Synthesis and Characterization of ZnO Nanoparticles using Leaf Extract of Camellia sinesis and Evaluation of their Antimicrobial Efficacy

Similar documents
Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

EFFECT OF ZNO NANO PARTICLES AGAINST STRAINS OF ESCHERICHIA COLI

In vitro study of antibacterial activity of Carissa carandas leaf extracts

Research Article. Study on antibacterial activity of some medicinally important plants

Isolation of Herbal Plants: Antifungal and Antibacterial Activities

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Antimicrobial Potential of Whole Plant and Callus Extract of Aristolochia bracteolata Lam

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

The textile material is goods carrier of various types

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

Antibacterial activity of nitric oxide (NO) releasing silver nanoparticles (AgNPs)

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Evaluation of Antibacterial and Antifungal Activities of Leaf and Seed Extracts of Croton Tiglium Plant against Skin Disease Causing Microbes

Antimicrobial effect of Silver nanoparticle on pathogenic organisms isolated from East Kolkata Wetland

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

EFFECT OF SOLVENTS ON PARTICLE STRUCTURE, MORPHOLOGY AND OPTICAL PROPERTIES OF ZINC OXIDE NANOPARTICLES

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Available online at

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Antibacterial, antifungal and antioxidant activities of honey collected from Timergara (Dir, Pakistan)

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Antimicrobial Activity of Black Fruit Variant of Solanum nigrum L.

Antibacterial Activity of Biogenic Zinc oxide Nanoparticals synthesised from Enterococcus faecalis

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

Enhanced antibacterial potential of ethanolic extracts of neem leaf (Azadiracta indica A. Juss.) upon combination with bacteriocin

Screening of bacteria producing amylase and its immobilization: a selective approach By Debasish Mondal

Anticancer studies of the synthesized gold nanoparticles against MCF 7 breast cancer cell lines

Antibacterial activity and mechanism of ZnO nanoparticles on C. jejuni

Octa Journal of Biosciences

THE EFFECT OF ALKALOIDS AND FLAVONOIDS EXTRACTS OF VITEX DONIANA SEED ON SOME MICROORGANISMS

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Effect of ph on the production of protease by Fusarium oxysporum using agroindustrial waste

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

Antimicrobial activity of Terminalia chebula

Effect of Botanicals and Bioagents on Growth of Aspergillus niger (Van Tiegh) Causing Black Mold in Onion

EVALUATION OF THE ANTIBACTERIAL PROPERTIES OF SILVER NANOPARTICLES SYNTHESIZED WITH FUSARIUM OXYSPORUM AND ESCHERICHIA COLI

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

Journal of Chemical and Pharmaceutical Research

Hong-qi Sun, Xue-mei Lu, Pei-ji Gao* State Key Laboratory of Microbial Technology, Shandong University, Jinan , China.

Dian Riana Ningsih, Zusfahair, Dwi Kartika. Chemistry Department Basic Science Faculty Jenderal Soedirman University. ABSTRACT

Structural and luminescent properties of ZnO flower-like microstructures synthesized using the chemical bath deposition method

Phytochemical analysis and antibacterial properties of leaf extract of Azima tetracantha (Lam.)

Laboratorios CONDA, S.A. Distributed by Separations

THE ATRACTYLODES LANCEA EXTRACT FOR BACTERIAL RESISTANT IN TEXTILES

ANTIMICROBIAL ACTIVITY OF NON EDIBLE SEEDS AGAINST IMPORTANT PATHOGENIC MICROORGANISMS PROJECT REFERENCE NO.: 38S _B_MSC_010

Evaluation of antimicrobial activity and Bidens biternata ehrenb Leaves

Antibacterial Activity of ZnO Nanoparticles Coated on Ceramic Tiles Prepared by Sol-Gel Method

EVALUATION OF ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF Zingiber officinale (GINGER) RHIZOME EXTRACT

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

Green Synthesis of Metallic Nanoparticles using Aqueous Plant Extract and their Antibacterial Activity

Preservative Evaluation of Novel 2,4-Hexadienoic Acid Derivatives in Aluminium Hydroxide Gel USP

Synthesis and Antimicrobial Evaluation of some 2-Azetidinone derivatives

Antimicrobial efficacy of Leaf Extract of Cayratia pedata Lam.,Vitaceae

FIT TECHNICAL DATA. Summary of Research Studies and Production Trials

Studies on antibacterial activity of some medicinal plant against Human pathogenic Micro Organism

Process Optimization for Preparation of an Antibacterial Agent Using a Combined Extract of Tulsi and Marigold Leaves

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

Synthesis of nickel doped ZnO nanoparticles by hydrothermal decomposition of zinc hydroxide nitrate and its antimicrobial assay

International Journal of Pharma and Bio Sciences A COMPARITIVE STUDY OF ANTIMICROBIAL ACTIVITY OF SOME HERBS AND THEIR SYNERGISTIC EFFECT ABSTRACT

SUPPORTING INFORMATION. Studies on antimicrobial evaluation of some 1-((1-(1H-benzo[d]imidazol-2-

Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens

Zinc Oxide Nanoparticles Prepared by the Reaction of Zinc Metal with Ethanol

A Comparative Study of Effect of Essential Oil and Alcoholic Extract of Eucalyptus Leaves on Medically Important Bacterial and Fungal Isolates

Antibacterial activities of extracts and their fractions of leaves of Tridax procumbens Linn

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

Preparation of Nano Zinc Oxide and its Application in Leather as a Retanning and Antibacterial Agent

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

Formulation of alternative culture media for bacterial and fungal growth

World Journal of Science and Research

Phytochemical study and bioactivity of solvent extracts on Coriandrum sativum

Biomarkers as a Tool for Validation of Herbs and Spices

in vitro Evaluation of Aqueous and Solvent extract of Tribulus terrestris L. leaf against Human bacteria

Antimicrobial activity of Trinpanchmool drugs

IN VITRO ANTIMICROBIAL ACTIVITY OF VARIOUS EXTRACTS OF MIRABILIS JALAPA LEAVES

Antibacterial Activity of Francoeuria crispa, Pulicaria undulata, Ziziphus spina-christi and Cucurbita pepo Against Seven Standard Pathogenic Bacteria

V. Rawat and K. Upadhyaya, /Journal of Natural Products, Vol. 6(2013):17-26

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO ANTIBACTERIAL ACTIVITY OF CUCURBITA MAXIMA SEED EXTRACT

Phytochemical screening and antibacterial properties of Garcinia kola

Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f.sp. lycopersici

ANTIBACTERIAL ACTIVITY OF LEAF AND SEED EXTRACTS OF DELONIX REGIA AND ACHYRANTHUS ASPERA AGAINST SELECTED BACTERIAL STRAINS

Antimicrobial Activity of Rhus parviflora Roxb.: Leaves Extract Mediated Synthesized ZnO Nanoparticles

SCREENING OF ANTIMICROBIAL ACTIVITY OF OILS FROM DIFFERENT SPECIES OF OSCIMUM AGAINST PATHOGENIC BACTERIAL STRAINS

ANTIMICROBIAL SCREENING OF N-[(2-SUBSTITUTED PHENYL)-4-OXO-1,3-THIAZOLIDINE 3- YL]ISONICOTINAMIDES

Invitro screening of antimicrobial potentials of Cissus quadrangularis L.

Antimicrobial activity of natural dyes obtained from Terminalia arjuna (Roxb.) Wight & Arn barks

Research Article. Green synthesis and characterization of zinc oxide nanoparticles

Research Article. Synergistic antibacterial activity of zinc oxide nanoparticles with antibiotics against the human pathogenic bacteria

FORMULATION, SENSORY EVALUATION AND NUTRIENT ANALYSIS OF PRODUCTS WITH ALOE VERA

Aspergillus foetidus BY AQUEOUS TWO PHASE

Antibacterial Activity of Boerhaavia diffusa L. (Punarnava) On certain Bacteria

*MIAN SHAHZADA ZIA AHMAD & ZAHEER-UD-DIN KHAN. Department of Botany, GC University, Lahore. ABSTRACT INTRODUCTION

Research Article

ISPUB.COM. Screening For Antimicrobial Activity Of Weeds. S Patel, N Venugopalan, S Pradeep INTRODUCTION MATERIALS AND METHODS PLANT MATERIALS

APPENDIX Reagents. Appendix. Alsever s solution Citric acid 0.55g Sodium citrate 8.0g D-glucose 20.5g Sodium Chloride 4.2g

Transcription:

ISSN: 2319-7706 Volume 4 Number 8 (2015) pp. 444-450 http://www.ijcmas.com Original Research Article Synthesis and Characterization of ZnO Nanoparticles using Leaf of Camellia sinesis and Evaluation of their Antimicrobial Efficacy Rajesh Kumar Shah*, Forishmeeta Boruah and Nikahat Parween Department of Zoology, D.H.S.K. College, Dibrugarh, Assam, India *Corresponding author A B S T R A C T K e y w o r d s Green-synthesis, Zinc nanoparticles, Camellia sinensis, Scanning Electron Microscopy Nanotechnology is a developing interdisciplinary field of research interspersing material science, bionanoscience, and technology. Nanoparticles are studied extensively for their specific catalytic, magnetic, electronic, optical, antimicrobial, wound healing and anti-inflammatory properties. The main aim of the present study was to synthesize Zn nanoparticles using the aqueous extract of green tea (Camellia sinensis) leaves and to evaluate their antimicrobial efficacy against some selected microbes. The synthesis Zn nanoparticles were characterized by UV/VIS spectroscopy, particle size analyzer and Scanning Electron Microscopy. The synthesized Zn nanoparticles showed significant antimicrobial activity against Gram positive and Gram negative bacteria as well as against a fungal strain. The maximum zone of inhibition had been found against Pseudomonas aeruginosa (32 ± 0.050) where as the minimum is found against Staphylococcus aureus (25 ± 0.100). Thus from this study it can be concluded that green tea leaf extracts can be effectively used for synthesizing Zn nanoparticles. This study also suggests that green synthesized Zn nanoparticles can be used as an alternative to existing antimicrobial agents Introduction Nanotechnology is a developing interdisciplinary field of research interspersing material science, bionanoscience, and technology (Gnanajobitha et al., 2013). Metal nanoparticles are known to exhibit various functions which are otherwise not observed in bulk phases (Sosa et al., 2003 and Sun et al., 2003). These nanoparticles are studied extensively for their specific catalytic, magnetic, electronic, optical and antimicrobial (Duran et al., 2005 and Ingle et at., 2008) wound healing and anti- inflammatory properties (Taylor, 2005). Plant mediated synthesis of nanoparticles are preferred over chemical synthesis due to its simplicity, eco-friendliness and extensive antimicrobial activity, non-toxic by-products and large-scale synthesis (Khandelwal, et al., 2010; Vanaja et al., 2013; Iravani, 2011; Satyavani et al., 2011; Rao and Savithramma, 2011; Malabdi et al., 2012; Saxena et al., 2010 and Awwd et al., 2013). Zinc oxide nanoparticles are known to be one of the multifunctional inorganic nanoparticles with effective antibacterial 444

activity (Gunalana et al., 2012). Antibacterial and antifungal activities of ZnO nanoparticles are observed even at very lower concentrations and also the antifungal activity does not affect soil fertility compared to the conventional antifungal agents (Feris et al., 2010). The main aim of the present study was to synthesize Zn nanoparticles using the aqueous extract of green tea (Camellia sinensis) leaves and to evaluate their antimicrobial efficacy against some selected microbes. Materials and Methods Preparation of aqueous leaf extract Fresh leaves of Camellia sinensis were collected and washed in running tap water followed by double distilled water. The aqueous extract of sample was prepared by boiling the freshly collected leaves (10g), with 100ml of distilled water, at 60 C for about 20 minutes, until the colour of the aqueous solution changes from watery to light yellow. Then the extract was cooled to room temperature and filtered using filter paper and used for further experiments. Preparation of zinc nanoparticles For the synthesis of nanoparticle, Zinc acetate was dissolved in the extract and the solution was stirred constantly using magnetic stirrer. After complete dissolution of the mixture, the solution was kept under vigorous stirring for 5 6 h at about at 150 C. The solution was then cooled at room temperature and the supernatant was discarded. The pale white solid product obtained was centrifuged twice at 4500 rpm for 15 min after thorough washing and dried at 80 C for 7 8 hours (Gunalana et al., 2012). Characterization of Zn nanoparticles The synthesis of Zn nanoparticle was evaluated by taking the absorbance in the range of 300 500 nm using the UV/VIS spectrophotometer. The particle size of synthesized nanoparticles was obtained by particle size analyzer. The dried Zn nanoparticles were also subjected to SEM analysis for characterization. Test organisms Microorganisms were procured from Microbial Type Culture Collection and Gene bank (IMTECH, Chandigarh, India). The antimicrobial activity was carried out against both Gram positive and Gram negative bacteria viz. Staphylococcus aureus (Gram positive, MTCC 87), Bacillus cereus (Gram positive, MTCC 1305), Escherichia coli (Gram negative, MTCC 10312), Pseudomonas aeruginosa (Gram negative, MTCC-3542), Proteus mirabilis (Gram negative, MTCC-3310), as well as against the fungus Aspergillus niger (MTCC-9652). The bacterial strains were maintained on Nutrient Agar and fungi on Potato Dextrose Agar. The microbes were sub-cultured at an interval of one month. Antibacterial activity Zn nanoparticles synthesized using aqueous leaf extract of Camellia sinensis was tested for its potential antimicrobial activity against some selected microbes. To analyze the antimicrobial activity of the sample, the samples were subjected to Agar well Diffusion method (Kelly et al., 2003). 25 ml of media was poured in Petri dishes and allowed to solidify. 0.1 ml of standardized inoculum was introduced and evenly spread onto the surface of sterile agar plates. After drying, well of 5 mm diameter were made on the agar plates with the help of sterilized 445

cork borer. 100 l of test sample was poured in the respective well and the plates were incubated for 24 hours at 37 C. Ampicillin and Cefotaxime were used as positive control ns Zinc nitrate solution was taken as negative control. Diameter of the zone of inhibition was measured in mm and expressed as Mean ± Standard Deviation Result and Discussion When the leaf extract incubated with Zn nitrate, the colour changed from pale yellow to pale brown after one hour of incubation at room temperature (Fig. 1). The change in colour indicates the formation of nanoparticles. UV spectroscopy analysis showed maximum absorption at about 330 nm. The size of the particles was determined by particles size analyzer (Fig. 2). The sizes of particle in diameter were found to be 853 nm. SEM characterizations of the synthesized Zn nanoparticles are shown in (Fig. 3) which reveals much lesser diameter as compared to particle size analyzer. The nanoparticles were examined under various magnifications. SEM image has showed individual zinc particles as well as a number of aggregates. The synthesized Zn nanoparticles showed significant antimicrobial activity against Gram positive and Gram negative bacteria as well as against a fungal strain. The results are expressed as zone of inhibition (mm) ± SD (Table 1). Table.1 Antimicrobial activity of the Zn nanoparticle against selected microbes Sl.No. Name of Test Organism Zone of inhibition in mm ± SD ZnO Nanoparticle Table.2 Antimicrobial activity of different leaf extracts of Camellia sinensis against microbes. Sl.No. Name of Test Organism Zone of inhibition in mm ± SD Methanolic 446 Zn Nitrate Ethanolic Ampicillin 60 µg/ml Chloroform Cefotaxime 60 µg/ml 1 Staphylococcus aureus 25 ± 0.100-25 ± 0.383 24 ± 0.231 2 Escherichia coli 29 ± 0.500-17 ± 0.058 11 ± 0.058 3 Pseudomonas aeruginosa 32 ± 0.050 - - 21 ± 0.100 4 Proteus mirabilis 30 ± 0.116-20 ± 0.141 13 ± 0.071 5 Bacillus cereus 30 ± 0.188 07±0.090 26 ± 0.435 28 ± 0.289 6 Aspergillus niger 30 ± 0.225 - - 28 ± 0.354 Aqueous 1 Staphylococcus aureus 25 ± 0.283 16± 0.141-14 ± 0.283 2 Escherichia coli 27 ± 0.071 16± 0.212-14 ± 0.071 3 Pseudomonas aeruginosa 24 ± 0.071 15 ± 0.212-15 ± 0.071 4 Proteus mirabilis 26 ± 0.212 16± 0.141-17 ± 0.071 5 Bacillus cereus 25 ± 0.071 18± 0.141-16 ± 0.283 6 Aspergillus niger 26 ± 0.212 17± 0.071-13 ± 0.071

Fig.1 Biosynthesis of Zn nanoparticles using plant leaf extract of Camellia sinensis (a) Before synthesis (b) After synthesis of Zn nanoparticle Fig.2 Particles size analysis 447

Fig.3(a-d) Scanning Electron Microscopic images of ZnO nanoparticles Fig.3(a) Fig. 3(b) Fig.3(c) Fig.3(d) The maximum zone of inhibition had been found against Pseudomonas aeruginosa (32 ± 0.050) where as the minimum is found against Staphylococcus aureus (25 ± 0.100). The solvent extract of the leaves were also found to be very significant against the microbes. The methanolic extract showed highest activity against the tested microbes. The ethanolic and aqueous extract showed nearly similar activity after methanolic extract however no activity was recorded in the chloroform extract (Table 2). Several research confirming antimicrobial activity of ZnO nanoparticles against the food related bacteria Bacillus subtilis, Escherichia coli Pseudomonas fluorescens Salmonella typhimurium and Staphylococcus aureus had been reported (Russell and Hugo, 1994 and Ip et al., 2006). ZnO NPs are also known to exhibit antimicrobial activities against Listeria monocytogenes, Salmonella enteritidis and E. coli (Russell and Hugo, 1994). The formation of hydrogen peroxide from the surface of ZnO is considered to be mainly responsible for its antimicrobial property (Rai et al., 2009) Thus from this study it can be concluded that green tea leaf extracts can be effectively used for synthesizing Zn nanoparticles. This study also suggests that green synthesised Zn nanoparticles can be used as an alternative to existing antimicrobial agents. 448

Acknowledgement The authors are thankful to the Institute Level Biotech. Hub, D.H.S.K. College for providing the laboratory facilities where some of the experiments were carried out. The authors are also thankful to the Head, Dept. of Pharmaceutical Sciences, Dibrugarh University for using Particle size analyzer and also to SAIF, NEHU for SEM analysis. References Awwd, A., Salem, N., Abdeen, AOMM. 2013. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Indust. Chem., 4: 29 34. Duran, N., Marcato, P.D., Alves, O.L., et al. 2005. Mechanistic aspects of biosynthesis of silver nano particlesby several Fusarium oxysporum strains. J. Nanotechnol., 3: 1 7. Feris, K., Otto, C., Tinker, J., et al. 2010. Electrostatic interactions affect nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO. Langmuir, 26(6): 4429 36. Gnanajobitha, G., Paulkumar, K., Vanaja, M., et al. 2013. Fruit-mediated synthesis of silver nanoparticles using Vitis vinifera and evaluation of their antimicrobial efficacy. J. Nanostructure Chem., 3: 67. Gunalana, S., Sivaraja, R., Rajendranb, V. 2012. Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Prog. Natural Sci. Mater. Int., 22(6): 693 700. Ingle, A., Gade, A., Pierrat, S., et al. 2008. Mycosynthesis of silver nanoparticle susing the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria, Curr Nanosci., 4: 141 144. Ip, M., Lui, S.L., Poon, V.K. et al. 2006. Antimicrobial activities of silver dressings: an in vitro comparison. J. Med. Microbiol., 55: 59 63. Iravani, S. 2011. Green synthesis of metal nanoparticles using plants. Green Chem., 13: 2638 2650. Kelly, K.L., Coronado, E., Zhao, L.L., et al. 2003.The optical properties of metal nanoparticles: the influence of size, shape and dielectric environment. J. Phys. Chem. B., 107: 668 677. Khandelwal, N., Singh, A., Jain, D., et al. 2010. Green synthesis of silver nanoparticles using Argimone mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Bios., Pp. 483 489. Malabdi, R., Mulgund, G., Meti, N. et al. 2012.Antibacterial activity of silver nanoparticles synthesized by using whole plant extracts of Clitoria ternatea. Res. Pharm., 2: 10 21. Rai, M., Yadav, A., Gade, A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27: 76 83. Rao, M., Savithramma, L.N. 2011. Biological synthesis of silver nanoparticles using Svensonia hydrabadensis leaf extract and evaluation of their antimicrobial efficacy. J. Pharm. Sci. Res., 3: 1117 1121. Russell, A.D., Hugo, W.B. 1994. Antimicrobial activity and action of silver. Prog. Med. Chem., 31: 351 370. Satyavani, K., Gurudeeban, S., Ramanathan, T. et al. 2011. Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. J. Nanobiotechnol., 9: 43. 449

Saxena, A., Tripathi, R.M., Singh, R.P. 2010. Biological synthesis of silver nanoparticles by using onion (Allium cepa) extract and their anti- bacterial activity. Dig. J. Nanomater. Biosci., 5: 427 432. Sosa, I.O., Noguez, C., Barrera, R.G. 2003. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B., 107: 6269 6975. Sun, Y.G., Mayers, B., Herricks, T., et al. 2003. Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano Lett., 3: 955 960. Taylor, P.L. 2005. Ussher AL, Burrell RE. Impact of heat on nanocrystalline silver dressings. Part I: chemical and biological properties. Biomaterials, 26: 7221 7229. Vanaja, M., Gnanajobitha, G., Paulkumar, K., et al. 2013. Phytosynthesis of silver nanoparticles by Cissus quadrangularis, influence of physiochemical factors. J. Nanostruct. Chem., 3: 17 24. 450