesize that, in patients with PHPT CT may be more accurate in the detection of kidney stones than US [16]. The aim of the present study was to compare the value of US and CT in detecting silent kidney stones, to identify patients with symptomatic PHPT, to improve the postoperative follow-up of stone carriers and to prevent deterioration of kidney function in patients with PHPT. Materials and methods Patients In this prospective study, 40 patients (28 female, 12 male) with biochemically proven PHPT were consecutively evaluated over a 1-year period (see Table 1). AccordingtoHesch[20], all patients were classified asymptomatic clinically. The patients were neither minimally symptomatic (showing arterial hypertension, osteopenia/osteoporosis, hypercalcemic symptoms) nor symptomatic (osseous or gastrointestinal manifestation). Particularly, the study patients had no kidney stone disease, nephrocalcinosis, or impaired renal function. No patient had a pharmacological anamnesis regarding nephrotoxic or lithogenic agents. Diagnosis of PHPT was based on common laboratory tests [21]. The median age was 58 years (range 33 to 80, interquartile range 17 years [51 to 68]). Four (10 %) of the 40 patients had a history of kidney stones, two of whom underwent surgical extraction. In the remaining two subjects, the stones passed spontaneously. However, at the time of diagnosis of PHPT (including the preceding 5 years at least) none of those patients was afflicted with kidney stones. Imaging studies US and CT were performed 12 to 48 h prior to parathyroid surgery. US of the kidneys was performed by a highly experienced radiologist and with a high-end machine (ATL, HDI 5000, Seattle, USA) using a 5 or a 7-MHz curved array transducer. Documentation included multiple anatomic planes, and at least three images in the longitudinal and three in the transverse section, respectively [16]. Multidetector CT (MDCT; Volume zoom, Siemens, Forchheim, GER) of the abdomen was performed with patients in a prone position. The scanning protocol consisted of 80 kv and 100 mas low-dose scanning using a 4 1 mm collimation, 6-mm table feed, 0.5-s rotation time. Reconstruction was obtained in the axial and coronal plane with 1.5-mm slice thickness. No intravenous or oral contrast agent was administered. Imaging analysis The obtained US images were evaluated for the presence and absence of stones, as well as for the number of stones and sizes in the long axis. The stones were defined as hyperechogenicities with dorsal shadowing [16]. Table 1 Laboratory findings (mean ± standard deviation) and demographic data (median age) sca ipth 25-OH VitD 1, 25-OH VitD Crea P 24 h uca n Age Female Male Normal range 2.1 2.6 15 65 > 75 25 86.5 0.5 1.3 0.8 1.6 2.5 7.5 Unit mmol/l pg/ml nmol/l pg/ml mg/dl mmol/l mmol/24 h Total 2.783 ± 0.22 191 ± 165 42 ± 30 56 ± 26 0.97 ± 0.23 0.74 ± 0.19 7.9 ± 4.7 40 58 28 12 US positive 2.69 ± 0.14 94 ± 18 43 ± 25 36 ± 13 0.90 ± 0.11 0.69 ± 0.14 7.1 ± 3.4 4 55 3 1 US negative 2.85 ± 0.22 202 ± 170 42 ± 31 59 ± 26 0.97 ± 0.24 0.74 ± 0.19 8.1 ± 5.1 36 60 25 11 MDCT postitive 2.83 ± 0.22 243 ± 215 47 ± 43 50 ± 26 1.01 ± 0.29 0.72 ± 0.12 7.6 ± 2.9 15 56 10 5 MDCT negative 2.83 ± 0.22 160 ± 120 39 ± 19 60 ± 25 0.94 ± 0.18 0.75 ± 0.22 8.2 ± 6.4 25 60 18 7 sca serum calcium; albumine corrected; chemical autoanalyzer (Olympus, Hamburg, Germany), ipth intact parathyroid hormone (Elecsys 1010 Autoanalyzer (Roche, Mannheim, Germany), 25-(OH)D3 25-hydroxycholecalciferol; chemiluminescence immunoassay BLiaison 25OH-VitD- Totalassay^ (DiaSorin, Italy) or Elecsys B25OH- assay^ on COBAS E411 (Roche, Mannheim, Germany), 1,25-(OH)D3 1,25-dihydroxycholecalciferol; analyzed manually via chromatography and radioimmunosorbent assay (DiaSorin, Italy), Crea serum creatinine, P serum phosphate, 24 h uca 24-h urinary calcium excretion

Langenbecks Arch Surg (2017) 402:289 293 291 MDCT examinations were evaluated on the screen of a PACS System, again for the absence and presence of stones, as well as for the number of stones and sizes in the long axis. The stones were defined as high-attenuating opacities [16]. Two experienced radiologists evaluated the MDCT and US examinations as a team and provided interpretations in unison. Both investigators were blinded to all clinical and biochemical data. In order to prevent bias, MDCT was assessed 1 week after the evaluation of US. The location of each stone was recorded as being in either the right or the left kidney. In two patients, multiple (uncountable) stones and parenchymal calcifications were found. For size measurements, ten stones of each of those two patients were evaluated which were easily measurable. Statistical analysis Analysis was performed using a statistical software package (SPSS 11, SPSS Inc., Chicago, USA). Comparison of the number of detected stones with MDCT and US was performed with the Wilcoxon signed-rank test. Statistical significance was set at a p value of 0.05. Surgery was performed on all patients and a single parathyroid adenoma was verified histopathologically. By definition, all patients were cured. Cure was documented by normocalcemia 5 years after surgery. Results Ultrasound In 4 (10 %) of 40 patients, a total of four kidney stones could be detected. The median size was 6.5 mm, quartiles ranging from 2.25 to 13.75 mm (interquartile range 11.5 mm). Three females and one male were affected. In three cases, the stones were located in the left, in one case in the right kidney. Multidetector computed tomography MDCT identified a total of 41 stones in 15 (38 %) of 40 patients. The size of the stones ranged from 2 to 15 mm with a median size of 3 mm (interquartile range 2.25 mm [2.5 4.75 mm]). Kidney stone formation affected ten females and five males. In 8 (53 %) patients, stones were revealed in both kidneys, in 2 (13 %) in the left and in 5 (33 %) in the right kidney only. Ultrasound vs multidetector computed tomography The number of detected stones was significantly higher with MDCT than with US (41 vs 4, p =0.00124). In one patient, a kidney stone was suspected with US, but this stone failed to be detected with MDCT. In two subjects, in whom numerous calculi were seen with MDCT, only one was found to have a kidney stone with US, measuring 15 mm in diameter. The remaining calcifications in both kidneys were not seen with US (Table 2). Discussion None of the patients had clinical signs of kidney stones upon diagnosis of PHPT or other organ manifestations of classical PHPT [22] and were by definition [1] clinically asymptomatic. Following the current recommendations [23], all patients with biochemically proven PHPT who have no contraindications for a surgical intervention were presented in a multidisciplinary endocrine conference. The risks, benefits, and potential complications of surgery were discussed with the patients and all decided surgery as the treatment of choice. In this study protocol, MDCT proved significantly superior to US in the detection rate of clinically silent kidney stones in patients with initially asymptomatic PHPT. As shown in this study, a number of patients clinically classified asymptomatic may have silent organ manifestations and therefore be in fact symptomatic. In many ways, symptomatic patients profit from surgery [2, 9]. In the current guidelines [1], asymptomatic patients compose a patients group inheriting only a relative indication for surgery while in symptomatic patients early surgical intervention is recommended [23], so those patient groups need to be discriminated [24]. Therefore, the current guidelines aim to enhance the screening for oblique organ manifestations by recommending renal examinations by ultrasound, the proportion of patients identified with kidney stones might be smaller if ultrasound is used compared to MDCT and consequently, hidden symptoms might be missed. Another study concluded recently [25], that through the use of aforementioned guidelines more surgical Table 2 Kidney stones detected by ultrasound (US) and multidetector computed tomography (MDCT) Results US Total Positive Negative n % n % n % MDCT Positive 3 7.5 12 30.0 15 37.5 Negative 1 4.0 24 60.0 25 62.5 Total 4 10.0 36 90.0 40 100.0 n = patients; 40 patients were evaluated prospectively

292 Langenbecks Arch Surg (2017) 402:289 293 candidates are identified. Nevertheless, some patients might persist who do not meet criteria for surgery if only screened with US. We assume that screening for kidney stones by MDCT could direct more patients from this uncertain group towards surgical treatment. Due to the significantly higher number of stone carriers, centers not able or unwilling to perform MDCT to definitively rule out renal involvement should apply a low threshold regarding symptomatology to indicate surgery early because of possibly overlooked kidney stones when applying US only. The superiority of MDCT in determining the size, number, and the position of kidney stones was convincing in this study, and the possibility of low-dose protocols seems to justify the use of ionizing radiation. As shown, there was a larger number of patients with clinically silent kidney stones detected by MDCT compared to US [6, 16], demonstrating the superiority of MDCT and the necessity of an adaption of the current consensus [1]. The performance of MDCT was related to the excellent contrast resolution and discrimination of different attenuation within the kidneys. The lack of acoustic shadowing that may occur with intervening tissue of different acoustic impedance can lead to a miss of stones with US [26]. This could also be the reason for the US diagnosis of kidney stones in one patient that could not be confirmed with MDCT. MDCT captures a volume that includes the entire kidney, allowing a complete evaluation of the organ. With US, due to potentially overlying bowel gas and patients varying body habitus, some areas of the kidney may be hidden [16]. Furthermore, MDCT is less operator-dependent than US which requires skillful radiological expertise [16]. As reported previously, the size of stones seems to influence the detection rate with US. Thus, the median size of stones was 6.5 mm as found with US and 3 mm as detected with MDCT [26]. Most stones missed with US were smaller than 5 mm. Kidney stones with a size of less than 5 mm may pass spontaneously, indicating the limited value of US in follow-up and identification of small stones in known stone formers [16] as well as in distinguishing recurrent from persistent silent kidney stones. Preoperative radiological assessment is crucial to determine the directions of further postoperative follow-up in patients with silent kidney stones [2, 10, 13, 22]. The study documents that MDCT is more sensitive to detect kidney stones than ultrasound. Conclusion Based on low-dose protocols and therefore a lower x-ray exposure, we propose to consider MDCT with its broad availability as the gold standard imaging technique for detecting kidney stones in patients with PHPT to identify silent stone carriers in need of surgical treatment, as by this approach patients can be cured who would otherwise develop stones during follow-up [27]. By applying this technique, the very scarce group of patients with asymptomatic PHPT may be further diminished. The current guidelines on the management of asymptomatic PHPT [1] should be adapted to this finding. If not used primarily, MDCT should particularly be considered in patients in the border zone of indication for surgery. Acknowledgments University of Vienna. Open access funding provided by Medical Authors contributions Study conception and design: B. Niederle, C. Scheuba Acquisition of data: M. Hörmann, G. Prager Analysis and interpretation of data: A. Selberherr, P. Riss Drafting of manuscript: A. Selberherr, B. Niederle Critical revision of manuscript: B. Niederle Compliance with ethical standards Funding Conflict of interest interest. There was no funding from a third party for this study. The authors declare that they have no conflict of Ethical approval All procedures performed in this study were in accordance with the ethical standards of the institutional review board (approval number: 1722/2014) and with the 1964 Helsinki declaration and its later amendments. Informed consent Informed consent was obtained from all individual participants included in the study. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References 1. Bilezikian JP, Brandi ML, Eastell R, Silverberg SJ, Udelsman R, Marcocci C, Potts JT Jr (2014) Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the Fourth International Workshop. J Clin Endocrinol Metab 99:3561 3569 2. Niederle B, Roka R, Fritsch A (1985) Long term results after surgical treatment of primary hyperparathyroidism. Prog Surg 18:146 164 3. Purnell DC, Heath H (1983) The dilemma of asymptomatic hypercalcaemia. Churchill Livingstone, Edinburgh 4. Bilezikian JP (1985) Surgery or no surgery for primary hyperparathyroidism. Ann Intern Med 102:402 403 5. Pak CY, Nicar MJ, Peterson R, Zerwekh JE, Snyder W (1981) A lack of unique pathophysiologic background for nephrolithiasis of primary hyperparathyroidism. J Clin Endocrinol Metab 53:536 542

Langenbecks Arch Surg (2017) 402:289 293 293 6. Cassibba S, Pellegrino M, Gianotti L, Baffoni C, Baralis E, Attanasio R, Guarnieri A, Borretta G & Tassone F 2014 Silent renal stones in primary hyperparathyroidism: prevalence and clinical features. Endocr Pract 1 16 7. Schneider DF, Burke JF, Ojomo KA, Clark N, Mazeh H, Sippel RS, Chen H (2013) Multigland disease and slower decline in intraoperative PTH characterize mild primary hyperparathyroidism. Ann Surg Oncol 20:4205 4211 8. Parikh PP, Allan BJ, Lew JI (2014) Surgical treatment of patients with mildly elevated parathormone and calcium levels. World J Surg 38:1289 1295 9. Niederle B, Roka R, Woloszczuk W, Klaushofer K, Kovarik J, Schernthaner G (1987) Successful parathyroidectomy in primary hyperparathyroidism: a clinical follow-up study of 212 consecutive patients. Surgery 102:903 909 10. Deaconson TF, Wilson SD, Lemann J Jr (1987) The effect of parathyroidectomy on the recurrence of nephrolithiasis. Surgery 102: 910 913 11. Elkoushy MA, Yu AX, Tabah R, Payne RJ, Dragomir A, Andonian S (2014) Determinants of urolithiasis before and after parathyroidectomy in patients with primary hyperparathyroidism. Urology 84:22 26 12. Rejnmark L, Vestergaard P, Mosekilde L (2011) Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J Clin Endocrinol Metab 96:2377 2385 13. Rowlands C, Zyada A, Zouwail S, Joshi H, Stechman MJ, Scott-Coombes DM (2013) Recurrent urolithiasis following parathyroidectomy for primary hyperparathyroidism. Ann R Coll Surg Engl 95:523 528 14. Walker MD, Nickolas T, Kepley A, Lee JA, Zhang C, McMahon DJ, Silverberg SJ (2014) Predictors of renal function in primary hyperparathyroidism. J Clin Endocrinol Metab 99:1885 1892 15. Starup-Linde J, Waldhauer E, Rolighed L, Mosekilde L, Vestergaard P (2012) Renal stones and calcifications in patients with primary hyperparathyroidism: associations with biochemical variables. Eur J Endocrinol 166:1093 1100 16. Fowler KA, Locken JA, Duchesne JH, Williamson MR (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222:109 113 17. Vieweg J, Teh C, Freed K, Leder RA, Smith RH, Nelson RH, Preminger GM (1998) Unenhanced helical computerized tomography for the evaluation of patients with acute flank pain. J Urol 160: 679 684 18. Hamm M, Knopfle E, Wartenberg S, Wawroschek F, Weckermann D, Harzmann R (2002) Low dose unenhanced helical computerized tomography for the evaluation of acute flank pain. J Urol 167:1687 1691 19. Yilmaz S, Sindel T, Arslan G, Ozkaynak C, Karaali K, Kabaalioglu A, Luleci E (1998) Renal colic: comparison of spiral CT, US and IVU in the detection of ureteral calculi. Eur Radiol 8:212 217 20. Hesch RD (1981) Die konservative Therapie des extrarenalen Hyperparathyroidismus. In: Beyer J, Krause U (eds) Therapie des Hyperparathyroidismus. Schattauer, Stuttart, pp. 51 69 21. Davies M, Fraser WD, Hosking DJ (2002) The management of primary hyperparathyroidism. Clin Endocrinol 57:145 155 22. Silverberg SJ, Shane E, Jacobs TP, Siris E, Bilezikian JP (1999) A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med 341:1249 1255 23. Udelsman R, Akerstrom G, Biagini C, Duh QY, Miccoli P, Niederle B, Tonelli F (2014) The surgical management of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop. J Clin Endocrinol Metab 99:3595 3606 24. Niederle B, Wemeau JL (2015) Is surgery necessary for mild or asymptomatic hyperparathyroidism? Eur J Endocrinol 173:D13 D20 25. Castellano E, Tassone F, Attanasio R, Gianotti L, Pellegrino M, Borretta G (2016) Mild primary hyperparathyroidism as defined in the Italian Society of Endocrinology s consensus statement: prevalence and clinical features. J Endocrinol Investig 39:349 354 26. King W 3rd, Kimme-Smith C, Winter J (1985) Renal stone shadowing: an investigation of contributing factors. Radiology 154:191 196 27. Hasse C, Sitter H, Bachmann S, Zielke A, Koller M, Nies C, Lorenz W, Rothmund M (2000) How asymptomatic is asymptomatic primary hyperparathyroidism? Exp Clin Endocrinol Diabetes 108:265 274