The influence of unrestricted use of sugammadex on clinical anaesthetic practice in a tertiary teaching hospital

Similar documents
Zekeriyya Alanoglu. Definition of Residual Neuromuscular Block

Neuromuscular Monitoring and Patient Safety:

Introduction of sugammadex as standard reversal agent: Impact on the incidence of residual neuromuscular blockade and postoperative patient outcome

TRANSPARENCY COMMITTEE OPINION. 21 January 2009

The cholinesterase inhibitors, neostigmine and edrophonium,

Sux Rocs and Roc Suks? Succinocholyne Vs Rocuronium in RSI

NEOSTIGMINE VERSUS SUGAMMADEX FOR REVERSAL OF NEUROMUSCULAR BLOCK

Anesthesia and Neuromuscular Blockade: A Guide for Hospital Pharmacists. Upon completion of this activity, participants will be better able to:

Sugammadex: A Comprehensive Review of the Published Human Science, Including Renal Studies

Is Sugammadex the right choice for reversal? YES NO

The Latest Approaches to Reversal of Neuromuscular Blocking Agents

New York Science Journal 2017;10(6) Efficacy And Safety Of Sugammadex In Reversing Nmb (Rocuronium) In Adults

Joseph F. Answine, MD

Monitoring of neuromuscular block in operative room and ICU Josep Rodiera M.D. Ph.D. MsC

INTUBATING CONDITIONS AND INJECTION PAIN

Int J Clin Exp Med 2014;7(2): /ISSN: /IJCEM Jing Jiao, Shaoqiang Huang, Yingjie Chen, Hailian Liu, Yi Xie

Comparative study of intubating conditions after Rocuronium and Suxamethonium (study of 80 cases)

Comparison between the Clinical Assessment, Peripheral Nerve Stimulation (PNS), and Acceleromyography (AMG) to Reverse Neuromuscular Blockade

Running head: SUGAMMADEX AND MYASTHENIA GRAVIS 1

Tracheal intubation in children after induction of anesthesia with propofol and remifentanil without a muscle relaxant

DO WE NEED TO USE SUGAMMADEX AT THE END OF A GENERAL ANESTHESIA TO REVERSE THE ACTION OF NEUROMUSCULAR BLOKING AGENTS?

In vivo animal studies with sugammadex

Sugammadex in patients with chronic renal failure: two case reports

Effect of Vecuronium in different age group

The Neuromuscular Effects and Tracheal Intubation Conditions After Small Doses of Succinylcholine

Type of intervention Anaesthesia. Economic study type Cost-effectiveness analysis.

Factors affecting total operating time for a standard surgical procedure Yu Chuan Chong

Setting The setting was tertiary care. The economic study appears to have been performed in Heidelberg, Germany.

Management of post-strabismus nausea and vomiting in children using ondansetron: a value-based comparison of outcomes 1^

Rocuronium versus Vecuronium for laparoscopic cholecystectomy

2003 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc.

Hypotension after induction, corrected with 20 mg ephedrine x cc LR EBL 250cc Urine output:

Nausea and vomiting remain among the most common

MINERVA ANESTESIOLOGICA EDIZIONI MINERVA MEDICA

JMSCR Vol 07 Issue 04 Page April 2019

Exclusion Criteria 1. Operator or supervisor feels specific intra- procedural laryngoscopy device will be required.

Antiemetic Effect Of Propofol Administered At The End Of Surgery

Childhood Obesity: Anesthetic Implications

DEXAMETHASONE WITH EITHER GRANISETRON OR ONDANSETRON FOR POSTOPERATIVE NAUSEA AND VOMITING IN LAPAROSCOPIC SURGERY

A Protocol for the Analysis of Clinical Incidents September Incident Summary: failure to administer anaesthetic gas at start of operation

COMPARISON OF INDUCTION WITH SEVOFLURANE-FENTANYL AND PROPOFOL-FENTANYL ON POSTOPERATIVE NAUSEA AND VOMITING AFTER LAPAROSCOPIC SURGERY

A comparison of fentanyl, sufentanil, and remifentanil for fast-track cardiac anesthesia Engoren M, Luther G, Fenn-Buderer N

Anesthesiology, V 106, No 2, Feb

Ondansetron, a selective blocking agent of the. Timing of ondansetron administration to prevent postoperative nausea and vomiting

EVALUATION OF INTUBATING CONDITIONS WITH AND WITHOUT PRIMING DOSE OF ROCURONIUM BROMIDE

ISSN X (Print) Research Article. India 3,4 Research Assistant, Institute of Nephro-Urology, Bangalore, India

Research Article. Shital S. Ahire 1 *, Shweta Mhambrey 1, Sambharana Nayak 2. Received: 22 July 2016 Accepted: 08 August 2016

REVIEW ARTICLE Neuromuscular monitoring and postoperative residual curarization: a meta-analysis

Anesthesia: Essays and Researches

Abstract. Introduction

Problem Based Learning. Problem. Based Learning

Post-operative nausea and vomiting after gynecologic laparoscopic surgery: comparison between propofol and sevoflurane

Dexamethasone Compared with Metoclopramide in Prevention of Postoperative Nausea and Vomiting in Orthognathic Surgery

Muscular relaxation & neuromuscular monitoring in the Perioperative environment

Reversal of Rocuronium-induced Neuromuscular Block by the Selective Relaxant Binding Agent Sugammadex

Guide to Neuromuscular Blocking Agents

Setting The setting was a hospital (tertiary care). The economic study was carried out in Ankara, Turkey.

Evaluation of Postoperative Complications Occurring in Patients after Desflurane or Sevoflurane in Outpatient Anaesthesia: A Comparative Study

Comparison of Bier's Block and Systemic Analgesia for Upper Extremity Procedures: A Randomized Clinical Trial

Journal of Anesthesia & Clinical

Comparison of the Berman Intubating Airway and the Williams Airway Intubator for fibreoptic orotracheal intubation in anaesthetised patients.

An Overview of Sugammadex

New Drug Developments for Neuromuscular Blockade and Reversal: Gantacurium, CW002, CW011, and Calabadion

Original Date of issue: 01/11/2005 Last Reviewed: 01/05/2011 Version:4 Page 1 of 7

Introduction to Anesthesia

New Drugs in Pediatric Anesthesia

Satisfactory Analgesia Minimal Emesis in Day Surgeries. (SAME-Day study) A Randomized Control Trial Comparing Morphine and Hydromorphone

Safety and tolerability of single intravenous doses of sugammadex administered simultaneously with rocuronium or vecuronium in healthy volunteers

A comparison of endotracheal intubation and use of the laryngeal mask airway for ambulatory oral surgery patients Todd D W

RESPIRATION AND THE AIRWAY Comparison of two induction regimens using or not using muscle relaxant: impact on postoperative upper airway discomfort

MUSCLE relaxants are used to provide better operating conditions for

The RECITE Study: A Canadian Prospective, Multicenter Study of the Incidence and Severity of Residual Neuromuscular Blockade

Current evidence in acute pain management. Jeremy Cashman

VECURONIUM BROMIDE IN ANAESTHESIA FOR LAPAROSCOPIC STERILIZATION

1. NAME OF THE MEDICINAL PRODUCT

The Cost of Neuromuscular Blockers in Operations of Variable Length in Turkey

REGIONAL/LOCAL ANESTHESIA and OBESITY

ACCUMULATING evidence indicates that residual

Effect of Sugammadex on Postoperative Bleeding and Coagulation Parameters After Septoplasty: A Randomized Prospective Study

4 February 2011 SUGAMMADEX. S Maharaj. Department of Anaesthetics

R egurgitation, vomiting and aspiration may occur quite

SECTION 1: INCLUSION, EXCLUSION & RANDOMISATION INFORMATION

HOW TO CITE THIS ARTICLE:

1. Influence of isoflurane exposure in pregnant rats on the learning and memory of offspring

Onset of action and intubating conditions after administration of rocuronium or mivacurium in children

Rocuronium allergy. David Spoerl HUG (University Hospital Geneva)

Deep neuromuscular block improves the surgical conditions for laryngeal microsurgery

Facilitating EndotracheaL Intubation by Laryngoscopy technique and Apneic Oxygenation Within the Intensive Care Unit (FELLOW)

Diagnostics consultation document

Anaesthetic Plan And The Practical Conduct Of Anaesthesia. Dr.S.Vashisht Hillingdon Hospital

Alizaprideand ondansetronin the prevention of postoperative nausea and vomiting: a prospective, randomized, double-blind, placebocontrolled

A FISH OUT OF WATER - Post-operative residual neuromuscular blockade

Comparative study of Succinylcholine, Rocuronium and Vecuronium for intubation and hemodynamic changes during general anaesthesia

Awake regional versus general anesthesia in preterms and ex-preterm infants for herniotomy

Reversal of neuromuscular block

The effect of desflurane on rocuronium onset, clinical duration and maintenance requirements

Neuromuscular Junction

Ketofol: risky or revolutionary: CPD article IV

Transcription:

Anaesth Intensive Care 2012; 40: 333-339 The influence of unrestricted use of sugammadex on clinical anaesthetic practice in a tertiary teaching hospital R. W. WATTS*, J. A. LONDON, R. M. A. W. van WIJK, Y.-L. LUI Department of Anaesthesia, Queen Elizabeth Hospital, Adelaide, South Australia, Australia SUMMARY This retrospective casenote audit involving 374 patients requiring intubation for an anaesthetic found that when the availability of sugammadex became unrestricted, its use increased from 7.1 to 65.3% (P <0.0001) of all muscle relaxant reversals, while neostigmine use decreased from 59.6 to 12.5%. Rocuronium use decreased slightly (90.8 to 79.2%, P=0.006) but vecuronium use increased (2.1 to 8.3%, P=0.02). Cisatracurium and suxamethonium use were unchanged. Total rocuronium dose (55.9±24.1 vs 60.4±22.3 mg) and the number of doses (1.9±1.48 to 1.96±1.27) were unchanged, but the time between the last dose and reversal decreased (91.7±68.1 to 62±52.4 minutes, P=0.0002). There appeared to be no change in postoperative nausea and vomiting, or post-anaesthesia care unit time or oxygen saturation levels. Anaesthetic theatre time fell from 143.5±85.8 to 120±71.2 minutes (P=0.01) and remained significant when adjusted for confounding variables (ratio of means 1.17, 95% confidence interval 1.03 to 1.34, P=0.02), although inferences in relation to causality are limited by the retrospective and observational design of the study. Hospital stay also appeared to fall (4.2±3.5 to 3.4±3.0 days, P=0.035), but was not statistically significant when adjusted for confounding variables (ratio of means 1.04, 95% confidence interval 0.89 to 1.2, P=0.59). These observations suggest that the unrestricted availability of sugammadex will change how steroid-based neuromuscular blocking drugs are used and reversed, but further research is needed to determine if patient outcomes will improve. Key Words: sugammadex, unrestricted use, rocuronium use, theatre time, hospital stay Despite the availability of intermediate acting neuromuscular blocking (NMB) agents such as rocuronium and vecuronium, residual paralysis with subsequent physiological sequelae remains 1,2. As the development of a safe ultra-short acting NMB agents and cleaner more effective anticholinesterase NMB antagonists remains elusive, neostigmine is the only affordable reversal agent for routine use in Australia 3. In this era of designer drugs Anton Bom made the serendipitous discovery that despite excellent solubility in cyclodextrins, the potency and * BSc (Hons), BM, BS, MD, FRACGP, Adjunct Associate Professor. BSc (Hons), BMedSci, BM, BS, Anaesthetic Registrar. MD, PhD, FANZCA, FFPMANZCZ, Director of Anaesthesia. MAppStat, Statistician, Data Management and Analysis Centre, Discipline of Public Health, University of Adelaide. Address for correspondence: Dr R. W. Watts, Senior Consultant Anaesthetist (GP), Department of Anaesthesia, Queen Elizabeth Hospital, 28 Woodville Road, Woodville South, SA 5011. Email: richard.watts@ health.sa.gov.au Accepted for publication on December 28, 2011. reduced 4. Studies using nuclear magnetic resonance and cavity within the cyclodextrin molecule, which -cyclodextrin, agent capable of forming tight complexes with steroidal neuromuscular blocking agents such as rocuronium and vecuronium to rapidly reverse any depth of neuromuscular blockade 5. In their article entitled Clinical implications of sugammadex, Caldwell and Miller 6 pose the clinical practice? In particular, will anaesthetists switch to rocuronium and vecuronium; is suxamethonium still necessary; and will it improve outcomes for patients? Sugammadex also avoids the need for acetyl cholinesterase inhibitors (e.g. neostigmine) and antimuscarinic drugs such as atropine or glycopyrrolate, with their associated potential side-effects, and therefore may improve patient recovery.

334 R. W. Watts, J. a. London et al serious safety concerns arise, sugammadex has the potential to change the use and reversal of muscle relaxants in anaesthesia. However, currently in Australia and many other countries, the high cost of sugammadex restricts its use to emergency situations such as failed intubation or use in special patient groups with comorbidities such as obesity. This study reports our experience during an industry sponsored trial to determine what changes would be observed if the cost of sugammadex was reduced such that it was no longer a restriction to its use. METHODS The opportunity for this study arose in the context of an industry (Merck, Sharp, Dohme) initiated trial to assess whether supplying sugammadex at a lower price would increase its use and make it economically feasible for the supplier. This study was a department retrospective casenote audit investigating how this new unrestricted availability of sugammadex impacted on muscle relaxant use and reversal, operating theatre and postanaesthesia care unit (PACU) time, length of stay and selected patient outcomes such a postoperative nausea and vomiting (PONV) and oxygen desaturation during the PACU stay. It was approved by the Human Research Ethics Committee application number 2011083 (Adelaide Health Service). Prior to this intervention, departmental guidelines restricted the use of sugammadex because of its cost. Approved indications were limited to can t intubate, can t oxygenate scenarios, morbid obesity, unexpected early end to surgery and severe respiratory disease. During the trial period, all restrictions were lifted and all our anaesthetists were made aware that there were no cost implications with use of sugammadex during this time. removed (intervention) on 14 December 2010 and the audit was performed six weeks before and after this date, with a one-week adjustment period after the changeover. The Queen Elizabeth Hospital Department of Anaesthesia consists of 31 full-time equivalent registrars working in 12 theatres, where 600 to 700 operations, elective and emergency, are performed each month. Sugammadex (100 mg.ml -1, 2 ml) was placed in the top drawer of all anaesthetic drug trolleys next to neostigmine, while sugammadex (500 mg.ml -1 ) was available on a central emergency airway trolley. Patients for the study were initially selected using our Operating Room Information System software during the two audit periods. The patient list was then examined and only those patients who were likely to require endotracheal intubation were included in the study. Patient casenotes were accessed from medical records and the anaesthetic chart was analysed. Patient demographics, operation type anaesthetic duration (induction to transfer PACU), NMB technique, reversal and PACU information were collected on as a documented S a O 2 <93%, inadequate reversal if a repeat dose of NMB antagonism was required, and PONV if antiemetics were administered in the PACU. The patients who did not require endotracheal intubation (e.g. laryngeal mask airway use or regional anaesthesia) or were transferred to the intensive care unit still intubated were excluded from the study. Statistical analysis Categorical data (patient and surgery characteristics, outcomes) were compared before and after unrestricted use of sugammadex using chi-square or Fisher exact tests. Continuous data (age and weight) were compared between the two time periods using two sample t-tests for normally distributed variables. To control for potential confounders in the comparison of theatre duration and hospital stay between time periods, multivariate with adjustment for age, gender, weight, American Society of Anesthesiologists physical status and type of surgery. Theatre duration was also adjusted for in the analysis of hospital stay. All confounders adjustment and were considered to be biologically plausible predictors of theatre duration and hospital stay. sided P <0.05 level. No adjustments were made for multiple comparisons. All analyses were carried out using SAS 9.2 (SAS Institute Inc., Cary, NC, USA). RESULTS During the restricted sugammadex period 186 notes were unavailable, and a further 29 were excluded because NMB was not used or the patient was not extubated on the day of surgery.

InfLuence of sugammadex on anaesthetic practice 335 During the unrestricted sugammadex period, unavailable and 30 were excluded. Table 1 shows that demographic data were and American Society of Anesthesiologists physical status II to III patients, and similar types of operations. Table 2 shows that sugammadex use increased from 7.1% to 65.3% (P <0.0001) while neostigmine use decreased from 59.6% to 12.5% (P <0.0001). patients not reversed. The median sugammadex dose was 200 mg with only two cases of reduced dose in elderly patients, and only three cases where neuromuscular monitoring was documented prior to dosing. There were no documented adverse events attributed to sugammadex during the unrestricted period. While the number of rapid sequence inductions was higher 11.1 vs 4.4% (P=0.03) in the unrestricted sugammadex period, the use of suxamethionium was unchanged (P sequence induction using rocuronium used in the remainder. From a high baseline of 90.8%, rocuronium use decreased to 79.2% (P=0.006), while vecuronium use increased from 2.1 to 8.3% (P=0.02). Cisatracurium use from a low baseline was unchanged (P=0.58). Table 3 presents rocuronium use before and during unrestricted availability of sugammadex. While the mean rocuronium dose did not change (55.9 to 60.4 mg, P=0.13) and the number of doses also did not increase (1.90 vs 1.96), the time interval between last dose of rocuronium and the administration of reversal decreased from 91.7 to 62.0 minutes (P=0.0002). Table 4 outlines selected patient outcomes and shows that when use of sugammadex was unrestricted, we observed fewer cases of inadequate mean anaesthetic theatre time was reduced from 143.5 to 120.0 minutes (P=0.01), but the intervention had no effect on time spent in the PACU, the incidence of PONV or the incidence of oxygen table 1 Demographic data of patients undergoing an operation requiring intubation with neuromuscular block for two six-week periods during restricted and unrestricted availability of sugammadex for neuromuscular block reversal Variable Restricted, n (%) Unrestricted, n (%) P value Age** 141 144 0.50 <31 20 (14.2) 29 (20.1) 31-50 42 (29.8) 45 (31.3) 51-70 57 (40.4) 52 (36.1) 22 (15.6) 18 (12.5) Weight* (mean±sd) 128 (79.0±19.2) 127 (81.2±19.8) 0.37 Gender** 141 143 0.10 Female 74 (52.5) 89 (62.2) Male 67 (47.5) 54 (37.8) ASA physical status*** 139 143 0.91 I 35 (25.2) 37 (25.9) II 72 (51.8) 69 (48.3) III 30 (21.6) 34 (23.8) IV 2 (1.4) 3 (2.1) Surgery type** 141 144 0.07 ENT/thyroid 31 (22) 35 (24.3) Cardiac (AF ablation) 9 (6.4) 10 (6.9) Laparoscopic 39 (27.7) 55 (38.2) Laparotomy open 47 (33.3) 39 (27.1) Orthopaedic 15 (10.6) 5 (3.5) Values are mean (SD) or proportion (%). P values relate to * a two sample t-test, **chi-square test, and *** Fisher s exact test. ASA=American Society of Anesthesiologists, ENT=ear nose and throat AF=atrial fibrillation. Missing data relate to incomplete anaesthetic chart documentation.

336 R. W. Watts, J. a. London et al desaturation in the PACU. When adjusted for confounding variables, the difference in mean anaesthetic theatre time before and after unrestricted use of sugammadex remained statistically interval 1.03 to 1.34, P=0.02), although it is unclear whether our retrospective observational of all potential confounders, and the design of the study was such that we can make no inferences about causality. On univariate analysis, hospital duration was reduced from 4.2±3.5 to 3.4±3.0 days (P=0.04). After adjustment for potential confounders however, the difference in hospital stay before and after to 1.20, P=0.59). table 2 Use of neuromuscular blocking drugs during restricted and unrestricted availability of sugammadex (intervention) Variable Restricted, n (%) Unrestricted, n (%) P value Sugammadex use 141 144 <0.0001 No 131 (92.9) 50 (34.7) Yes 10 (7.1) 94 (65.3) Neostigmine use 141 144 <0.0001 No 57 (40.4) 126 (87.5) Yes 84 (59.6) 18 (12.5) No reversal 139 144 0.12 No 100 (71.9) 115 (79.9) Yes 39 (28.1) 29 (20.1) RSI 138 144 0.03 No 132 (95.7) 128 (88.9) Yes 6 (4.4) 16 (11.1) Suxamethonium use 141 144 0.58 No 136 (96.4) 137 (95.1) Yes 5 (3.6) 7 (4.9) Rocuronium use 141 144 0.006 No 13 (9.2) 30 (20.8) Yes 128 (90.8) 114 (79.2) Cisatracurium use 141 144 0.58 No 129 (91.5) 129 (89.6) Yes 12 (8.5) 15 (10.4) Vecuronium use 141 144 0.02 No 138 (97.9) 132 (91.7) Yes 3 (2.1) 12 (8.3) Values are proportion (%) and P values relate to a chi-square test. RSI=rapid sequence induction. Missing data are due to incomplete collection. Variable table 3 Rocuronium use during restricted and unrestricted availability of sugammadex Restricted Unrestricted n Mean SD n Mean SD P value Rocuronium dose, mg 128 55.9 24.1 114 60.4 22.3 0.13 Rocuronium, no. of doses 127 1.90 1.48 114 1.96 1.27 0.71 Rocuronium, last dose to reversal, min 122 91.7 68.1 112 62.0 52.4 0.0002 Values are mean and standard deviation and P values relate to a two sample t-test.

InfLuence of sugammadex on anaesthetic practice 337 DISCUSSION This opportunistic retrospective casenote audit provides an interesting window to the future on how unrestricted access to sugammadex might affect anaesthetic practice. Given that sugammadex, although a new drug, is a water-soluble sugar molecule with no intrinsic biological activity and well tolerated in humans so far, it is not surprising that when restrictions due to cost are removed, from 7 to 65% for reversal of NMB. While such high usage may represent the novelty effect of a new drug or possibly a Hawthorne effect, sugammadex, it is a likely prediction of its future use if the cost implications are removed. Nevertheless, it is not clear what the costs of sugammadex ments with individual departments and which may be linked to minimum usage criteria. The drop in neostigmine use as expected was a mirror image, falling from 60 to 13%. In this study, a median dose of sugammadex of 200 mg and limited documented neuromuscular monitoring suggest a recipe-based approach to NMB reversal. While some commentators suggest sugammadex s increased effectiveness may lessen the need for neuromuscular monitoring, others suggest good clinical practice should be to monitor routinely in order to use the minimum effective dose in case re-intubation is necessary 6. Similar predictions for the demise of suxamethonium 7 with the advent of sugammadex may be premature, because we found that there was no difference in suxamethonium use. However, there using rocuronium (1.2 mg.kg -1 ) with unrestricted sugammadex. Recent successful use of rocuronium table 4a Patient outcomes during restricted and unrestricted availability of sugammadex Variable Restricted, n (%) Unrestricted, n (%) P value PONV* 138 141 0.93 No 114 (82.6) 117 (83.0) Yes 24 (17.4) 24 (17.0) Inadequate reversal** 138 141 0.06 No 134 (97.1) 141 (100.0) Yes 4 (2.9) 0 PACU oxygen desaturation* 138 141 0.95 No 111 (80.4) 113 (80.1) Yes 27 (19.6) 28 (19.9) Values are proportion (%) and P values* relate to PONV and PACU desaturation using a chisquare test while P values** relate to a Fisher s exact test. PONV=postoperative nausea and vomiting, PACU=post-anaesthetic care unit. table 4b Patient outcomes during restricted and unrestricted availability of sugammadex Variable Sugammadex use N Mean SD P value Theatre time, min 0.01 Restricted 140 143.5 85.8 Unrestricted 143 120.0 71.2 Time in PACU, min 0.23 Restricted 134 79.6 31.5 Unrestricted 141 75.2 28.4 Hospital stay, days 0.035 Restricted 139 4.2 3.5 Unrestricted 143 3.4 3.0 Values are mean and standard deviation and P values relate to a two sample t-test. PACU=postanaesthetic care unit.

338 R. W. Watts, J. a. London et al for obstetric rapid sequence induction 8 and a study comparing suxamethonium with profound rocuronium blockage (1.2 mg.kg -1 ) 9 suggest that perhaps with time we will see less suxamethonium used. popular nondepolarising muscle relaxant in our hospital (91% usage before the intervention) and it is therefore not surprising that usage did not increase with unrestricted availability of sugammadex. It was, however, unexpected to a compensatory increase in vecuronium use may explain the decrease. Cisatracurium use did not decrease as predicted by some commentators, but prior to routine use of sugammadex it was low at 9%. There was no increase in the mean dose of rocuronium and no change in the number of doses, but we observed that the time between the last dose and reversal was shortened by about 30 minutes. While we can only speculate about the reason for to maintain more profound NMB closer to the end of the surgical procedure in some cases given the ease of reversibility with sugammadex. The unrestricted use of sugammadex may pro- were no cases of documented inadequate reversal in the post sugammadex period, but four cases in the restricted period. On the other hand, the diagnosis of inadequate reversal in this audit was clinical with no routine neuromuscular function monitoring in either group. Anaesthetic theatre time was shorter by 23 minutes on average in the unrestricted sugammadex group. This could be due to a more rapid reversal of NMB at the end of the operation and quicker transfer to PACU, but any inferences about causality must be very guarded given the observational design of the study, the incomplete data, and the exploratory design of and would be an important area for further investigation. Univariate analysis on the effect of sugammadex on hospital stay showed a reduction of almost one day. However, when adjusted for confounding The effect of neostigmine on PONV is controversial, but the most recent view is that at doses of 50 µg.kg -1 it increases nausea, but not vomiting 10. However, in this study PONV rates were similar in both neostigmine (~30 µg.kg -1 ) and sugammadex groups. Similarly there was no difference in time in the PACU, or the incidence of oxygen desaturation in PACU. As a small non-randomised retrospective audit, the study has several limitations. Given the reliance on accurate casenote documentation and the ability to retrieve this information, the quality of the casenotes were not available for both groups. The study was not formally powered to detect a time periods, thus important differences may have been missed. The study involved a single anaesthetic unit where rocuronium usage was high, differences observed in anaesthetic theatre time may also be due to other unmeasured confounders such as the diverse range of procedures and differing seniority of the surgeons. A further limitation was the testing of multiple outcomes, which increases the probability of making a type-i statistical error. The probability of type II errors was completely unknown. Despite these limitations, the analysis shows that there are some interesting signals emerging on how sugam-madex may impact on anaesthetic practice. In summary, we observed that when the restriction of sugammadex use due to high costs was removed, overall amino steroid NMB use did not change, but sugammadex use increased considerably. Rocuronium dosing occurred closer to the completion of surgery and there was a reduction in theatre anaesthetic time, although we can make no inferences in relation to causality. There was no change in PACU times, the incidence of oxygen desaturation in PACU, or overall length of stay, fully assess these outcomes. Given the limitations of this retrospective audit, a larger prospective randomised controlled trial is warranted. ACKNOWLEDGEMENTS This study was funded and supported through Department of Anaesthesia, Queen Elizabeth Hospital resources. CONFLICT OF INTEREST Dr Roelof van Wijk received remuneration as member of the MSD Bridion Advisory Board. REFERENCES 1. Murphy GS, Brull SJ. Residual neuromuscular block: lessons unlearned. Part I: definitions, incidence, and adverse physiologic effects of residual neuromuscular block. Anesth Analg 2010; 111:120-128.

InfLuence of sugammadex on anaesthetic practice 339 2. Berg H, Roed J, Viby-Mogensen J, Mortensen CR, Engbaek J, Skovgaard LT et al. Residual neuromuscular block is a risk factor for postoperative pulmonary complications. A prospective, randomised, and blinded study of postoperative pulmonary complications after atracurium, vecuronium and pancuronium. Acta Anaesthesiol Scand 1997; 41:1095-1103. 3. Booij LHDJ. Cyclodextrins and the emergence of sugammadex. Anaesthesia 2009; 64 Suppl 1:31-37. 4. Epemolu O, Bom A, Hope F, Mason R. Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology 2003; 99:632-637; discussion 6A. 5. Naguib M, Brull SJ. Sugammadex : a novel selective relaxant binding agent. Expert Review Clinical Pharmacology 2009; 2:37-53. 6. Caldwell JE, Miller RD. Clinical implications of sugammadex. Anaesthesia 2009; 64 (Suppl 1):66-72. 7. Lee C. Goodbye suxamethonium! Anaesthesia 2009; 64 (Suppl 1):73-81. 8. Williamson RM, Mallaiah S, Barclay P. Rocuronium and sugammadex for rapid sequence induction of obstetric general anaesthesia. Acta Anaesthesiol Scand 2011; 55:694-699. 9. Lee C, Jahr JS, Candiotti K, Warriner B, Zornow MH. Reversal of profound rocuronium NMB with sugammadex is faster than recovery from succinylcholine. Anesthesiology 2007; 107: A988. 10. Cheng C-R, Sessler DI, Apfel CC. Does neostigmine administration produce a clinically important increase in postoper-ative nausea and vomiting? Anesth Analg 2005; 101: 1349-1355.