EDXRF APPLICATION NOTE

Similar documents
MULTI-COMPONENT ANALYSIS OF HEAVY METALS

Multi Analyte Custom Grade Solution

BUCHI NIR Applications Feed Industry

USE OF DDGS AS A FEED INGREDIENT ETHANOL AND DDGS OVERVIEW AN EVOLVING ETHANOL INDUSTRY

Bottom Ash Data Week 38

Bottom Ash Data Week 49

XRF analysis of Carica papaya leaves of semi arid region of Kachchh

USER SPECIFICATIONS FOR QUINTOLUBRIC 888 Series DESCRIPTION OF THE MOST IMPORTANT PROPERTIES AND THE POSSIBLE VARIATIONS AND TOLERANCES

X-ray Fluorescence Determination of Element Contents of Different Types of Raw Milk in Aljazeera Farms (Sudan)

Bottom Ash Data Week 30

Matrix Reference Materials - SCP SCIENCE

Elemental Analysis of Myanmar Natural Thanakha Samples by Using EDXRF

Lesson 3 Understanding Nutrients and Their Importance

Bottom Ash Data Week 8

USP <232> and <233> Understanding Your Path to Compliance with the New Elemental Impurity Chapters. Steve Wall Agilent Technologies

Elemental composition of vegetables in the Dar es Salaam market using wavelength dispersive x-ray fluorescence analysis

Bottom Ash Data Week 37

Bottom Ash Data Week 9

Bottom Ash Data Week 17

STATISTICAL EVALUATION OF THE DETERMINATION OF NA, K, CA, FE, P IN FEED AND PREMIXES BY ENERGY-DISPERSIVE X-RAY FLORESCENCE SPECTROMETRY

COMPOST ANALYSIS REPORT

SCOPE OF ACCREDITATION TO ISO/IEC 17043:2010

HarvestLab John Deere Constituent Sensing

Accredited Proficiency Testing Provider

Analysis of Milk for Major and Trace Elements by ICP-MS

of human hair and nails. Part I. Analytical methodology, Sci. Tot. Environ. 2000, 250/1-3,

Bottom Ash Data Week 12

BUCHI NIR Applications Milling & Bakery Industry

Example: Ammonium Sulphate (also called Sulphate of Ammonia) is composed of the following:

Bottom Ash Data Week 40

Bottom Ash Data Week 1

COMPOST ANALYSIS REPORT

Routine analysis for fish farming and processing

COMPOST ANALYSIS REPORT

Procedures in Feed Formulation

Innovative method for Vitamin Analysis at point of production

COMPOST ANALYSIS REPORT

Greg Patterson C.C.A. President A&L Canada Laboratories

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

the minispec mq one TD-NMR Analyzers

Test Report No.T JP Date: FEB 22, 2017 Page 1 of 6

Routine Analysis of Fortified Foods using the Agilent 7800 ICP-MS

Determination of metals in industrial wastewaters by microwave plasmaatomic emission spectrometry

TANZANIA BUREAU OF STANDARDS

Matrix Interferences in ICP-MS: Causes, Effects, and Strategies to Reduce or Eliminate Them

COMPOST ANALYSIS REPORT

Use of Near Infrared Analysis for the Evaluation of Rice Quality. Glenn Merberg, Ph.D. B. Raymond Oberg

Controlling Quality of Farm-Mixed Swine Feed

Vision-based spectroscopy - current technologies and future systems from x-ray to NIR

COMPOST ANALYSIS REPORT

Figure 1. Location of 43 benchmark sites across Alberta.

Nutritional Bundle vs. and Component Pricing

CERTIFICATE OF ANALYSIS. tel: fax:

Closer to Perfection Feed Management, November 1992

Analysis of Micronutrients in Milk by Flame Atomic Absorption Using FAST Flame Sample Automation for Increased Sample Throughput

International Journal of Science, Environment and Technology, Vol. 5, No 4, 2016,

Application Note novaa 800 D. Determination of Macro and Trace Minerals as well as Toxic Trace Metals in Powdered Milk. Challenge.

Trace Elements in Manure

Actual Excipient Test Data on Metal Impurities Submitted to IPEC-Americas from Industry

Analysis of Coating Weight and Iron Content for Iron-Zinc Alloy Coatings by Using X-ray Fluorescence with Multiple Regression

Analysis of trace elements in nutraceuticals in compliance with USP chapter <2232> Elemental Contaminants in Dietary Supplements

COMPOST ANALYSIS REPORT

COMPOST ANALYSIS REPORT

SpiderX. Portable Residual Stress X-Ray Diffractometer.

NEAR INFRARED TRANSMISSION SPECTROSCOPY AS APPLIED TO FATS AND OIL

Rapid Quality Measurements of Flour and Wheat in the Milling industry. Phillip Clancy, Next Instruments, Australia.

COMPOST TECHNICAL DATA SHEET

TOXIC AND ESSENTIAL ELEMENTS

GB Translated English of Chinese Standard: GB NATIONAL STANDARD OF THE

A & L Canada Laboratories Inc Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) Fax: (519)

A & L Canada Laboratories Inc Jetstream Road, London, Ontario, N5V 3P5 Telephone: (519) Fax: (519)

Food protein powders classification and discrimination by FTIR spectroscopy and principal component analysis

Feed ID Options /10/2016. DM% CP% TDN% Fat% Ca% P%

The Impact of the Ethanol Industry on Pork Production

NUTRIENT AND HEAVY METAL CONTENTS OF HOG MANURE - EFFECT ON SOIL QUALITY AND PRODUCTIVITY

Determination of Copper in Green Olives using ICP-OES

Metallomics, Toxicology and Trace Elemental Analysis Use of TXRF for. Bruker AXS

TANZANIA BUREAU OF STANDARDS

Supplying Nutrients to Crops

Acute Hepatopancreatic

FCF Lamb Feedlot Concentrates

Mike Hinds, Royal Canadian Mint

COMPOST TECHNICAL DATA SHEET

TRACE ELEMENTS IN SERUM

SNACKS FOR CHICKENS. SMALL CORN COBS Feed. CHICKEN MUESLI Complementary feed. Keeps your chickens active!

COMPOST TECHNICAL DATA SHEET

THE NATIONAL ACADEMIES

What We ve Learned About Feeding Reduced-Oil DDGS to Pigs

TRACE ELEMENTS IN URINE. Event #1, 2010

COMPARATIVE ANALYSIS FOR MACRO AND TRACE ELEMENTS CONTENT IN GOJI BERRIES BETWEEN VARIETIES FROM CHINA AND R. MACEDONIA

Physiological and Behavioral Parameters Affecting the Hair Element Content of Young Italian Population

For more information, please contact: or +1 (302)

What is ProPound Canola Meal?

arabinoxylans and beta-glucans in cereals and their fractions with NIR techniques Determination of and A. Salgó 1 C.M. Courtin, 2 J.A.

Test Report No.T JP Date: FEB 24, 2017 Page 1 of 6

Transfer of Some Major and Trace Elements From Phosphate Rock to Super-Phosphate Fertilizers

VOL. 5, NO. 6, June 2015 ISSN ARPN Journal of Science and Technology All rights reserved.

A Report on Maintenance of Nutritional Quality of Fish Feed

IMPACT OF PRE-SLAUGHTER WITHDRAWAL OF VITAMIN SUPPLEMENTS ON PIG PERFORMANCE AND MEAT QUALITY. conditions was not addressed in the present study.

Journal of Chemical and Pharmaceutical Research

Transcription:

EDXRF APPLICATION NOTE ANALYSIS OF ANIMAL FEEDS # 1279 SCOPE The analysis of finished animal feeds and premixes is demonstrated using EDXRF with indirect excitation and Fundamental Parameters software, suitable for feeds for cattle, pigs, chickens, ducks, and other fowl and livestock. BACKGROUND The production and use of animal feeds is a global industry estimated in the hundreds of billions of dollars. Monitoring feeds and premixes is critical to ensure proper nutrient balance for the animal lifecycle, but also to ensure toxic metal constituents are below maximum concentration levels allowed by local regulations. While NIRS (near-infrared spectroscopy) is a widely accepted technique for the measurement of protein, amino acids, fat, oil, moisture, and fiber, it does not provide a complete solution. EDXRF (Energy-dispersive X-ray Fluorescence) is a simple, non-contact, non-destructive analysis technique that is ideal for use in the measurement of elemental concentration. EDXRF spectroscopy can be used for qualitative screening or feed characterization by elemental quantification. The method is useful in quantifying the elements that occur in finished feed formulations, as well as raw meals and premixes. Capable of measuring elements sodium through uranium, EDXRF can measure both elemental composition of the formulations and simultaneously screen for the presence of toxic metals such as chromium, lead, arsenic and cadmium. The Rigaku NEX CG analyzer meets this challenge by using secondary targets and polarization to remove background, thus allowing for the measurement of major, minor and trace elements in complex feed and premix formulations. INSTRUMENTATION Model: Rigaku NEX CG X-ray tube: 50 W Pd-anode Excitation: Indirect with polarization Detector: High performance SDD Analysis Time: 100 sec 10 minutes* Environment: Helium Purge Standard: 15-position Sample Tray (32mm) Options: Manual Sample Press Light Element Optimization Target (LEO)* * Depending on application

SAMPLE PREPARATION A sample is ground to a dry, homogeneous powder approximately 200 mesh (~75um particle size). Powder is placed in an XRF sample cup and compacted slightly using a Rigaku Manual Sample Press, to ensure even compaction of samples. Alternately, light element sensitivity can be optimized by using a hydraulic press to make a pressed pellet using 20 tons pressure for 30 seconds. Manual Sample Press For use with loose powder 31mm Pressed Pellet For optimum LE performance Sample preparation is fast and simple, giving the operator an efficient means of ensuring consistency in sample preparation, and important facet for achieving consistency of analytical performance. RIGAKU RPF-SQX FUNDAMENTAL PARAMETERS (FP) A Fundamental Parameters (FP) method was developed from Rigaku s RPF-SQX powder template. The Rigaku FP program automatically deconvolutes spectral peaks and models the sample matrix and X-ray absorption/enhancement effects using fundamental XRF equations. The versatile RPF-SQX software is simple to use and offers many ways to craft a matrix model based on the specific feed or premix type. Information describing the part of the sample that XRF cannot measure (elements H-F) is entered into the template to model the balance of the matrix. In cases where there is only a single, known balance component, the software includes an extensive list of balance components, from a simple oxygen balance to more advanced compounds like cellulose and protein. The user can also easily define a new balance component if the feed balance is not listed in the template. For cases where there are more than one balance component, the Rigaku Scattering FP can be used. Scattering FP is an advanced method that uses the ratio of the Compton and Rayleigh scatter peaks to gain information on the average atomic number of the sample. This provides an estimate of the percentage of the sample that cannot be measured and yields more accurate analytical results for the remaining elements that can be measured, affording a semi-quantitative measurement of elemental concentrations without the need for a large suite of known assayed calibration standards. In addition, a matrix-specific Matching Library can be easily created by the user using one or more assayed samples of the particular feed or premix type to further optimize the FP analytical results. The Matching Library is easy to create and is employed in conjunction with the standard FP library to optimize model of each matrix with multiple balance components so as to improve the calculation of concentration results. The results shown here use various FP models to demonstrate these points. Page 2

NEX CG RESULTS FINISHED FEEDS Scan of chicken feeds using 1000 sec analysis time and LEO target, loose compacted powder Sample ID: Chicken ed 1 Units: Mass% Sample ID: Chicken ed 2 Units: Mass% Component NEX CG Value Stat. Error Est. LLD** Component NEX CG Value Stat. Error Est. LLD** Na 0.432 0.0377 0.0657 Na 0.314 0.0984 0.2850 Mg 0.258 0.0087 0.0035 Mg 23.50 0.0994 0.0026 Al 0.117 0.0018 0.0040 Al 0.252 0.0073 0.0192 Si 0.307 0.0015 0.0029 Si 1.70 0.0073 0.0145 P 0.548 0.0009 0.0012 P 4.48 0.0049 0.0064 S 0.303 0.0006 0.0006 S 1.97 0.0027 0.0019 Cl 0.362 0.0004 0.0004 Cl 0.705 0.0013 0.0012 K 1.15 0.0037 0.0008 K 1.17 0.0064 0.0033 Ca 0.845 0.0027 0.0015 Ca 8.96 0.0150 0.0043 Ti 0.0019 0.0001 0.0002 Ti 0.0229 0.0006 0.0010 Cr 0.0004 0.0001 0.0001 Cr 0.0068 0.0002 0.0004 Mn 0.0059 0.0002 0.0003 Mn 0.351 0.0018 0.0009 0.0545 0.0004 0.0001 0.728 0.0019 0.0011 Ni 0.0003 0.0001 0.0001 Ni 0.0035 0.0002 0.0003 0.0262 0.0002 0.0001 0.134 0.0007 0.0003 Zn 0.192 0.0004 0.0001 Zn 0.393 0.0010 0.0003 Se 0.0001 0.0001 0.0001 Se 0.0032 0.0001 0.0001 Br 0.0006 0.0001 0.0001 Br 0.0016 0.0001 0.0001 Rb 0.0008 0.0001 0.0001 Rb 0.0015 0.0001 0.0001 Sr 0.0013 0.0001 0.0001 Sr 0.0074 0.0001 0.0001 I ND* -- 0.0011 I 0.0079 0.0006 0.0013 * ND means the component was not detected. ** Estimated LLD numbers are based on current concentration levels and matrix makeup. Duck ed Comparison with ICP using 500 sec analysis time and LEO target, pressed pellets In this example, Scattering FP is used in conjunction with a Matching Library created using assayed samples of the particular duck feed formulation. Duck ed Mg P K Ca Mn Zn Na Units mass% mass% mass% mass% mass% ICP 0.16 0.74 0.69 1.37 150 309 16 116 0.16 NEX CG 0.17 0.68 0.66 1.34 166 317 16 128 0.13 Note: If optimum sensitivity for Na and Mg is not required, the optional LEO target need not be used. Page 3

NEX CG RESULTS RAW MEALS and PREMIXES Iron and Copper in ed Raw Meals using 400 sec analysis time, loose compacted powder Using oxygen balance component and Matching Library specific to the raw meal type. Technique Sample A3 Sample A5 Sample AX1 Sample MX2 ICP 41.0 13.5 52.2 13.0 38.5 12.6 21.5 1.7 NEX CG 40.9 16.3 52.2 12.6 38.0 12.9 22.6 1.7 Iron in Straw using 250 sec analysis time, loose compacted powder Using scattering FP, no Matching Library. Technique Sample 700 ICP 31 NEX CG 29 Phosphorus in Premix using 250 sec analysis time, loose compacted powder Using oxygen balance, no Matching Library. Sample 925 Sample 555 Sample 715 Technique mass% P mass% P mass% P ICP 0.523 0.503 0.531 NEX CG 0.596 0.546 0.578 The XRF results for P are very good using no matching library, within 15% relative of the ICP results. However, P compounds can be difficult to properly and fully digest, and analytical techniques that use digestion sample preparation may slightly underestimate the true P value due to incomplete digestion. XRF does not rely on digestion for sample preparation, and in this case may be closer to the true value for P without any corrections. If properly digested and assayed, a simple Matching Library can be easily built to match the XRF to ICP values. The following shows this principle, using a 1-point Matching Library based on sample 925. Phosphorus in Premix using 250 sec analysis time, loose compacted powder Using oxygen balance, with 1-point Matching Library particular to this premix type. Sample 555 Sample 715 Technique mass% P mass% P ICP 0.503 0.531 NEX CG 0.480 0.512 Use of the Matching Library brings the XRF results for P to under 5% relative of the ICP values, excellent performance for fundamental parameters quantification. Page 4

QUALITATIVE ANALYSIS As an example of qualitative analysis, various feed spectra are shown. TYPICAL DETECTION LIMITS Typical detection limits are show here for common elements in finished feeds and premixes, where LLD indicates Lower Limit of Detection. Actual detection limits may vary and depend on sample type and elemental composition of the material, as well as analysis count times used. Element of Interest Typical Concentration (mass%) Typical LLD () Ca 0.0050-36.30 2-30 K 0.0120-2.10 3-35 P 0.0010-4.50 1-20 0.0020-23.20 1-5 0.0001-22.00 1-5 Zn 0.0010-78.00 1 5 Mn 0.0004-61.20 1-6 Na 0.3000-20.90 250-3000 Mg 0.0600-46.90 15-1000 Co 0.0001-0.0010 1-2 Element of Interest Typical Concentration (mass%) Typical LLD () Cl 0.0010-6.90 5-10 Se 0.0001-48.50 0.5-3 I 0.0010-0.0825 5-15 Cr 0.0002-0.0345 1-5 Ni 0.0001-0.0450 1-5 Si 0.0055-28.00 10-500 Mo 0.0000-0.0154 5-25 As 0.0000-0.0061 0.4-2 Sn 0.0047-0.0272 3-15 V 0.0000-0.0705 1-5 Page 5

DISCUSSION The Rigaku NEX CG energy dispersive X-ray fluorescence (EDXRF) spectrometer combines indirect excitation with secondary targets and a polarization target, together with a high performance silicon drift detector (SDD) to give the operator a powerful and versatile analysis tool that is very simple to operate. Indirect excitation removes virtually all the background and thus affords spectra with a very high signal-to-noise ratio. This allows for much lower detection limits and is ideal for trace element measurement Secondary target schematic While none of the samples tested contained toxic metals, indirect excitation lends itself well for trace measurement of such metals as Cr, Hg, Pb, As and Cd. Screening for the presence of toxic metals occurs at the stage of testing premixes and raw materials; toxic metal content is typically well below XRF analytical limits in finished feeds. The following shows typical detection limits for these toxic metals in animal feed products, depending on analysis time. Element of Interest Typical LLD () Cr 1-3 Hg 1-2 Pb 1-2 As 1-2 Cd 2-4 For less demanding applications within the animal feed industry, such as for daily quality screening of major elements in production QC processes, the NEX QC series of direct excitation analyzers also can be employed. These systems offer a smaller footprint and lower cost that is ideal for use at the production line. There are many facets and applications within the feed industry that are served well by EDXRF. In general, FP returns results with an expected accuracy of 15-20% relative, and use of a well-crafted Matching Library improves FP accuracy to the order of 5-10% relative, which is ideal for screening of incoming materials, feed usage and feed manufacturing quality control. CONCLUSION The Rigaku NEX CG using the RPF-SQX Fundamental Parameters method yields excellent performance for the elemental analysis of various animal feed products. The use of RPF-SQX fundamental parameters eliminates the need for calibration standards. If desired, FP quantification can be optimized with Matching Libraries based on one or more assayed samples of the particular material type. These features make the NEX CG an ideal EDXRF tool for the elemental identification and characterization of animal feeds, raw meals and premixes throughout the animal feed industry to ensure proper nutrient balance and to screen for the presence of toxic elements. Page 6