ORIGINAL ARTICLE Gastroenterology & Hepatology INTRODUCTION MATERIALS AND METHODS

Similar documents
THE DIAGNOSTIC ACCURACY OF RAISED SERUM AMYLASE LEVEL AT 4 HOURS POST ERCP IN PREDICTING ACUTE PANCREATITIS

Unresolved Issues about Post-ERCP Pancreatitis: An Overview

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Rapid Urine Trypsinogen-2 Test for the Early Detection of Pancreatitis in Endoscopic Sphincterotomy Patients

History of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis and Acute Pancreatitis as Risk Factors for Post-ERCP Pancreatitis

Wire-guided cannulation over a pancreatic stent versus double guidewire technique in patients with difficult biliary cannulation

Endoscopic papillary large balloon dilation for the removal of bile duct stones

What Are the Predictors of Post-ERCP Pancreatitis, and How Useful Are They?

New approach to decrease post-ercp adverse events in patients with primary sclerosing cholangitis

The Relationship of Anatomic Variation of Pancreatic Ductal System and Pancreaticobiliary Diseases

Impact of Periampullary Diverticulum on ERCP Performance: A Matched Case-Control Study

LIVER, PANCREAS, AND BILIARY TRACT

Clinical Study Covered Metal Stenting for Malignant Lower Biliary Stricture with Pancreatic Duct Obstruction: Is Endoscopic Sphincterotomy Needed?

The Incidence of Complications in Single-stage Endoscopic Stone Removal for Patients with Common Bile Duct Stones: A Propensity Score Analysis

Clinical features of gallstone impaction at the ampulla of Vater and the effectiveness of endoscopic biliary drainage without papillotomy

During endoscopic retrograde cholangiopancreatography CLINICAL BILIARY

Pancreatitis is the most common and potentially serious ENDOSCOPY CORNER

A cute pancreatitis is a common complication of endoscopic

Principles of ERCP: papilla cannulation, indications/contraindications and risks. Dr. med. Henrik Csaba Horváth PhD

담낭절제술후발생한미리찌증후군의내시경적치료 1 예

Prevention and management of complications

The Risk Factors for Acute Pancreatitis after Endoscopic Ultrasound Guided Biopsy

Research Article Risk Factors for Migration, Fracture, and Dislocation of Pancreatic Stents

Is Endoscopic Retrograde Cholangiopancreatography Safe in Patients 90 Years of Age and Older?

Research Article Safety and Yield of Diagnostic ERCP in Liver Transplant Patients with Abnormal Liver Function Tests

Sex-related differences in predicting choledocholithiasis using current American Society of Gastrointestinal Endoscopy risk criteria

Pilot Study of Aprepitant for Prevention of Post-ERCP Pancreatitis in High Risk Patients: A Phase II Randomized, Double-Blind Placebo Controlled Trial

Endoscopic Papillary Balloon Dilation with Large Balloon after Limited Sphincterotomy for Retrieval of Choledocholithiasis

The authors have declared no conflicts of interest.

Influencing factors on postoperative hospital stay after laparoscopic cholecystectomy

Endoscopic treatment is now the first-line management

The Use of Pancreatoscopy in the Diagnosis of Intraductal Papillary Mucinous Tumor Lesions of the Pancreas

Obstructive jaundice due to a blood clot after ERCP: a case report and review of the literature

Recurrent common bile duct stones as a late complication of endoscopic sphincterotomy

Clinical Practice KPBA Guideline for Common Bile Duct Stones: The Endoscopic Management of Difficult and Recurrent Common Bile Duct Stones

Increased risk and severity of ERCP-related complications associated with asymptomatic common bile duct stones

Clinical outcomes and nonendoscopic interventions after minor papilla endotherapy in patients with symptomatic pancreas divisum

Young Hoon Youn Hyun Chul Lim Jae Hoon Jahng Sung Il Jang Jung Hwan You Jung Soo Park Se Joon Lee Dong Ki Lee

Management of Gallstone Pancreatitis: Effects of Deviation from Clinical Guidelines

Cause of Acute Pancreatitis in A Case

Advanced Cannulation Techniques

Title: The endoscopic ultrasound-assisted Rendez-Vous technique for treatment of recurrent pancreatitis due to pancreas divisum and ansa pancreatica

Making ERCP Easy: Tips From A Master

Predictive factors for invasive intraductal papillary mucinous neoplasm of the pancreas

Need for pancreatic stenting after sphincterotomy in patients with difficult cannulation

Congenital dilatation of the common bile duct and pancreaticobiliary maljunction clinical implications

Acute Cholangitis: Does the Timing of ERCP Alter Outcomes?

Safety of endoscopic retrograde cholangiopancreatography in patients 80 years of age and older

Preventing Post-ERCP Pancreatitis: Where Are We?

CRE Balloon Dilator. DASE Abstract Collection

RESEARCH ARTICLE. Clinical Efficacy of Endoscopic Pancreatic Drainage for Pain Relief with Malignant Pancreatic Duct Obstruction

Intraductal Papillary-Mucinous Neoplasm of the Pancreas Penetrating to the Stomach and the Common Bile Duct

Introduction. Patients and methods. Patients. Background and study aims Failure to recognize the

THE AMERICAN JOURNAL OF GASTROENTEROLOGY Vol. 96, No. 10, by Am. Coll. of Gastroenterology ISSN /01/$20.00

ERCP and EUS: What s New and What Should We Do?

Setting The study setting was hospital. The economic analysis was carried out in California, USA.

complication rates and/or incomplete clearance with need of intervention (ie, unfavorable outcomes).

Pancreatoscopy-Directed Electrohydraulic Lithotripsy for Pancreatic Ductal Stones in Painful

Result of screening and surveillance colonoscopy in young Korean adults < 50 years

Late diagnosis of influenza in adult patients during a seasonal outbreak

Naoyuki Toyota, Tadahiro Takada, Hodaka Amano, Masahiro Yoshida, Fumihiko Miura, and Keita Wada

Current Status of Endoscopic Papillectomy for Ampullary Tumors

Myocardial ischemia during endoscopic retrograde cholangiopancreatography: An overlooked issue with significant clinical impact

Cholecystectomy rate following endoscopic biliary interventions

Unusual case of pancreatic ascites and pancreatic pleural effusion following endoscopic retrograde cholangiopancreatography

Accepted Article. If you suffer from type-2 diabetes mellitus, your ERCP is likely to have a better outcome. Jesús García-Cano

PROPHYLACTIC RECTAL NSAIDS IN THE PREVENTION OF POST-ERCP PANCREATITIS ABSTRACT

Endoscopic Retrograde Cholangiopancreatography

Role of hepatobiliary ultrasound in the diagnosis of choledocolitiasis

Diagnosis of tumor extension in biliary carcinoma has. Differential Diagnosis and Treatment of Biliary Strictures

Surgical Management of CBD Injury Jin Seok Heo

Accepted Article. JGES guidelines for endoscopic papillary large balloon dilation. This article is protected by copyright. All rights reserved.

CURRICULUM VITAE

Endoscopic Ultrasonography Clinical Impact. Giancarlo Caletti. Gastroenterologia Università di Bologna. Caletti

Title: Pancreatic stents in ERCP. Where are we? Authors: Francisco Pérez Roldán, Pedro González Carro

ACUTE CHOLANGITIS AS a result of an occluded

A tale of two LAMS: a report of benign tissue ingrowth resulting in recurrent gastric outlet obstruction

Fluoroscopy-Guided Endoscopic Removal of Foreign Bodies

Aseries of credentialing guidelines for gastrointestinal endoscopic

Multicenter retrospective and comparative study of 5-minute versus 15-second endoscopic papillary balloon dilation for removal of bile duct stones

Kouhei Tsuchida *, Mari Iwasaki, Misako Tsubouchi, Tsunehiro Suzuki, Chieko Tsuchida, Naoto Yoshitake, Takako Sasai and Hideyuki Hiraishi

Perforations Occurring during ERCP: A Complication to Take into Account

Clinical study of the use of gastroscopy as oral choledochoscopy

Research Article The Diagnostic Accuracy of Linear Endoscopic Ultrasound for Evaluating Symptoms Suggestive of Common Bile Duct Stones

MR cholangiopancreatography; Predicting imaging findings for differentiation of malignant bile ductal obstruction versus benign lesion

Management of the Mucin Filled Bile Duct. A Complication of Intraductal Papillary Mucinous Tumor of the Pancreas

Presence of choledocholithiasis in patients undergoing cholecystectomy for mild biliary pancreatitis

Needle Knife Sphincterotomy Does Not Increase the Risk of Pancreatitis in Patients With Difficult Biliary Cannulation

Preoperative Biliary Drainage Among Patients With Resectable Hepatobiliary Malignancy: Does Technique Matter?

Post-ERCP Pancreatitis: Is the Endoscopist s Experience the Major Risk Factor?

Subtotal cholecystectomy for complicated acute cholecystitis: a multicenter prospective observational study

Single-stage management with combined tri-endoscopic approach. approach for concomitant cholecystolithiasis and choledocholithiasis

Risk factors for post-ercp pancreatitis: a systematic review of clinical trials with a large sample size in the past 10 years

Revised Japanese guidelines for the management of acute pancreatitis 2015: revised concepts and updated points

The Bile Duct (and Pancreas) and the Physician

Figure 2: Post-cholecystectomy biliary-like pain

Prophylaxis of Post Endoscopic Retrograde Cholangiopancreatography Pancreatitis by an Endoscopic Pancreatic Spontaneous Dislodgement Stent

IgG4-Negative Autoimmune Pancreatitis with Sclerosing Cholangitis and Colitis: Possible Association with Primary Sclerosing Cholangitis?

ERCP complications and challenges in their diagnosis and management.

Title: Pursuing excellence in ERCP. Authors: Jesús García-Cano, Francisco Domper. DOI: /reed /2017 Link: PubMed (Epub ahead of print)

Transcription:

ORIGINAL ARTICLE Gastroenterology & Hepatology https://doi.org/10.3346/jkms.2017.32.11.1814 J Korean Med Sci 2017; 32: 1814-1819 Prediction of Post-Endoscopic Retrograde Cholangiopancreatography Pancreatitis Using 4-Hour Post- Endoscopic Retrograde Cholangiopancreatography Serum Amylase and Lipase Levels Yeon Kyung Lee,* Min Jae Yang,* Soon Sun Kim, Choong-Kyun Noh, Hyo Jung Cho, Sun Gyo Lim, Jae Chul Hwang, Byung Moo Yoo, and Jin Hong Kim Department of Gastroenterology, Ajou University School of Medicine, Suwon, Korea Received: 1 May 2017 Accepted: 4 August 2017 * Yeon Kyung Lee and Min Jae Yang contributed equally to this work. Address for Correspondence: Jin Hong Kim, MD, PhD Department of Gastroenterology, Ajou University School of Medicine, 164 World cup-ro, Youngtong-gu, Suwon 16499, Republic of Korea E-mail: jinhkim@ajou.ac.kr Early post-endoscopic retrograde cholangiopancreatography (ERCP) pancreatitis (PEP) prediction may allow safe same-day outpatients discharge after ERCP and earlier proper management. This study aimed to assess the usefulness of the 4-hour post-ercp serum amylase and lipase levels for PEP early prediction and to investigate predictive cut-off values for 4-hour post-ercp serum amylase and lipase levels for safe discharge and urgent initiation of resuscitation. The data of 516 consecutive patients with native papilla who underwent ERCP between January 2013 and August 2014 were retrospectively reviewed. Serum amylase and lipase levels were measured before, and 4 and 24 hours after ERCP. PEP occurred in 16 (3.1%) patients. The receiver-operator characteristic curve for 4-hour post-ercp serum amylase and lipase levels showed that the areas under the curve were 0.919 and 0.933, respectively, demonstrating good test performances as predictors for PEP (both P values < 0.001). The amylase level > 1.5 the upper limit of reference (ULR) was found useful for PEP exclusion with a sensitivity of 93.8%, while 4 ULR was found useful to guide preventive therapy with the best specificity of 93.2%. Similarly, the lipase level 2 ULR showed best sensitivity, while 8 ULR had the best specificity. Logistic regression analysis showed that 4-hour post-ercp amylase level > 4 ULR, lipase level > 8 ULR, precut sphincterotomy, and pancreatic sphincterotomy were significant predictors for PEP. In conclusion, 4-hour post-ercp amylase and lipase levels are useful early predictors of PEP that can ensure safe discharge or prompt resuscitation after ERCP. Keywords: Cholangiopancreatography; Endoscopic Retrograde; Pancreatitis; Amylases; Lipase INTRODUCTION Endoscopic retrograde cholangiopancreatography (ERCP) is a reliable and accurate tool for the diagnosis and treatment of biliary and pancreatic diseases. However, acute pancreatitis is the most common adverse event of ERCP, occurring overall in 5% 7% of patients (1,2). As post-ercp pancreatitis (PEP) carries a potential risk of morbidity and occasionally of mortality, early PEP prediction would allow the safe discharge or prompt admission of patients who undergo outpatient ERCP procedures (3-5). For inpatients, it would help deal with PEP in a timely manner and prevent disease progression. Four-hour post-ercp amylase level is the most widely investigated potential predictor of PEP (5-8) because it can be compared with 24-hour amylase level, which is the key determinant of PEP diagnosis and a practical parameter for early prediction and treatment of PEP. However, the data measured at 4 hours after ERCP carry a potential risk of PEP over-prediction because serum amylase levels can be asymptomatically increased between 90 minutes and 4 hours after ERCP, subsequently returning to normal values within 48 hours; however, they remain remarkably elevated when PEP occurs (9,10). Moreover, the ideal cut-off values for prediction of PEP differ among different studies. Therefore, the aim of this study was to verify the usefulness of 4-hour post-ercp serum amylase and lipase levels for early PEP prediction and find predictive cut-off values of 4-hour post- ERCP serum amylase and lipase levels for PEP. MATERIALS AND METHODS Patients and procedures Between January 2013 and August 2014, 516 consecutive patients with native papilla and without a history of pancreatitis or surgically altered enteric anatomy underwent ERCP. We retrospectively reviewed these cases from a prospectively collected ERCP database system. Both serum amylase and lipase were 2017 The Korean Academy of Medical Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. pissn 1011-8934 eissn 1598-6357

measured before and at 4 and 24 hours after ERCP. All ERCP procedures were performed using standard techniques and a side-viewing duodenoscope (JF-260V/TJF-260V; Olympus Corp., Tokyo, Japan) by 3 operators (JHK, BMY, JCH) with an experience of more than 300 ERCP procedures per year. Outcome measurements Patients demographics, indications for ERCP, details of ERCP procedure, 4-hour post-ercp amylase/lipase levels, and PEP occurrence on the next morning were analyzed. PEP was defined as abdominal pain persisting for at least 24 hours and associated with an amylase level of at least 3 times the upper limit of reference (ULR). Clinical severity of PEP was assessed according to the consensus criteria (11). The cut-off values of 4-hour post-ercp amylase and lipase level with best sensitivity among Table 1. Patient characteristics Characteristics Value No. of patients 516 Sex (male/female) 305 (59.1)/211 (40.9) Age 62.3 (14 93) Reason for undergoing ERCP Therapeutic 374 (72.5) Diagnostic 142 (27.5) Final diagnosis Bile duct stone 291 (56.4) Malignancy biliary stricture 117 (22.7) Benign biliary stricture 27 (5.2) Nonspecific finding 16 (3.1) Other 65 (12.6) Values are presented as mean (range) or number (%). ERCP = endoscopic retrograde cholangiopancreatography. Table 2. Univariate comparison of patients with and without PEP Variables PEP Yes (n = 16) No (n = 500) P value Mean age 51.1 ± 20.9 63.8 ± 33.9 0.137 Female sex 10 (62.5) 215 (43.0) 0.132 Nondilated EHD 6 (50.0) 97 (19.4) 0.007 Therapeutic purpose 12 (75.0) 362 (72.4) 0.819 Precut sphincterotomy 5 (31.3) 47 (9.4) 0.016 Pancreatogram performance 6 (37.5) 62 (12.4) 0.012 EP(L)BD 1 (6.3) 72 (14.4) 0.712 Pancreatic sphincterotomy 3 (18.8) 7 (1.4) 0.003 ERPD 3 (18.8) 48 (9.6) 0.204 EML 0 (0.0) 33 (6.6) 0.614 Failure to clear bile duct stones 2 (12.5) 46 (9.2) 0.653 4-hour amylase level, U/L 965.75 ± 775.13 158.49 ± 273.13 0.001 4-hour lipase level, U/L 2,018.94 ± 2,038.27 222.74 ± 826.53 0.003 Values are presented as number (%). Continuous variables are expressed as the mean ± standard deviation. EHD = extrahepatic bile duct, EP(L)BD = endoscopic papillary (large) balloon dilation, ERPD = endoscopic retrograde pancreatic drainage, EML = endoscopic mechanical lithotripsy. the cut-off values with sensitivity higher than 90% were selected as the cut-off values for safe same day discharge to minimize the incidence of false negative results. The cut-off values with best specificity among cut-off values with specificity higher than 90% were selected as the cut-off values for preventive therapy of PEP to minimize the incidence of false positive results. Statistical analysis Statistical analyses were performed using SPSS software version 18.0 (SPSS Inc., Chicago, IL, USA). Quantitative data were compared using the student s t-test or Mann-Whitney test, and the significance of difference for categorical data was determined using the χ 2 test and Fisher s exact test. A receiver-operator characteristics curve was computed to test the strength of a given diagnostic test. Binary logistic regression analyses were applied to identify significant predictors of PEP. Ethics statement Informed consent was obtained from all patients, and this study was approved by the Ajou University Hospital Institutional Review Board (AJIRB-MED-MDB-16-032). RESULTS A total of 516 patients were enrolled in this study. Of them, 374 (72.5%) underwent therapeutic ERCP and 142 (27.5%) underwent diagnostic ERCP. The most common final diagnosis was Sensitivity 1.0 0.8 0.6 0.4 0.2 0 Sensitivity 93.8% (amylase level: 4.0 ULR) Specificity: 93.2% (amylase level: 1.5 ULR) 0.2 0.4 0.6 0.8 1.0 1-Specificity Fig. 1. Receiver-operator characteristics curve for 4-hour post-ercp amylase levels as a predictor of PEP. Area under the curve = 0.919 (P < 0.001). The cut-off levels of 1.5 times the ULR is useful for exclusion of PEP with a sensitivity of 93.8%, and 4 times the ULR is useful to guide preventive therapy of PEP with a best specificity of 93.2%. ULR = upper limit of reference. https://doi.org/10.3346/jkms.2017.32.11.1814 http://jkms.org 1815

Table 3. Cut-off 4-hour post-ercp amylase levels for predicting pancreatitis Cut-off value Sensitivity Specificity PPV NPV Amylase > 4.0 ULR 12/16 (75.0) 466/500 (93.2) 12/46 (26.1) 466/470 (99.1) Amylase > 3.0 ULR 12/16 (75.0) 442/500 (88.4) 12/70 (17.1) 442/446 (99.1) Amylase > 2.5 ULR 13/16 (81.3) 431/500 (86.2) 13/82 (15.9) 431/434 (99.3) Amylase > 2.0 ULR 13/16 (81.3) 405/500 (81.0) 13/108 (12.0) 405/408 (99.3) Amylase > 1.5 ULR 15/16 (93.8) 365/500 (73.0) 15/150 (10.0) 365/366 (99.7) Values are presented as number (%). ERCP = endoscopic retrograde cholangiopancreatography, PPV = positive predictive value, NPV = negative predictive value, ULR = upper limit of reference. Table 4. Cut-off 4-hour post-ercp lipase levels for predicting PEP Cut-off value Sensitivity Specificity PPV NPV Lipase level > 8 ULR 12/16 (75.0) 457/500 (91.4) 12/55 (21.8) 457/461 (99.1) Lipase level > 5 ULR 13/16 (81.3) 443/500 (88.6) 13/70 (18.6) 443/446 (99.3) Lipase level > 4 ULR 13/16 (81.3) 430/500 (86.0) 13/83 (15.7) 430/433 (99.3) Lipase level > 3 ULR 14/16 (87.5) 411/500 (82.2) 14/103 (13.6) 411/413 (99.5) Lipase level > 2 ULR 15/16 (93.8) 373/500 (74.6) 15/142 (10.6) 373/374 (99.7) Values are presented as number (%). PPV = positive predictive value, NPV = negative predictive value, ULR = upper limit of reference. 1.0 Table 5. Logistic regression analyses of significant predictors for PEP, adjusted for patient and procedure related factors Sensitivity 0.8 0.6 0.4 0.2 Sensitivity: 93.8% (lipase level: 2 ULR) Specificity: 91.4% (lipase level: 8 ULR) Predictors Adjusted OR (95% CI) P value Amylase level > 4 ULR 15.9 (2.7 94.6) 0.002 Lipase level > 8 ULR 13.0 (2.0 85.5) 0.008 Precut sphincterotomy 9.2 (1.6 51.1) 0.012 Pancreatic sphincterotomy 42.1 (4.2 419.3) 0.001 All factors were adjusted for patient age, sex, bile duct dilation, reason for undergoing ERCP, final diagnosis, extrahepatic bile duct dilation, precut sphincterotomy, pancreatogram performance, endoscopic papillary balloon dilation, pancreatic sphincterotomy, endoscopic retrograde pancreatic duct drainage, mechanical lithotripsy, failure to clear bile duct, the cut-off values of post-ercp amylase and lipase with best specificity which guide the initiation of resuscitation. OR = odds ratio, CI = confidence interval, ULR = upper limit of reference. 0 0.2 0.4 0.6 0.8 1.0 1-Specificity Fig. 2. Receiver-operator characteristics curve for 4-hour post-ercp lipase levels as a predictor of PEP. Area under the curve = 0.933 (P < 0.001). The cut-off levels of 2 times the ULR is useful for exclusion of PEP with a sensitivity of 93.8%, and 4 times the ULR is useful to guide preventive therapy of PEP with a best specificity of 91.4%. ULR = upper limit of reference. bile duct stone (56.4%) (Table 1). PEP occurred in 16 (3.1%) patients and clinical severity was mild in 4 (25%) patients, moderate in 9 (56.3%) patients, and severe in 3 (18.8%) patients. All patients recovered completely with in-hospital supportive care, except for 1 patient with severe PEP who died of septic shock. A significant difference was found between patients with and without PEP with regard to the proportion of the nondilated extrahepatic bile duct (P = 0.007), precut sphincterotomy (P = 0.016), pancreatogram performance (P = 0.003), pancreatic sphincterotomy (P = 0.003), elevated 4-hour post-ercp serum amylase (P = 0.001), and lipase levels (P = 0.003) in the univariate analyses (Table 2). The receiver-operator characteristic curve for 4-hour post- ERCP serum amylase showed that the area under the curve was 0.919, demonstrating a good test performance as a predictor of PEP (P < 0.001) (Fig. 1). The cut-off levels of 1.5 times the ULR was found useful for exclusion of PEP with a sensitivity of 93.8%, and 4 times the ULR was found useful to guide preventive therapy of PEP with a best specificity of 93.2% (Table 3). The receiver-operator characteristic curve for 4-hour post- ERCP serum lipase level showed an area under the curve of 0.933, also demonstrating good test performance as a predictor of PEP (P < 0.001) (Fig. 2). The best sensitivity was noted for the lipase level of 2 times the ULR, and the best specificity was noted for 8 times the ULR (Table 4). After adjusting for potential confounders, logistic regression analysis showed that 4-hour post-ercp amylase level above 4 times, 4-hour post-ercp li- 1816 http://jkms.org https://doi.org/10.3346/jkms.2017.32.11.1814

pase above 8 times, precut sphincterotomy, and pancreatic sphincterotomy were significant predictors for PEP (Table 5). DISCUSSION Nowadays, outpatient ERCP procedures are widely performed because they can reduce medical costs and conserve resources, while their safety is comparable with that of ERCP procedures performed on an inpatient basis (3). However, a reliable prediction model for PEP should be established before the widespread use of outpatient ERCP. Based on this model, patients who underwent outpatient ERCP procedures would be classified into 2 groups: the discharge group with asymptomatic patients or patients with mild, self-limiting symptoms, and the admission group with patients at potential risk for developing PEP that would need supportive therapy (3,4). In patients admitted after ERCP, early prediction of PEP would enable early aggressive fluid resuscitation and careful monitoring, which could limit the disease progression and contribute to a better prognosis. Post-ERCP serum amylase level has been widely investigated as an early predictor for PEP in many studies (4-8,10,12-14). However, each study used different blood sampling times for measuring serum amylase levels and reported different predictive cut-off values for best PEP prediction. Defining the optimal cut-off value of post-ercp amylase level at a specific time that would allow a safe same-day discharge after ERCP is a complex task. The most important qualifying factor for setting a cut-off value is to exclude or nearly minimize the number of patients with false negative results, in whom PEP is finally diagnosed at 24 hours after ERCP, but early post-ercp amylase level was below the cut-off value. In ERCP procedures performed on an outpatient basis, these patients with false negative results would have been discharged on the same day of ERCP based on the results of early post-ercp amylase level. Therefore, a cut-off value minimizing false negative results can guarantee a safe same-day discharge after outpatient ERCP. Among the diagnostic discrimination values, both the sensitivity and the negative predictive value include cases with false negative results. However, the sensitivity is a more likely considerable factor of the 2 because a true negative value is disproportionately much higher in cases with false negative results at any cutoff values of post-ercp amylase; therefore, a negative predictive value has little discriminating role at different cut-off levels. To set an optimal cut-off value for deciding urgent admission in the outpatient setting is somewhat different from deciding a cut-off value for discharge. The crucial factor is to minimize the number of cases with false positive results, who would finally be proved to have no PEP, but post-ercp amylase level had exceeded the cut-off value. If ERCP was performed on an outpatient basis, these patients would be unnecessarily hospitalized and additional cost would be incurred without clinical benefit. Although both specificity and positive predictive value reflect false positive cases, specificity is a more reliable discrimination value because positive predictive value is usually low at any cutoff level due to the imbalance between the true positive and false positive cases, as shown in many previous studies and in our study. As a result, good specificity is the key factor to determine the same-day admission and the initiation of preventive treatment following an ERCP performed on the outpatient basis. However, if we choose the ideal cut-off values based only on the numerically high sensitivity and specificity, the gap between the cut-off value with high sensitivity and value with high specificity become large, because lower cut-off value provides higher sensitivity, while higher cut-off value provides higher specificity. Consequently, the number of patients in the middle zone with post-ercp amylase levels between the two cut-off values will be increased, and preventive treatment initiation in those patients will be complicated and based on various procedurerelated and patient-related risk factors, not on the post-ercp amylase and lipase levels. Therefore, in order to keep the discriminating roles and reduce the size of the middle zone, we selected the highest cut-off value among the cut-off values with sensitivity higher than 90% as a criterion for safe discharge, and the lowest cut-off value among cut-off values with specificity higher than 90% as a criterion for initiation of prompt resuscitation. Two factors should be considered in deciding when to obtain blood samples for testing serum amylase levels after ERCP. The first factor is the practical usefulness in the outpatient setting, and the second is a reliable correlation between the early post- ERCP amylase levels at a specific time and those measured at 24 hours after ERCP. Therefore, the amylase levels measured not only at 8 hours, but also at 24 hours have a time limitation with regard to obtaining results and making a decision of discharge on the same day of ERCP. For this reason, many studies were performed to investigate the usefulness of 4-hour post-ercp amylase levels than amylase levels measured at other times for early prediction of PEP. A prospective outcome study performed by Thomas and Sengupta (7) on 263 consecutive patients suggested a practical algorithm based on the 4-hour post-ercp amylase levels and suggested that 1.5 times the ULR is useful for exclusion of PEP with a best sensitivity of 100% and 3 times the ULR is useful to guide preventive therapy with a best specificity of 95.3%. A larger-scaled retrospective study on 886 ERCP procedures by Sutton et al. (8) also reported the usefulness of the 4-hour post-er- CP amylase level as an early predictor for PEP. They recommended that patients who had not undergone a pancreatogram should be admitted if the 4-hour post-ercp amylase level is greater than 5 times the ULR, the sensitivity and specificity of which were 100.0% and 96.3%, respectively, for predicting moderate to severe PEP. In patients who had not undergone a pancreatogram, 2.5 times the ULR was the best cut-off value for predict- https://doi.org/10.3346/jkms.2017.32.11.1814 http://jkms.org 1817

ing a moderate to severe PEP with a sensitivity of 80.0% and a specificity of 80.4%. In our study, the cut-off level 1.5 times the ULR had the great sensitivity of 93.8% and 2.5 times the ULR has great specificity of 93.2% in the amylase level analysis. Therefore, judging from our results, patients with 4-hour post-ercp amylase levels less than 1.5 times the ULR could be discharged on the same day, while patients with 4-hour post-ercp amylase levels above 4 times might be considered for urgent admission for supportive therapy. In patients who have equivocal amylase levels between 1.5 and 4 times ULR, the next clinical strategy should be decided based on the factors known to be definite or potential risk factors of PEP. Among these patients, patients with 4-hour post- ERCP lipase level above 8 times the ULR or those who received precut sphincterotomy or pancreatic sphincterotomy may be considered for admission for supportive treatment based on our results of multivariate analyses. However, the amylase level is known to increase up to 4 hours after ERCP even in the absence of PEP (9,10); therefore, 4-hour post-ercp amylase level may not correctly reflect the 24-hour level. In the large scaled prospective study, Testoni et al. (6) compared the 2-, 4-, and 8-hour post-ercp amylase levels with those at 24-hour to identify the ideal timing for blood sampling after ERCP. They showed a significantly higher sensitivity of 100% at 8-hour measurement than at others, but recommended the 4-hour assessment from a practical point of view for outpatients. The largest retrospective study performed by Ito et al. (10) concerning the relationship between 3-, 6-, and 24-hour serum amylase levels after ERCP reported a meaningful outcome that a decrease in amylase levels at 6 hours after ERCP suggests a low probability for PEP, even though hyperamylasemia was noted at 3-hour measurement. Therefore, a future large scaled prospective study comparing 4-hour and 6-hour post-ercp amylase levels as early predictors for PEP is needed, because 6-hour measurement may be the Maginot Line of time in outpatient settings. Many studies have demonstrated that serum lipase level is the most accurate diagnostic marker for acute pancreatitis (15, 16), and serum lipase level increased faster than the levels of other measured enzymes and that the average peak in lipase level was the highest in PEP (17). However, the usefulness of post-ercp lipase level as an early predictor for PEP has not been as widely studied as amylase level because it is not included in the diagnostic criteria of PEP. Our data showed that 4-hour post- ERCP serum lipase level is also a reliable predictor of the risk of PEP based on the area under the receiver-operator characteristic curve. However, in our study, the clinical utility of lipase levels for the prediction of PEP was lower than that of amylase levels because the gap between the cut-off values of best sensitivity (2 times) and specificity (8 times) was very large. Therefore, serum lipase level can be used as an adjuvant factor in patients with an equivocal range of amylase level. An additional study is needed to clarify the usefulness of the 4-hour post-ercp hyperlipasemia as a predictor for PEP. There are some limitations of this study. ERCP-related detailed confounders associated with PEP, such as cannulation time, the number of papillary contacts of cannulas, or the number of inadvertent pancreatic cannulations were not systematically analyzed owing to the study s retrospective nature. Therefore, it is difficult to set a well-designed practical prediction model for PEP in patients with equivocal range of serum amylase level between the cut-offs of best sensitivity and specificity. In conclusion, the 4-hour post-ercp amylase and lipase levels are useful early predictors for PEP and would ensure safe discharge on the same day of ERCP or prompt fluid resuscitation and close monitoring after ERCP. DISCLOSURE The authors have no potential conflicts of interest to disclose. AUTHOR CONTRIBUTION Conceptualization: Lee YK, Yang MJ, Hwang JC, Kim JH. Data curation: Lee YK, Yang MJ, Kim SS, Noh CK, Cho HJ. Investigation: Lee YK, Yang MJ, Kim SS, Noh CK, Cho HJ. Writing - original draft: Lee YK, Yang MJ. Writing - review & editing: Kim JH, Yoo BM. ORCID Yeon Kyung Lee https://orcid.org/0000-0002-0546-861x Min Jae Yang https://orcid.org/0000-0001-5039-8182 Soon Sun Kim https://orcid.org/0000-0002-6862-1896 Choong-Kyun Noh https://orcid.org/0000-0002-3607-8120 Hyo Jung Cho https://orcid.org/0000-0003-4792-8335 Sun Gyo Lim https://orcid.org/0000-0003-2045-5099 Jae Chul Hwang https://orcid.org/0000-0002-3770-5085 Byung Moo Yoo https://orcid.org/0000-0002-1337-957x Jin Hong Kim https://orcid.org/0000-0002-3352-5079 REFERENCES 1. Andriulli A, Loperfido S, Napolitano G, Niro G, Valvano MR, Spirito F, Pilotto A, Forlano R. Incidence rates of post-ercp complications: a systematic survey of prospective studies. Am J Gastroenterol 2007; 102: 1781-8. 2. Rustagi T, Jamidar PA. Endoscopic retrograde cholangiopancreatography (ERCP)-related adverse events: post-ercp pancreatitis. Gastrointest Endosc Clin N Am 2015; 25: 107-21. 3. Jeurnink SM, Poley JW, Steyerberg EW, Kuipers EJ, Siersema PD. ERCP as an outpatient treatment: a review. Gastrointest Endosc 2008; 68: 118-23. 4. Gottlieb K, Sherman S, Pezzi J, Esber E, Lehman GA. Early recognition of post-ercp pancreatitis by clinical assessment and serum pancreatic en- 1818 http://jkms.org https://doi.org/10.3346/jkms.2017.32.11.1814

zymes. Am J Gastroenterol 1996; 91: 1553-7. 5. Testoni PA, Bagnolo F, Caporuscio S, Lella F. Serum amylase measured four hours after endoscopic sphincterotomy is a reliable predictor of postprocedure pancreatitis. Am J Gastroenterol 1999; 94: 1235-41. 6. Testoni PA, Caporuscio S, Bagnolo F, Lella F. Twenty-four-hour serum amylase predicting pancreatic reaction after endoscopic sphincterotomy. Endoscopy 1999; 31: 131-6. 7. Thomas PR, Sengupta S. Prediction of pancreatitis following endoscopic retrograde cholangiopancreatography by the 4-h post procedure amylase level. J Gastroenterol Hepatol 2001; 16: 923-6. 8. Sutton VR, Hong MK, Thomas PR. Using the 4-hour post-ercp amylase level to predict post-ercp pancreatitis. JOP 2011; 12: 372-6. 9. Tulassay Z, Papp J, Koranyi L, Szathmari M, Tamas G Jr. Hormonal and biochemical changes following endoscopic retrograde cholangio-pancreatography. Acta Gastroenterol Belg 1981; 44: 538-44. 10. Ito K, Fujita N, Noda Y, Kobayashi G, Horaguchi J, Takasawa O, Obana T. Relationship between post-ercp pancreatitis and the change of serum amylase level after the procedure. World J Gastroenterol 2007; 13: 3855-60. 11. Cotton PB, Lehman G, Vennes J, Geenen JE, Russell RC, Meyers WC, Liguory C, Nickl N. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc 1991; 37: 383-93. 12. LaFerla G, Gordon S, Archibald M, Murray WR. Hyperamylasaemia and acute pancreatitis following endoscopic retrograde cholangiopancreatography. Pancreas 1986; 1: 160-3. 13. Testoni PA, Bagnolo F. Pain at 24 hours associated with amylase levels greater than 5 times the upper normal limit as the most reliable indicator of post-ercp pancreatitis. Gastrointest Endosc 2001; 53: 33-9. 14. Sultan S, Baillie J. What are the predictors of post-ercp pancreatitis, and how useful are they? JOP 2002; 3: 188-94. 15. Koizumi M, Takada T, Kawarada Y, Hirata K, Mayumi T, Yoshida M, Sekimoto M, Hirota M, Kimura Y, Takeda K, et al. JPN Guidelines for the management of acute pancreatitis: diagnostic criteria for acute pancreatitis. J Hepatobiliary Pancreat Surg 2006; 13: 25-32. 16. Lee TH. Diagnosis and treatment of acute pancreatitis. Korean J Med 2015; 89: 494-506. 17. Panteghini M, Pagani F, Alebardi O, Lancini G, Cestari R. Time course of changes in pancreatic enzymes, isoenzymes and, isoforms in serum after endoscopic retrograde cholangiopancreatography. Clin Chem 1991; 37: 1602-5. https://doi.org/10.3346/jkms.2017.32.11.1814 http://jkms.org 1819