Cancer-induced Hypercalcemia

Similar documents
HYPERCALCEMIA. Babak Tamizi Far MD. Assistant professor of internal medicine Al-zahra hospital, Isfahan university of medical sciences

hypercalcemia of malignancy hyperparathyroidism PHPT the most common cause of hypercalcemia in the outpatient setting the second most common cause

Current Management of Metastatic Bone Disease

The Latest is the Greatest. Future Directions in the Management of Patients with Bone Metastases from Breast Cancer

Xgeva. Xgeva (denosumab) Description. Section: Prescription Drugs Effective Date: January 1, 2016

Bone Metastases. Sukanda Denjanta, M.Sc., BCOP Pharmacy Department, Chiangrai Prachanukroh Hospital

Bisphosphonates in the Management of. Myeloma Bone Disease

Xgeva. Xgeva (denosumab) Description

Bone Health in the Cancer Patient. Stavroula Otis, M.D. Primary Care and Oncology: Practical Lessons Conference Brea Community Center May 10, 2018

Bone Health in Patients with Multiple Myeloma

Approach to a patient with hypercalcemia

Agents that Affect Bone & Mineral Homeostasis

Denosumab (AMG 162) for bone metastases from solid tumours and multiple myeloma

Skeletal. Parathyroid hormone-related protein Analyte Information

Castrate-resistant prostate cancer: Bone-targeted agents. Pr Karim Fizazi, MD, PhD Institut Gustave Roussy Villejuif, France

Managing Skeletal Metastases

Elderly men with prostate cancer + ADT

Zainab Al-dabi - Shahd Alqudah - Dr. Malik

Symptom management: Hypercalcemia

HYPERCALCAEMIA 101 FOR THE INTERNIST

Management of hypercalcemia of malignancy

BCCA Protocol Summary Guidelines for the Diagnosis and Management of Malignancy Related Hypercalcemia

BREAST CANCER AND BONE HEALTH

Clodronate BE/H/PSUR/001/001 October 2011 Agreed CSP

GUIDELINES ON THE USE OF BISPHOSPHONATES IN PALLIATIVE CARE. November 2007(Amended July 2008)

silent epidemic,. (WHO),

Calcium and Parathyroid Disorders

Awaisheh. Mousa Al-Abbadi. Abdullah Alaraj. 1 Page

Vol. 19, Bulletin No. 108 August-September 2012 Also in the Bulletin: Denosumab 120mg for Bone Metastases

DENOSUMAB (PROLIA & XGEVA )

Efficacy and Safety of Denosumab for the Treatment of Bone Metastases in Patients with Advanced Cancer

Definition Elevated Adjusted Calcium > 2.6 mmol/l (adjusted for albumin), taken without using a cuff.

Bisphosphonates and RANK-L inhibitors in Myeloma

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 11 April 2012

Bone metastases of solid tumors Diagnosis and management by

The management and treatment options for secondary bone disease. Omi Parikh July 2013

Surviving Breast Cancer

Generation of post-germinal centre myeloma plasma B cell.

Hypercalcemia. Brian Rose, M.D. Bozeman Health June 6, 2018

Index. Rheum Dis Clin N Am 32 (2006) Note: Page numbers of article titles are in boldface type.

Hypercalcaemia with undetectable parathormone levels

Bone metastases in hematology

Hypercalcemia & Parathyroid Disorders. W. Reid Litchfield, MD, FACE, ECNU Desert Endocrinology

Talib A. Najjar, DMD, MDS, PhD Professor Oral & Maxillofacial Surgery Rutgers University

Corporate Medical Policy

Definition Elevated Adjusted Calcium > 2.6 mmol/l (adjusted for albumin), taken without using a cuff.

Southern Derbyshire Shared Care Pathology Guidelines. Primary Hyperparathyroidism

GUIDELINES FOR THE TREATMENT OF CANCER ASSOCIATED HYPERCALCAEMIA

Hypercalcemia. Hypercalcemia: When to Worry, When to Treat! Mineral Metabolism : A Short Course

Clinical biochemistry of calcium and vitamin D

Bone targeting: bisphosphonates, RANK-ligands and radioisotopes. Dr Lisa Pickering Consultant Medical Oncologist ESMO Preceptorship Singapore 2017

CASE REPORT. Abstract. Case Report. Introduction

HOW I DO IT. Introduction. BARKIN J. How I Do It: Managing bone health in patients with prostate cancer. Can J Urol 2014;21(4):

Calcium metabolism and the Parathyroid Glands. Calcium, osteoclasts and osteoblasts-essential to understand the function of parathyroid glands

Disodium pamidronate for treating severe hypercalcemia in a hemodialysis patient

Novel therapies for Myeloma bone disease. Dr. Naif AlJohani ABIM,FRCPC Adult Hematology/BMT King Faisal specialist hospital & Research center Jeddah

Endocrine Regulation of Calcium and Phosphate Metabolism

Ca, Mg metabolism, bone diseases. Tamás Kőszegi Pécs University, Department of Laboratory Medicine Pécs, Hungary

Breast Cancer and Bone Health. Robert Coleman, Cancer Research Centre, Weston Park Hospital, Sheffield

PARATHYROID, VITAMIN D AND BONE

Since the advent of multichannel serum chemistry

Hypercalcemia Associated with Cancer

S H A R E D C A R E G U I D E L I N E Drug: Denosumab 60mg injection Indication: treatment of osteoporosis in postmenopausal women

FYI ONLY Generic Name. Generics available. zoledronic acid N/A

A Rare Cause of Hypercalcemia: Immobilization. A Case Report and Literature Review

CASE PRESENTATION. Kārlis Rācenis MD - Latvia

Case Report A Reference Finding Rarely Seen in Primary Hyperparathyroidism: Brown Tumor

Osteoporosis. When we talk about osteoporosis, we have to be familiar with the constituents of bone and what it is formed of.

Hyperparathyroidism. When to Suspect, How to Diagnose, When and How to Intervene. Johanna A. Pallotta, MD, FACP, FACE

CASE 1 WHY IS IT IMPORTANT TO TREAT? FACTS CONCERNS

Assessment and Treatment of Osteoporosis Professor T.Masud

Scottish Medicines Consortium

OUR EXPERIENCE WITH ZOLEDRONIC ACID IN THE TREATMENT OF PATIENTS WITH NON- SMALL CELL LUNG CANCER AND BONE METASTASES

Effects of Anti RANK ligand Denosumab on Beta Thalassemia induced osteoporosis

Norton L et al. Nature Med 2006

The Role of the Laboratory in Metabolic Bone Disease

OSTEONECROSI DEI MASCELLARI (ONJ): PREVENZIONE, DIAGNOSI, TRATTAMENTO UPDATE 2010

Analysis of Denosumab on Skeletal-Related Events in Patients With Advanced Breast Cancer

Horizon Scanning Technology Briefing. Zoledronic Acid (Aclasta) once yearly treatment for postmenopausal. National Horizon Scanning Centre

Zerlinda (MRP DK/H/2265/001)

Download slides:

Osteoporosis Update. Greg Summers Consultant Rheumatologist

Case Report Letrozole Induced Hypercalcemia in a Patient with Breast Cancer

Drugs Affecting Bone. Rosa McCarty PhD. Department of Pharmacology & Therapeutics

From Fragile to Firm. Monika Starosta MD. Advocate Medical Group

Hypercalcemia of malignancy. Apirom Laocharoenkeat

Case 2: 30 yr-old woman with 7 yr history of recurrent kidney stones

Elecsys bone marker panel. Optimal patient management starts in the laboratory

Practical Management Of Osteoporosis

BISPHOSPHONATES ARE POTENT INHIBITORS of normal and. A Dose-Finding Study of Zoledronate in Hypercalcemic Cancer Patients

New Agents for Myeloma Bone Disease

Bone Health in the Cancer Patient

Prostate Cancer 2009 MDV Anti-Angiogenesis. Anti-androgen Radiotherapy Surgery Androgen Deprivation Therapy. Docetaxel/Epothilone

Oncological emergencies. Harmesh Naik, MD. Medical Oncology Hope Cancer Clinic

Pharmacy Management Drug Policy

Xgeva (denosumab) injection, for subcutaneous use Initial US Approval: 2010

Hospice Palliative Care Program Symptom Guidelines. Hypercalcemia in Malignant Disease (Palliative Management)

Questions and Answers About Breast Cancer, Bone Metastases, & Treatment-Related Bone Loss. A Publication of The Bone and Cancer Foundation

New Developments in Oncology Bone Health. Learning Objectives. Disclosures 10/1/2014

Transcription:

Review Cancer-induced Hypercalcemia FRANCO LUMACHI 1*, ANTONELLA BRUNELLO 2, ANNA ROMA 2 and UMBERTO BASSO 2 1 Department of Surgical and Gastroenterological Sciences, University of Padua, School of Medicine, 31528 Padova; 2 Division of Medical Oncology, Istituto Oncologico Veneto (IOV), IRCCS, 35128 Padova, Italy Abstract. Cancer-induced hypercalcemia (CIH) occurs in 5% to 30% of patients with cancer during the course of their disease, depending on the type of tumor. This review provides information on the pathophysiology and treatment of CIH. Enhanced bone resorption is the primary cause of CIH and the release of tumor-derived mediators induces this increase in osteoclast-mediated resorption. The interactions between osteoclasts and cancer cells are mainly mediated by parathyroid hormone-related protein (PTHrP), that activates osteoblasts to produce receptor activator of nuclear factor-κ ligand (RANKL) and osteoclast precursors, with subsequent bone osteolysis. Low parathyroid hormone serum levels together with high calcium levels in a cancer patient may suggest a CIH. There are two different therapeutic approaches for treating CIH, to increase the urinary excretion of calcium, or to inhibit osteoclastic bone resorption, RANKL or the action of PTHrP. In patients with CIH the first step of therapy is usually to restore renal function which is often impaired due to dehydration. Bisphosphonates administration is at present the main-stay of treatment, while calcitonin, gallium nitrate and mithramycin have limited activity and several side-effects. Anti-RANKL therapy (denosumab) and antibodies against PTHrP are promising therapies, but their clinical use should be further explored to more clearly document the effects. In 1941 Albright first proposed the term humoral hypercalcemia in patients with cancer and hypothesized that mechanisms different from direct bone resorption by tumor *Main speaker and chair person, 8th International Conference of Anticancer Research, Kos (Greece), October 17-22, 2008. Correspondence to: Professor Franco Lumachi, University of Padua, School of Medicine, Department of Surgical and Gastroenterological Sciences, via Giustiniani 2, 35128, Padova, Italy. Tel: +39 0498212210, Fax: +39 049656145, e-mail: flumachi@unipd.it Key Words: Hypercalcemia, malignancy, cancer, PTHrP, RANKL, bisphosphonates, review. cells may cause such a complication (1). Cancer-induced hypercalcemia (CIH) occurs in 5% to 30% of patients with cancer during the course of their disease, depending on the type of tumor (2). CIH represents the most common paraneoplastic syndrome, with an incidence of 15 cases per 100,000 people per year (3, 4). Lung cancer, breast cancer and myeloma have the highest incidence of CIH, accounting for more than 50%, while the disease occurs rarely in patients with colorectal and prostate cancer (3). Except in patients with multiple myeloma and breast cancer, the prognosis of the cancer patients with CIH is usually poor, with a mean survival rate of 2-3 months (5). More than 30% of patients with multiple myeloma, 25% of those with squamous cell carcinoma and 20% of those with breast cancer may develop CIH (4). Enhanced bone resorption is the primary cause of hypercalcemia of malignancy and the release of tumor-derived mediators induces this increase in osteoclast-mediated resorption (4, 5). The mechanisms of osteoclast-mediated resorption are humoral effects of systemically elevated tumor-derived factors and local (autocrine or paracrine) effects of factors produced by the tumor cells metastasized to bone (i.e. direct bone resorption by lytic metastases), inducing osteolysis. Both normal and malignant bone and hemopoietic marrow cells interact together with a complex network of agents (i.e. interleukins [IL-1, IL-6], tumor necrosis factor alpha [TNF-α]), enhanced cancer growth and osteoclast activation as the ultimate outcome (2, 6). Parathyroid Hormone-related Protein Overall, about 80% of patients with CIH may have increased parathyroid hormone-related protein (PTHrP) serum levels. Other calciotropic hormones can also cause CIH, including parathyroid hormone (PTH) and 1-25(OH) 2 vitamin D 3 secreted by neuroendocrine tumors and increased 1α-hydroxilase activity in lymphoproliferative disorders, respectively (2, 4, 5). PTHrP is a distinct gene product with sequence homology to PTH only in a limited 0250-7005/2009 $2.00+.40 1551

Figure 2. Interactions between osteoclasts and cancer-cells. PTHrP: parathyroid hormone-related protein, RANKL: receptor activator of nuclear factor-κ ligand, IGF: insulin-like growth factor, TGF-β: transforming growth factor-β, MAPK: mitogen-activated protein kinase. Figure 1. Actions of the parathyroid hormone-related protein (PTHrP) during fetal life at the end of long bones. PTHrP stimulates the proliferation of chondrocytes and suppresses their terminal differentiation. domain at the amino-terminal end of the molecule (5). Both produce humoral hypercalcemia by increasing the resorption of bone throughout the skeleton and the renal resorption of calcium (7). However, PTH stimulates bone resorption and formation, while PTHrP stimulates only osteoclasts, showing a very low osteoblastic activity (7, 8). The best established role of PTHrP is to stimulate the proliferation of chondrocytes in the growth plate and to delay the mineralization of hypertrophic cartilage (5, 8). During fetal life PTHrP is secreted from perichondrial cells and chondrocytes at the end of long bones (9). It stimulates the proliferation of chondrocytes and suppresses their terminal differentiation (Figure 1). Interactions between osteoclasts and cancer cells are mainly mediated by PTHrP, that activates osteoblasts to produce receptor activator of nuclear factor-κ ligand (RANKL). RANKL activates osteoclast precursors and subsequent bone osteolysis, leading to the release of several bone-derived growth factors, including insulin-like growth factor (IGF1) and transforming growth factor-β (TGF-β), and raises extracellular ionised calcium concentrations, with subsequent activation of a Ca ++ pump (10). The growth factors bind to receptors on the tumor cells surface and activate both cytoplasmic mediators of TGF-β and mitogen-activated protein kinase (MAPK). Signalling through this pathway promotes both cancer cell proliferation and PTHrP production, with subsequent increased calcium reabsorption (Figure 2). Diagnosis and Treatment of Cancer-induced Hypercalcemia Low PTH serum levels together with high calcium levels in a cancer patient suggest CIH. True ectopic secretion of PTH is rare and less than 5% of patients may have primary hyperparathyroidism (PHPT) together with CIH (11). Very high serum calcium levels are observed in patients with parathyroid cancer, but also the PTH levels are usually elevated (12). Unfortunately, the preoperative diagnosis of parathyroid cancer is difficult, because no sensitive tumor markers are available, although its localization is easy (13, 14). In patients with calcium concentrations over 3 mmol/l anorexia, nausea, polyuria, thirst and vomiting may be observed, while with serum calcium values above 4 mmol/l impairment of the conscious level usually occurs (15). Three different causes of hypercalcemia should be considered: PHPT, CIH and everything else (Table I). There are two different therapeutic approaches for treating CIH, to increase the urinary excretion of calcium, or to inhibit osteoclastic bone resorption, RANK ligand or the action of PTHrP (17). The first step of management of hypercalcemia should be to assess the hydration state and saline infusion is currently the standard of treatment, depending upon the severity of dehydration. However, if employed alone, volume expansion is ineffective in restoring normocalcemia because rehydration does not interfere with osteoclastic function. Loop diuretics (i.e. furosemide) enhance calcium excretion only after normovolemia has been reached (18). Bisphosphonates (BP) represent at present the drugs of choice for treating patients with CIH. They inhibit osteoclasts, induce apoptosis in these cells and bind to bone, blocking osteoclastic resorption and osteolysis (19, 20). Once inside osteoclasts, BPs hamper 1552

Lumachi et al: Cancer-induced Hypercalcemia (Review) Table I. Differential diagnosis of hypercalcemia (3). Causes Hyperparathyroidism Malignancy Drug-induced Endocrine diseases Other Subtypes Primary, tertiary Humoral and local hypercalcemia Vitamins A & D intoxication; lithium, tamoxifen & thiazide therapy Adrenal failure, pheochromocytoma, hyperthyroidism, acromegaly Sarcoidosis, immobilization, acute renal failure, familial hypocalciuric hypercalcemia, milk alkali syndrome adhesion to the mineralized matrix, reduce lysosomial enzymes and activate a pro-apoptotic pathway (20, 21). Patients treated with BP have a delayed time to skeletal fracture, and a reduced need for radiation therapy and orthopedic surgery to treat bone metastases (20-23). Osteonecrosis of the jaw is a severe complication described in patients treated with BPs, especially in those with myeloma treated for a long time with pamidronate or zoledronate or in patients who have undergone teeth extractions or other invasive interventions on the jaw or maxilla bone (24). The first BPs etidronate and clodronate are now rarely used to treat CIH due to the availability of more potent compounds (25, 26). Pamidronate is able to normalize calcium levels in 80% to 100% of patients and the infusion time of 2-4 hours does not show a significant increment of nephrotoxicity (18). Randomized trials have proved that pamidronate is superior to clodronate, etidronate and mithramycin (26, 27). Zoledronate is a third-generation BP and can be administered in a dose 10 times lower than pamidronate (28, 29). It has been shown to be superior to pamidronate in the rate of normocalcemia, duration of control of CIH and time to relapse, therefore 4 mg zoledronate is the reference treatment for initial management of CIH, while higher doses can be used in relapsing or refractory patients (30). Its use is contraindicated if creatinine clearance is below 30 ml/min and/or if other nephrotoxic drugs are administered to the patient (28, 31). Ibandronate is especially useful in patients with breast or hematological cancer (18). A randomized trial comparing ibandronate and pamidronate showed a comparable activity of the two drugs in reducing calcium levels, while the median duration of response appeared to be longer for ibandronate (32). This drug has an extremely low rate of nephrotoxicity and represents the compound of choice for patients with moderate renal impairment or those treated with concomitant nephrotoxic therapies and no dose reductions are needed (28, 33). Other drugs are now considered of second choice, although some of them may still be used for salvage treatment of refractory patients. Mithramycin is a cytotoxic antibiotic that has tropism for the osteoclasts and inhibits bone resorption through the blocking of RNA synthesis, but it is less effective and convenient for patients compared to pamidronate (4, 27). Gallium nitrate may reduce solubilization of hydroxyapatite and tubular renal resorption, but does not inhibit the development or recruitment of osteoclasts and thus can be considered for the management of patients with CIH refractory to BP (34-36). Calcitonin may inhibit osteoclastic bone resorption and enhance renal excretion of calcium (25). Unfortunately, tachyphylaxis of receptors occurs frequently and it should be used only in selected cases, in combination with corticosteroids for patients with kidney failure (4, 37). The RANKL system is the central pathway leading to osteoclast differentiation and activation, and currently represents the most promising target for the treatment of CIH (4, 38, 39). An abnormal activation of RANKL (previously known also as osteoclastic differentiation factor [ODF]) is induced by circulating PTHrP or cytokines (i.e. IL-1, IL-6, TNF-α and TGF-β) secreted locally by metastatic cells (39, 40). Osteoprotegerin (OPG), a protein of the TNF family, specifically binds to RANKL and therefore prevents differentiation of osteoclasts and promotes their apoptosis, blocking bone resorption by depletion of mature osteoclasts (21, 41, 42). OPG has induced a more rapid effect on bone resorption compared to BPs in experimental models of PTHrP-dependent CIH (42). The human monoclonal antibody named denosumab is another agent able to interfere with RANKL-RANK pathways. This agent, when administered to postmenopausal osteoporotic women, showed a rapid and sustained dose-dependent decrease of bone turnover (41-43). It was able to induce an early and sustained decrease of bone resorption in patients with bone localizations of multiple myeloma or breast cancer, but unfortunately the role of denosumab in the management of CIH has not yet been confirmed (29). Another attractive strategy consists in the development of antibodies directed against human PTHrP. A humanized anti-pthrp antibody was tested in animal models of CIH and was found to be able to improve bone metabolism and calcium renal excretion, achieving a complete normalization of calcium levels (44, 45). It could be particularly interesting for subjects experiencing BP-refractory CIH (45). In conclusion, in patients with CIH the first step of therapy is usually to restore renal function which is often impaired due to 1553

dehydration. Enhanced bone resorption represents the main cause of hypercalcemia and thus the second step is BP administration. Pamidronate, zoledronate and ibandronate are at present the main-stay of treatment. Non-BP drugs have limited activity and several side-effects. Anti-RANKL therapy and antibodies against PTHrP are promising therapies, but their clinical use should be further explored to more clearly document the effects. Acknowledgements Special thanks to Miss Francesca Bissolotti for help in preparing the manuscript and for reviewing the English. References 1 Case records of the Massachusetts General Hospital: Case 27461. N Engl J Med 319: 225-227, 1941. 2 Grill V and Martin TJ: Hypercalcemia of malignancy. Rev Endocr Metab Disord 1: 245-263, 2000. 3 Strewler GJ: Humoral manifestations of malignancy. In: Basic & Clinical Endocrinology. Greenspan FS and Strewler GJ (eds.). Stamford, CT, Appleton Lange, pp. 741-752, 1997. 4 Shoback D and Funk J: Humoral manifestations of malignancy. In: Basic & Clinical Endocrinology. Greenspan FS and Gardner DG (eds.). New York, NY, Lange Medical Book/McGraw-Hill, pp. 778-791, 2001. 5 Strewler GJ: Hypercalcemia of malignancy and parathyroid hormone-related protein. In: Textbook of Endocrinesurgery. Clark OH, Duh Q-Y and Kebebew E (eds.). Philadelphia, PA, Elsevier Saunders, pp. 536-542, 2005. 6 Lumachi F et al: Medical treatment of malignancy-associated hypercalcemia. Curr Med Chem 15: 415-421, 2008. 7 Rosol TJ and Capen CC: Mechanism of cancer-induced hypercalcemia. Lab Invest 67: 680-702, 1992. 8 Montell D: Metastasis movies, macrophages, molecules and more. Conference on Mechanisms of Invasion and Metastasis. EMBO Rep 4: 458-462, 2003. 9 Kronemberg HM: Developmental regulation of the growth plate. Nature 423: 332-336, 2003. 10 Mundy GR: Metastasis to bone: causes, consequences and therapeutics opportunities. Nat Rev Cancer 2: 584-593, 2002. 11 Wimalawansa SJ: Significance of plasma PTHrP in patients with hypercalcemia of malignancy treated with bisphosphonates. Cancer 73: 2223-2230, 1994. 12 Lumachi F et al: Parathyroid cancer: etiology, clinical presentation and treatment. Anticancer Res 26: 4803-4807, 2006. 13 Lumachi F et al: Technetium-99m sestamibi scintigraphy and helical CT together in patients with primary hyperparathyroidism: a prospective clinical study. Brit J Radiol 77: 100-103, 2004. 14 Lumachi F et al: PCNA-Li, Ki 67 immunostaining, p53 activity and histopathological variables in predicting the clinical outcome in patients with parathyroid carcinoma. Anticancer Res 26: 1305-1308, 2006. 15 Heath DA: Hypercalcemia of malignancy. In: Russell RGG and Kanis JA (eds.). Tumor-induced Hypercalcemia and its Management. London, Royal Society of Medicine, pp. 29-32, 1991. 16 Strewler GL: Mineral metabolism and metabolic bone diseases. In: Basic and Clinical Endocrinology, 5th Edition. Greenspan FS and Strewler GJ (eds.). Stamford, CT, Appleton Lange, pp. 263-316, 1997. 17 Compston JE: Investigation of hypocalcemia. Clin Endocrinol 42: 195-198, 1995. 18 Ralston SH, Coleman R, Fraser WD et al: Medical management of hypercalcemia. Calcif Tiss Int 74: 1-11, 2004. 19 Roges MJ: New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9: 2643-2658, 2003. 20 Ross JR et al: Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer. Brit Med J 327: 469-471, 2003. 21 Lumachi F and Basso SM: Apoptosis: life through planned cellular death. Regulating mechanism, control systems, and relations with thyroid diseases. Thyroid 12: 27-34, 2002. 22 Fleisch H: Bisphosphonates: mechanisms of action. Endocr Rev 19: 80-100, 1998. 23 Brown EJ and Coleman RE: The role of bisphosphonates in breast cancer: The present and future role of bisphosphonates in the management of patients with breast cancer. Breast Cancer Res 4: 24-29, 2002. 24 Weitzman R et al: Critical review: updated recommendations for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in cancer patients-may 2006. Crit Rev Oncol Hematol 62: 148-152, 2007. 25 Fatemi S et al: Effect of salmon calcitonin and etidronate on hypercalcemia of malignancy. Calcif Tissue Int 50: 107-109, 1992. 26 Vinholes J et al: Evaluation of new bone resorption markers in a randomized comparison of pamidronate or clodronate for hypercalcemia of malignancy. J Clin Oncol 15: 131-138, 1997. 27 Thürlimann B et al: Plicamycin and pamidronate in symptomatic tumor-related hypercalcemia: a prospective randomized crossover trial. Ann Oncol 3: 589-590, 1992. 28 Santini D et al: The antineoplastic role of bisphosphonates: from basic research to clinical evidence. Ann Oncol 14: 1468-1476, 2003. 29 Body JJ et al: A study of the biological receptor activator of nuclear factor-kappab ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12: 1221-1228, 2006. 30 Major P et al: Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 19: 558-567, 2001. 31 Body JJ et al: A dose-finding study of zoledronate in hypercalcemic cancer patients. J Bone Min Res 14: 1557-1561, 1999. 32 Percherstrofer M et al: Efficacy and safety of ibandronate in the treatment of hypercalcemia of malignancy: a randomized multicentric comparison to pamidronate. Suppl Care Cancer 11: 539-547, 2003. 33 Zojer N et al: Bisphosphonate treatment does not affect serum levels of osteoprotegerin and RANKL in hypercalcemic cancer patients. Anticancer Res 25: 3607-3612, 2005. 34 Bockman R: The effects of gallium nitrate on bone resorption. Semin Oncol 30: 5-12, 2003. 35 Cvitkovic F et al: Randomized, double-blind, phase II trial of gallium nitrate compared with pamidronate for acute control of cancer-related hypercalcemia. Cancer 12: 47-53, 2006. 1554

Lumachi et al: Cancer-induced Hypercalcemia (Review) 36 Leyland-Jones B: Treating cancer-correlated hypercalcemia with gallium nitrate. J Support Oncol 2: 509-516, 2004. 37 Diskin CJ et al: Malignancy-related hypercalcemia developing on a bisphosphonate but responding to calcitonin. Clin Lung Cancer 8: 434-435, 2007. 38 Tanaka S et al: Role of RANKL in physiological and pathological bone resorption and therapeutics targeting the RANKL-RANK signaling system. Immun Rev 208: 30-49, 2005. 39 Morony S et al: The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia in malignancy. Endocrinology 146: 3235-3243, 2005. 40 Stewart AF: Clinical practice. Hypercalcemia associated with cancer. N Engl J Med 352: 373-379, 2005. 41 Bekker PJ et al: A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J Bone Min Res 19: 1059-1066, 2004. 42 Morony S et al: The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia in malignancy. Endocrinology 146: 3235-3243, 2005. 43 McClung MR et al: Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 354: 821-831, 2006. 44 Sato K et al: Treatment of malignancy-associated hypercalcemia and cachexia with humanized anti-parathyroid hormone-related protein antibody. Semin Oncol 30: 167-173, 2003. 45 Onuma E et al: Increased renal calcium reabsorption by parathyroid hormone-related protein is a causative factor in the development of humoral hypercalcemia of malignancy refractory to osteoclastic bone resorption inhibitors. Clin Cancer Res 11: 4198-4203, 2005. Received November 24, 2008 Revised January 23, 2009 Accepted February 2, 2009 1555