Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko

Similar documents
Oxidative Phosphorylation

Electron transport chain, oxidative phosphorylation, mitochondrial transport systems

Electron Transport and Oxidative. Phosphorylation

Citric acid cycle and respiratory chain. Pavla Balínová

Chapter 9. Cellular Respiration and Fermentation

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chemical Energy. Valencia College

Nafith Abu Tarboush DDS, MSc, PhD

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Electron Transport Chain and Oxidative Phosphorylation 20-1

Photosynthesis in chloroplasts CO2 + H2O. Cellular respiration in mitochondria ATP. powers most cellular work. Heat energy

4. Which step shows a split of one molecule into two smaller molecules? a. 2. d. 5

Chapter 14 - Electron Transport and Oxidative Phosphorylation

Electron Transport and oxidative phosphorylation (ATP Synthesis) Dr. Howaida Nounou Biochemistry department Sciences college

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

3.2 Aerobic Respiration

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Electron transport chain chapter 6 (page 73) BCH 340 lecture 6

Biology 638 Biochemistry II Exam-2

Oxidative phosphorylation

III. 6. Test. Respiració cel lular

FREE ENERGY Reactions involving free energy: 1. Exergonic 2. Endergonic

MULTIPLE CHOICE QUESTIONS

BIOLOGY - CLUTCH CH.9 - RESPIRATION.

CELLULAR RESPIRATION SUMMARY EQUATION. C 6 H 12 O 6 + O 2 6CO2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

9/10/2012. The electron transfer system in the inner membrane of mitochondria in plants

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Chapter 9. Cellular Respiration: Harvesting Chemical Energy

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Name: Chem 351 Exam 3

) one consumes in breathing is converted to:, which of the following would be found in the oxidized state?

LECT 6. RESPIRATION COMPETENCIES. Students, after mastering materials of the present lecture, should be able:

7 Pathways That Harvest Chemical Energy

Chapter 9 Cellular Respiration Overview: Life Is Work Living cells require energy from outside sources

Vocabulary. Chapter 20: Electron Transport and Oxidative Phosphorylation

Respiration. Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Cellular Respiration Stage 2 & 3. Glycolysis is only the start. Cellular respiration. Oxidation of Pyruvate Krebs Cycle.

Cellular Respiration and Fermentation

Nafith Abu Tarboush DDS, MSc, PhD

CELL BIOLOGY - CLUTCH CH AEROBIC RESPIRATION.

Class XI Chapter 14 Respiration in Plants Biology. 1. It is a biochemical process. 1. It is a physiochemical process.

Respiration. Respiration. How Cells Harvest Energy. Chapter 7

Cellular Respiration: Harvesting Chemical Energy

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Cellular Respiration and Fermentation


How Cells Harvest Energy. Chapter 7. Respiration

Krebs cycle Energy Petr Tůma Eva Samcová

Unit 2: Metabolic Processes

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

Name Class Date. 1. Cellular respiration is the process by which the of "food"

Metabolism. Metabolism. Energy. Metabolism. Energy. Energy 5/22/2016

Biological oxidation I Respiratory chain

BIOENERGETICS. 1. Detection of succinate dehydrogenase activity in liver homogenate using artificial electron acceptors.

Electron Transport Chain and Oxidative phosphorylation

2/4/17. Cellular Metabolism. Metabolism. Cellular Metabolism. Consists of all of the chemical reactions that take place in a cell.

MEMBRANE-BOUND ELECTRON TRANSFER AND ATP SYNTHESIS (taken from Chapter 18 of Stryer)

Notes CELLULAR RESPIRATION SUMMARY EQUATION C 6 H 12 O 6 + O 2. 6CO 2 + 6H 2 O + energy (ATP) STEPWISE REDOX REACTION

Citric Acid Cycle: Central Role in Catabolism. Entry of Pyruvate into the TCA cycle

7 Cellular Respiration and Fermentation

Oxidative phosphorylation & Photophosphorylation

Tutorial 27: Metabolism, Krebs Cycle and the Electron Transport Chain

CLASS 11 th. Respiration in Plants

19 Oxidative Phosphorylation and Photophosphorylation W. H. Freeman and Company

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1


BY: RASAQ NURUDEEN OLAJIDE

7 Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation

2. What is molecular oxygen directly converted into? a. Carbon Dioxide b. Water c. Glucose d. None of the Above

Objective: You will be able to construct an explanation for how each phase of respiration captures and stores free energy.

7 Cellular Respiration and Fermentation

RESPIRATION Worksheet

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Cellular Respiration: Harvesting Chemical Energy

A) Choose the correct answer: 1) Reduction of a substance can mostly occur in the living cells by:

Cellular Respiration- -conversion of stored energy in glucose to usable energy for the cell -energy in cells is stored in the form of ATP

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Yield of energy from glucose

PHM142 Energy Production + The Mitochondria

NAME KEY ID # EXAM 3a BIOC 460. Wednesday April 10, Please include your name and ID# on each page. Limit your answers to the space provided!

Cellular Respiration: Harvesting Chemical Energy

INTRODUCTORY BIOCHEMISTRY. BI 28 Second Midterm Examination April 3, 2007

Cellular Respiration and Fermentation

Electron Transport System Supplemental Reading. Key Concepts PETER MITCHELL'S CHEMIOSMOTIC THEORY

Synthesis of ATP, the energy currency in metabolism

Part III => METABOLISM and ENERGY. 3.6 Oxidative Phosphorylation 3.6a Electron Transport 3.6b ATP Synthesis

Enzymes and Metabolism

Ch. 9 Cell Respiration. Title: Oct 15 3:24 PM (1 of 53)

Citric acid cycle. Tomáš Kučera.

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

Cellular Respiration

AEROBIC RESPIRATION. Chapter 8

Metabolism is regulated by the rate of ATP production

Biological Science 101 General Biology

Mitochondria and ATP Synthesis

Cellular Respiration

Cellular Metabolism. Biol 105 Lecture 6 Read Chapter 3 (pages 63 69)

Transcription:

Electron transport chain,oxidative phosphorylation & mitochondrial transport systems. M.Kohutiar, B.Sopko

Content 1. Structure of mitochondria Mitochondrial transport systems 2. Electron transport 3. Parts of Electron transport chain 4. Proton gradient and synthesis of ATP 5. Uncoupling

Metabolism ANABOLIC CATABOLIC ΔG > 0 ΔG < 0

Gain of electron transport chain C H O 6O 6CO 6H O 6 12 6 2 2 2 0 G 2823kJ / mol

Gain of electron transport chain 1 NADH H O NAD H O 2 2 2 n(adp P ) i n(atp)

Gain of electron transport chain C H O 6O 6CO 6H O 6 12 6 2 2 2 0 G 2823kJ / mol C H O 6O 6CO 6 12 6 2 2 24H 24e 6O 24H 24e 12H O 2 2

Gain of electron transport chain -0,4 NADH COMPLEX I FADH 2 COMPLEX II CoQ COMPLEX III cytochrome c COMPLEX IV 0,8

Gain of electron transport chain -0,4 NADH COMPLEX I FADH 2 COMPLEX II CoQ COMPLEX III cytochrome c COMPLEX IV 0,8

Gain of electron transport chain -0,4 NADH COMPLEX I FADH 2 COMPLEX II CoQ COMPLEX III cytochrome c COMPLEX IV 0,8 ΔE > 0

Gain of electron transport chain 1 NADH H O NAD H O 2 2 2 n(adp P ) i n(atp) -0,4 NADH COMPLEX I FADH 2 COMPLEX II CoQ COMPLEX III cytochrome c COMPLEX IV 0,8

GLYCOLYSIS glucose glucose-6-phosphate glyceraldehyde-3-phosphate NAD + NADH 1,3-bisphosphoglycerate pyruvate NAD + acetyl-coa NADH

GLYCOLYSIS glucose glucose-6-phosphate glyceraldehyde-3-phosphate NAD + acetyl-coa NADH 1,3-bisphosphoglycerate NADH citrate ocalacetate pyruvate NAD + NAD + isocitrate NAD + acetyl-coa NADH malate fumarate CITRATE CYCLE 2-oxoglutarate NADH FADH 2 sukcinate sukcinyl-coa NAD + FAD NADH

Mitochondrial anatomy

ATP ADP translocase

Cofactors structure

Glycerolphosphate shuttle cytosol mitochondria CH 2 OH HC OH CH 2 O P NAD + glycerol-3-phosphate NADH CH 2 OH C O CH 2 O P dihydroxyacetone phosphate

Glycerolphosphate shuttle cytosol mitochondria CH 2 OH HC OH CH 2 O P glycerol-3-phosphate NAD + NADH CH 2 OH C O CH 2 O P dihydroxyacetone phosphate CH 2 OH HC OH CH 2 O P glycerol-3-phosphate FAD FADH 2 CH 2 OH C O CH 2 O P dihydroxyaceton phosphate

Malate-aspartate shuttle cytosol mitochondria HO NAD + NADH O HC CH 2 COOH COOH MDH C COOH CH 2 COOH malate oxalacetate

Malate-aspartate shuttle cytosol mitochondria HO NAD + NADH O HC CH 2 COOH COOH MDH C COOH CH 2 COOH malate oxalacetate malate oxalacetate HO HC COOH CH 2 COOH NAD + MDH NADH O C COOH CH 2 COOH

Malate-aspartate shuttle cytosol mitochondria HO NAD + NADH O HC CH 2 COOH COOH MDH C COOH CH 2 COOH malate oxalacetate malate oxalacetate HO HC COOH CH 2 COOH NAD + MDH NADH O C COOH CH 2 COOH AST Glu Asp ketoglutarate O C COOH (CH 2 ) 2 COOH

Malate-aspartate shuttle HO NAD + NADH O O HC AST CH 2 COOH COOH MDH C COOH CH 2 COOH Glu Asp C COOH (CH 2 ) 2 COOH cytosol malate oxalacetate a-ketoglutarate mitochondria malate oxalacetate a-ketoglutarate HO HC COOH CH 2 COOH NAD + MDH NADH O AST O C COOH CH 2 COOH Glu Asp C COOH (CH 2 ) 2 COOH

Electron transport NAD H 2e NADH E 0 0,32V 1 0 O2 2H 2e H2O E 2 0,82V

Electron transport NAD H 2e NADH E 0 0,32V 1 0 O2 2H 2e H2O E 0,82V 2 E 0 0,82-(-0,32) 1,14 V ΔG 0 zfδf 0 2 F1,14 220 kj/mol

Electron transport ADP P ATP ΔG 0 30,5 kj/mol

Electron transport ADP P ATP ΔG 0 30,5 kj/mol 330,5 218 100 42%

Electron transport ADP P ATP ΔG 0 30,5 kj/mol 330,5 218 100 42% ΔE 0 0 ΔG zf 30500-2F 0,16 V

Electron transport NAD CoQ ox NADH CoQ red ΔE 0 0,36 V ΔG 0-69,5 kj/mol

Electron transport NADH CoQ ox NAD CoQ red ΔE ΔG 0 0 0,36 V -69,5 kj/mol CoQ red cytc ox CoQ ox cytc red ΔE 0 0,19 V ΔG 0-36,7 kj/mol

Electron transport NADH CoQ ox NAD CoQ red ΔE ΔG 0 0 0,36 V -69,5 kj/mol CoQ red cytc ox CoQ ox cytc red ΔE 0 0,19 V ΔG 0-36,7 kj/mol cytc red 1 2 O 2 cytc ox H 2 O ΔE ΔG 0 0 0,58 V -112 kj/mol

Electron transport FADH 2 CoQ ox FAD CoQ red ΔE 0 0,015 V ΔG 0-2,9 kj/mol

-0,4 NADH COMPLEX I FADH 2 COMPLEX II CoQ COMPLEX III cytochrome c COMPLEX IV 0,8

-0,4 FADH 2 COMPLEX II NADH COMPLEX I CoQ COMPLEX III cytochrome c ADP ATP ADP ATP 0,8 COMPLEX IV ADP ATP

-0,4 NADH COMPLEX I ADP rotenone ATP FADH 2 COMPLEX II CoQ COMPLEX III ADP antimycin A ATP cytochrome c 0,8 COMPLEX IV ADP ATP cyanide

[O 2 ] 1 2 3 4 5 6 čas Time

[O 2 ] NAD + 1 2 3 4 5 6 Time

[O 2 ] NAD + 1 rotenon 2 3 4 5 6 čas

[O 2 ] NAD + 1 rotenone 2 3 FADH 2 4 5 6 time

[O 2 ] NAD + 1 rotenone 2 3 FADH 2 antimycin A 4 5 6 Time

[O 2 ] NAD + 1 rotenone 2 3 FADH 2 antimycin A 4 5 cyanide 6 Time

Components of electron transport chain Complex I: NADH ubiquinonreductase NADH CoQ ox NAD CoQ red ΔE ΔG 0 0 0,36 V -69,5 kj/mol

FeS centres

Components of electron transport chain Complex II: succinate ubiquinon reductase FADH 2 CoQ ox FAD CoQ red ΔE 0 0,015 V ΔG 0-2,9 kj/mol

Components of electron transport chain Complex III:ubiquinol-cytC-reductase CoQ red cytc ox CoQ ox cytc red ΔE 0 0,19 V ΔG 0-36,7 kj/mol

Cytochromes

Components of electron transport chain Complex IV: cytochrome c oxidase 2 3 4 cyt c(fe ) 4H O2 4 cyt c(fe ) 2H2O

Oxidative phosphorylation chemiosmotic theory (Mitchell) OXPHOS requires intact mitochondrial membrane Inner membrane is impermeable for some ions Electron transport is accompanied by transport of H +, and development of measurable gradient Compounds which increase the membrane permeability do not affect the electron chain but inhibit ATP synthesis

high H + H + H + H + H + ++++ ++++ ++++ ++++ ++++ ++++ ---- ---- ---- ---- ---- ---- low H + ADP ATP

Proton gradient ΔG RT[pH in ph ex ] zfδ ΔG 0 21,5 kj/mol

Proton gradient ΔG RT[pH in ph ex ] zfδ ΔG 0 21,5 kj/mol Cytosolic side

Mechanism of redox loop Interimemb. space inner membrane e - matrix QH 2 H + QH.

Mechanism of redox loop Interimemb. space inner membrane e - matrix QH 2 QH 2 H + QH.

Mechanism of redox loop Interimemb. space inner membrane matrix e - H + QH 2 QH 2 H + e - cyt b k QH. QH.

Mechanism of redox loop Mezimemb. prostor inner membrane matrix e - H + QH 2 QH 2 H + e - cyt b k QH. QH. H + e - cyt c Q

Mechanism of redox loop Interimemb. space inner membrane matrix e - H + QH 2 QH 2 H + e - cyt b k QH. QH. H + e - Q Q cyt c

Mechanism of redox loop Interimemb. space inner membrane matrix e - H + QH 2 QH 2 H + e - cyt b k QH. QH. e - cyt b T H + e - Q Q cyt c

Mechanism of redox loop Interimemb. space inner membrane matrix e - H + QH 2 QH 2 H + e - QH. cyt b k e - cyt b T e - QH. H + e - Q Q H + cyt c

Structure of Complex V

3D Structure of Complex V

Schematic Structure of Complex V

Dam

Dam

Protonmotiv force and ATP synthesis

ATP synthesis

Regulation of oxidative phosphorylation 1 3 ADP P NAD cyt c 2 i NADH cyt c 2 1 2 ATP

Regulation of oxidative phosphorylation ATP c cyt NAD 2 1 P ADP c cyt NADH 2 1 2 i 3 ADP ADP.P cyt c cyt c NADH NAD K i 3 2 2 1

Regulation of oxidative phosphorylation ATP c cyt NAD 2 1 P ADP c cyt NADH 2 1 2 i 3 K ATP ADP.P NAD NADH cyt c c cyt i 2 1 3 2 i 3 2 2 1 ADP.P ATP cyt c cyt c NADH NAD K

Uncoupling

Aerobic vs. Anaerobic ATP production Oxidation of 2 e - NADH. 2,5 mol ATP with consumption of 0,5 mol O 2 1 mol of the substrate is oxidised via Complexes I, III, and IV Oxidation of 2 e - FADH 2 1,5 mol ATP 1 mol of the substrate is oxidised via Complexes II, III a IV Total oxidation of 1 mol of glucose yields 30 32 mol ATP,