Berberine induces apoptosis and DNA damage in MG 63 human osteosarcoma cells

Similar documents
PUMA gene transfection can enhance the sensitivity of epirubicin-induced apoptosis of MCF-7 breast cancer cells

Journal of Chemical and Pharmaceutical Research, 2017, 9(12): Research Article

HCC1937 is the HCC1937-pcDNA3 cell line, which was derived from a breast cancer with a mutation

Ginsenoside Rg5 induces apoptosis and DNA damage in human cervical cancer cells

Berberine Sensitizes Human Ovarian Cancer Cells to Cisplatin Through mir-93/ PTEN/Akt Signaling Pathway

Cinnamomum Essential Oil Prevents DNA Damage- Induced by Doxorubicin on CHO-K1 Cells

Proteomic profiling of small-molecule inhibitors reveals dispensability of MTH1 for cancer cell survival

Impact factor: Reporter:4A1H0019 Chen Zi Hao 4A1H0023 Huang Wan ting 4A1H0039 Sue Yi Zhu 4A1H0070 Lin Guan cheng 4A1H0077 Chen Bo xuan

The Annexin V Apoptosis Assay

Effects of COX-2 Inhibitor on the Proliferation of MCF-7 and LTED MCF-7 Cells

Ginkgo biloba leaf extract induces DNA damage by inhibiting topoisomerase II activity in human hepatic cells

IN VITRO ANTICANCER ACTIVITY OF FLOWER EXTRACTS OF COUROUPITA GUIANENSIS

IN VITRO HORMESIS EFFECTS OF SODIUM FLUORIDE ON KIDNEY CELLS OF THREE-DAY-OLD MALE RATS

8. CHAPTER IV. ANTICANCER ACTIVITY OF BIOSYNTHESIZED SILVER NANOPARTICLES

The effect of insulin on chemotherapeutic drug sensitivity in human esophageal and lung cancer cells

Biodegradable Zwitterionic Nanogels with Long. Circulation for Antitumor Drug Delivery

School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, , People s Republic of China; 2

B16-F10 (Mus musculus skin melanoma), NCI-H460 (human non-small cell lung cancer

MOLECULAR MEDICINE REPORTS 14: , 2016

ONCOLOGY LETTERS 7: , 2014

Supporting Information

Essential Medium, containing 10% fetal bovine serum, 100 U/ml penicillin and 100 µg/ml streptomycin. Huvec were cultured in

Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells

Apoptosis Mediated Cytotoxicity of Curcumin Analogues PGV-0 and PGV-1 in WiDr Cell Line

Key words: apoptosis, beta-amyrin, cell cycle, liver cancer, tritepenoids

Protocol for Gene Transfection & Western Blotting

Li et al. Journal of Experimental & Clinical Cancer Research (2018) 37:108

Ethanolic Extract of Moringa oleifera L. Increases Sensitivity of WiDr Colon Cancer Cell Line Towards 5-Fluorouracil

Annexin V-APC/7-AAD Apoptosis Kit

Supporting Information Nitric oxide releasing photoresponsive nanohybrids as excellent therapeutic agent for cervical cancer cell lines

Bakuchiol inhibits cell proliferation and induces apoptosis and cell cycle arrest in SGC-7901 human gastric cancer cells.

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

Research on the inhibitory effect of metformin on human oral squamous cell carcinoma SCC-4 and CAL-27 cells and the relevant molecular mechanism.

The Schedule and the Manual of Basic Techniques for Cell Culture

Sequence dependent effect of sorafenib in combination with natural phenolic compounds on hepatic cancer cells and the possible mechanism of action

Linderalactone inhibits human lung cancer growth b

Research Article. Cytotoxic activities of chloroform extract from leaves of Polyalthia glauca (Hassk.) Boerl. on HeLa cell line

Part-4. Cell cycle regulatory protein 5 (Cdk5) A novel target of ERK in Carb induced cell death

Effects of AFP gene silencing on Survivin mrna expression inhibition in HepG2 cells

Supporting Information

Anti-cancer activity of Aya Thambira Chendooram (ATC) in in-vitro cell line against Breast Carcinoma

Annexure III SOLUTIONS AND REAGENTS

For the rapid, sensitive and accurate measurement of apoptosis in various samples.

Comparison of Young and Old Cardiac Telocytes Using Atomic Force Microscopy

In-vitro assay for Cytotoxicity activity in ethonolic extract of fruit rind of Couropita Guianensis aubl

Supplementary data Supplementary Figure 1 Supplementary Figure 2

IMMP8-1. Different Mechanisms of Androg and IPAD on Apoptosis Induction in Cervical Cancer Cells

A549 and A549-fLuc cells were maintained in high glucose Dulbecco modified

Effect of starvation-induced autophagy on cell cycle of tumor cells

Effects of metallothionein-3 and metallothionein-1e gene transfection on proliferation, cell cycle, and apoptosis of esophageal cancer cells

Procaspase-3. Cleaved caspase-3. actin. Cytochrome C (10 M) Z-VAD-fmk. Procaspase-3. Cleaved caspase-3. actin. Z-VAD-fmk

RayBio Annexin V-FITC Apoptosis Detection Kit

Tanshinone l exhibits anticancer effects in human

Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro

Supporting Information

http / / cjbmb. bjmu. edu. cn Chinese Journal of Biochemistry and Molecular Biology COX-2 NTera-2 NTera-2 RT-PCR FasL caspase-8 caspase-3 PARP.

Journal of Chemical and Pharmaceutical Research, 2016, 8(3): Research Article

Low Cell Binding Property of LIPIDURE -COAT

Electronic Supplementary Information

McAb and rhil-2 activated bone marrow on the killing and purging of leukemia cells

Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells

Multi-Parameter Apoptosis Assay Kit

Effects of Kanglaite Injedction on Reversing Multiple Drug Resistance (MDR) of Tumor Cells

*Correspondence to Dr. Onyinye Nwagbara. or

ab Membrane Fractionation Kit Instructions for Use For the rapid and simple separation of membrane, cytosolic and nuclear cellular fractions.

Anti-Aging Activity Of Cucurbita moschata Ethanolic Extract Towards NIH3T3 Fibroblast Cells Induced By Doxorubicin

Supporting Information

Total Phosphatidic Acid Assay Kit

Islet viability assay and Glucose Stimulated Insulin Secretion assay RT-PCR and Western Blot

Original Article Ginkgo biloba extract induce cell apoptosis and G0/G1 cycle arrest in gastric cancer cells

SUPPLEMENT. Materials and methods

β-aescin shows potent antiproliferative activity in osteosarcoma cells by inducing autophagy, ROS generation and mitochondrial

A dual PI3 kinase/mtor inhibitor reveals emergent efficacy in glioma

Total Histone H3 Acetylation Detection Fast Kit (Colorimetric)

Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, Canada *For correspondence:

Johannes F Fahrmann and W Elaine Hardman *

ab Lysosome/Cytotoxicity Dual Staining Kit

International Conference on Biomedical and Biological Engineering (BBE 2016)

Annals of Oncology Advance Access published January 10, 2005

5þ ; AA, ascorbic acid.

Introduction: 年 Fas signal-mediated apoptosis. PI3K/Akt

RNA extraction, RT-PCR and real-time PCR. Total RNA were extracted using

Development of a near-infrared fluorescent probe for monitoring hydrazine in serum and living cells

Mitochondrial DNA Isolation Kit

Supplemental Materials. STK16 regulates actin dynamics to control Golgi organization and cell cycle

Supplementary Information

Supplemental Information

Berberine in combination with cisplatin suppresses breast cancer cell growth through induction of DNA breaks and caspase-3-dependent apoptosis

To determine the effect of over-expression and/or ligand activation of. PPAR / on cell cycle, cell lines were cultured as described above until ~80%

A novel bfgf antagonist peptide inhibits breast cancer cell growth

Additive effects of Cox-1 and Cox-2 inhibition on breast cancer in vitro

Assessment of the in vitro skin irritation of chemicals using the Vitrolife-Skin human skin model

Gladstone Institutes, University of California (UCSF), San Francisco, USA

Muse Assays for Cell Analysis

Tea polyphenol decreased growth and invasion in human ovarian cancer cells

Sodium selenite induces apoptosis in colon cancer cells via Bax-dependent mitochondrial pathway

Chinese Pharmacological Bulletin 2012 Sep ~ 6. http / /www. cnki. net /kcms /detail / R html

ORIGINAL ARTICLE. Hang Huang 1,2, Lin-Jin Li 3, Hai-Bo Zhang 4, An-Yang Wei 4. Summary. Introduction

Apoptosis and Altered Expression of P53, bax and bcl-2 induced by Formaldehyde in HELF cells

Berberine induces apoptosis by suppressing the arachidonic acid metabolic pathway in hepatocellular carcinoma

Transcription:

1734 Berberine induces apoptosis and DNA damage in MG 63 human osteosarcoma cells YU ZHU 1*, NAN MA 2*, HUI XIANG LI 3, LIN TIAN 4, YU FENG BA 5 and BIN HAO 6 1 Department of Orthopedic Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014; Departments of 2 Interventional Radiology and 3 Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052; 4 Department of Medicine, Zhengzhou Ninth People's Hospital, Zhengzhou, Henan 450014; 5 Department of Thoracic Surgery, The Affiliated Tumor Hospital of Zhengzhou University (Henan Tumor Hospital), Zhengzhou, Henan 450008; 6 Department of Urology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450014, P.R. China Received September 19, 2013; Accepted November 19, 2013 DOI: 10.3892/mmr.2014.2405 Abstract. Berberine, an isoquinoline alkaloid extracted from the dry root of Coptidis Rhizoma, has been found to exhibit marked anticancer effects on a panel of established cancer cells. Among the human osteosarcoma lines treated, MG 63 cells were found to be the most sensitive. The present study investigated the potential genotoxic effect of berberine on MG 63 human osteosarcoma cells. The effect of berberine on cell viability was determined using a 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide assay and cell apoptosis was analyzed by flow cytometry and a DNA ladder assay. γh2ax focus formation was used to detect DNA damage in MG 63 cells. Berberine induced a significant increase in apoptosis in MG 63 cells in a concentration and time dependent manner, as determined by DNA fragmentation analysis and flow cytometry. Furthermore, berberine induced significant concentration and time dependent increases in DNA damage compared with that in the negative control. In conclusion, these observations indicated that berberine induced apoptosis and DNA damage in MG 63 cells. Introduction Osteosarcoma is a cancerous bone tumor that usually develops in adolescents (1). Significant improvements in patient survival rates have been achieved in recent years. Bioactive compounds derived from natural products have been used Correspondence to: Dr Bin Hao, Department of Urology, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, Henan 450014, P.R. China E mail: tougao0101@163.com * Contributed equally Key words: berberine, DNA damage, apoptosis, γh2ax foci, DNA fragmentation for thousands of years for therapy, pre dating recorded history (2). Berberine, an isoquinoline alkaloid derived from the Chinese herb Huanglian, is used as a botanical drug (3). In China, berberine is commonly prescribed for the treatment of gastrointestinal complaints, diarrhea and other conditions. Accumulative evidence from in vitro studies has demonstrated that berberine possesses anticancer and anti inflammatory activity in different types of human cancer cells, including osteosarcoma (4), epidermoid carcinoma (5), lung cancer (6), melanoma (7), prostate cancer (8) and liver cancer (9) cells. Animal studies have demonstrated that berberine is able to suppress chemical induced carcinogenesis (10), tumor formation (11) and tumor invasion (12,13). Apoptosis and DNA damage have previously been revealed to be effective in eliminating cancer cells. Numerous natural compounds, including berberine, have been developed as preventive and treatment agents against cancer. However, to the best of our knowledge, few studies have examined the potential therapeutic effects of berberine in osteosarcoma. The present study examined the effects of berberine on MG 63 cells in culture using DNA fragmentation analysis and flow cytometry. It has previously been demonstrated that the formation of DNA double strand breaks induces γh2ax aggregations in nuclei, and it has been suggested that γh2ax focus formation is a sensitive method for detecting DNA double strand breaks (14). A threshold of 4 γh2ax foci/cell has been found to be optimal for the determination of DNA damage (15). Thus the extent of DNA damage was observed in berberine treated cells, as determined by measuring γh2ax focus formation. Materials and methods Drugs and materials. Berberine (purity, >98%) was purchased from Tianping Pharmaceutical Co. (Shanghai, China). The compound was dissolved in dimethyl sulfoxide (DMSO). N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), normal melting agarose, 4',6 diamidino 2 phenylindole (DAPI), 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide (MTT), Tween 20 and paraformaldehyde were

ZHU et al: BERBERINE INDUCES APOPTOSIS AND DNA DAMAGE IN MG 63 CANCER CELLS 1735 obtained from Sigma Chemical Co. (Silicon Valley, CA, USA). The apoptosis detection kit was obtained from BD Pharmingen (San Diego, CA, USA). Triton X 100, fetal bovine serum (FBS), xylene cyanol and bromophenol blue were obtained from Sangon Biotech Shanghai Co., Ltd. (Shanghai, China). All other chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Cell culture. The MG 63 human osteosarcoma cell line (wild type) was purchased from the Cell Bank of Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). The cells were cultured in Dulbecco's modified Eagle's medium supplemented with 10% heat inactivated FBS, penicillin (100 U/ml) and streptomycin (100 U/ml). The cells were incubated at 37 C in a 5% CO 2 incubator. The medium was exchanged once every two days. Following treatment, the cells were harvested by trypsinization. Analysis of cytotoxicity. The cytotoxicity was determined using the MTT assay (16). MG 63 cells were seeded at a density of 1x10 4 cells/well in 100 µl of cell culture medium and then placed in a 96 well plate. Following 12 h of incubation, the cells were treated with 0 80 µm berberine for 12 and 24 h. MTT solution (5 mg/ml) was then added to each well and the samples were incubated at 37 C for 4 h. Subsequently, the supernatant was removed and replaced with 100 µl DMSO. The optical density of the control and drug treated wells was measured using an automated microplate reader (Multiskan Ex; Ani Lab systems Ltd., Vantaa, Finland) at a test wavelength of 570 nm. Flow cytometric analysis of berberine induced apoptosis in MG 63 cells. To determine the externalization of phosphatidylserine by fluorescein isothiocyanate (FITC) labeled Annexin V and propidium iodide (PI), flow cytometry was used as previously described (17). Briefly, the cells were treated with berberine at concentrations of 20, 40, 60 and 80 µm for 12 and 24 h. The cells were washed twice with cold phosphate buffered saline (PBS) and resuspended in 500 µl binding buffer at a concentration of 1x10 6 cells/ml. Then, 5 µl Annexin V FITC solution and 5 µl PI (1 mg/ml) were added. The cells were incubated at 37 C for 30 min and analyzed by flow cytometry within 1 h. The number of apoptotic cells were counted and presented as a percentage of the total cell count. DNA extraction and detection of DNA fragmentation. The DNA ladder assay was performed as previously described (18), with slight modifications. After treating the cells with berberine and MNNG at concentrations of 50 and 20 µm, respectively, for 24 h, pellets containing 1x10 6 cells were lysed in lysis buffer [10 mm Tris HCl (ph 8.0), 25 mm ethylenediaminetetraacetic acid (EDTA), 0.5% sodium dodecyl sulfate, 100 mm NaCl and 400 g/ml protease K] for 120 min at 56 C and then treated with 10 mg/ml RNase A for an additional 50 min at 37 C. The lysates were centrifuged (12,000 x g for 30 min at 4 C) and the supernatant was collected. The fragmented DNA was extracted from the supernatant with a neutral phenol:chloroform:isoamyl alcohol mixture (v/v/v; 25:24:1). The DNA pellet was precipitated by adding isopropanol, washed with 75% ethanol and dissolved in Tris EDTA buffer Figure 1. Cytotoxicity of berberine in MG 63 cells. The cells were treated for 12 and 24 h in the presence of berberine. Cell viability was then determined using a 3 (4,5 dimethylthiazol 2 yl) 2,5 diphenyltetrazolium bromide assay and expressed as the mean ± standard error of the mean of three separate experiments. * P<0.05 and ** P<0.01, compared with the control. (10 mm Tris HCl and 1 mm EDTA; ph 8.0). DNA fragmentation was detected by gel electrophoresis and the bands were stained with ethidium bromide for UV light visualization. γh2ax focus staining. The phosphorylation of histone H2AX (a marker of DNA double strand breaks) was analyzed as previously described (15), with slight modifications. Briefly, 1x10 5 cells were seeded into 6 well culture plates containing a glass cover slip in each well. Following treatment, the cells were fixed in 4% paraformaldehyde for 15 min, washed with PBS and permeabilized in 0.2% Triton X 100. Following inhibition with blocking serum for 1.5 h, the samples were incubated with a mouse monoclonal anti H2AX antibody (1:1,000; Cell Signaling Technology, Inc., Boston, MA, USA) for 2 h, followed by incubation with FITC conjugated goat anti mouse secondary antibody (1:500; Cell Signaling Technology, Inc.) for 1 h. For staining the nuclei, DAPI was added to the cells and incubated for another 15 min. The cover slip was then removed from the plate, mounted on a glass slide and observed using an Olympus BX53 fluorescent microscope (Olympus, Tokyo, Japan). Statistical analysis. Data are expressed as the mean ± standard error of the mean of three independent experiments. The differences among the treated groups and the negative control were compared by one way analysis of variance. The Newman Keuls multiple comparisons test was applied. P<0.05 was considered to indicate a statistically significant difference. All statistical analyses were performed using SPSS 17.0 (SPSS, Inc., Chicago, IL, USA). Results Cytotoxic effect of berberine on MG 63 cells. The results of the trypan MTT assay demonstrated that berberine induced a concentration and time dependent decrease in the viability of MG 63 cells compared with the control (Fig. 1), indicating that berberine has cytotoxic effects on MG 63 cells. Berberine induced apoptosis in MG 63 cells. Annexin V/PI staining was used to analyze whether the loss of cell viability induced by berberine was associated with apoptosis. Fig. 2 shows the rate of cell apoptosis detected by double labeling

1736 A B Figure 2. Berberine induces apoptosis in MG 63 cells. (A) Flow cytometric analysis of apoptosis using Annexin V and PI double staining (12 h). (B) Apoptotic incidences of MG 63 cells treated with 0, 20, 40, 60 or 80 µm berberine for 12 and 24 h. * P<0.05 and ** P<0.01, compared with control. PI, propidium iodide. flow cytometry with Annexin V and PI. A concentration and time dependent increase was observed in the apoptotic rate of MG 63 cells exposed to berberine. The apoptotic rates of MG 63 cells treated with berberine at 20, 40, 60 and 80 µm increased to 6.1±1.1, 26.5±1.3, 30.2±2.8 and 36.3±1.0% following 12 h; 9.0±0.7, 26.1±1.5, 36.4±1.8 and 40.0±1.2% following 24 h, respectively. By contrast, the control cells showed apoptosis rates of only 2.8±0.8 and 2.0±0.2% following 12 and 24 h, respectively (Fig. 2B). Furthermore, it was revealed that berberine induced significant DNA fragmentation in MG 63 cells (Fig. 3). DNA fragmentation was observed in cells treated with berberine at 40 and 60 µm following 12 and 24 h. These results suggest that the anticancer activity of berberine involves the induction of apoptosis. γh2ax foci show DNA double strand breaks are induced by berberine. The immunofluorescent images of histone H2AX phosphorylation in γh2ax stained MG 63 cells are shown in Fig. 4. Treatment with berberine resulted in time dependent induction of γh2ax foci. In the control group, MG 63 cells had few γh2ax foci in the nuclei, with only ~6% of cells containing more than four foci (Fig. 5). Berberine and MNNG treatment induced foci formation and increased the percentage of γh2ax positive cells. The data in Fig. 5 show that berberine and MNNG exhibited distinct concentration and time dependent effects (P<0.01) on γh2ax foci formation in MG 63 cells. Discussion Figure 3. Berberine induces apoptosis associated DNA fragmentation in MG 63 cells by the separation of urea polyacrylamide gel electrophoresis. M, marker (1 kb DNA ladder); CT, a positive control of methylnitronitrosoguanidine (20 mm). Over the past decade, interest in the pharmacological effects of bioactive compounds with respect to use in cancer treatments and for cancer prevention has markedly increased (19). Accumulating evidence has demonstrated a correlation between natural compounds and cancer prevention (5,6,9,20). Thus, evaluation of ancient medicinal herbs may provide the basis for the development of chemopreventive methods and strategies. Berberine was used widely in ancient therapeutic medicinal practices (3). It has been demonstrated to exert numerous anticancer activities in various types of cancer cells through different cytotoxic effects (21). Previous studies have demonstrated that human osteosarcoma cells (U2OS, Saos 2 and HOS) treated with berberine exhibited cell cycle arrest and apoptosis (4). The present study found that berberine (20 80 µm) inhibited growth of MG 63 cancer cells through induction of apoptosis and DNA damage in vitro. Furthermore, berberine

ZHU et al: BERBERINE INDUCES APOPTOSIS AND DNA DAMAGE IN MG 63 CANCER CELLS 1737 Figure 4. DNA double strand breaks as illustrated by γh2ax foci formation in MG 63 cells. Anti γh2ax monoclonal antibody was used to detect DNA damage foci immunofluorescence and DAPI was used to stain nuclei (magnification, x400). DAPI, 4',6 diamidino 2 phenylindole; MNNG, methylnitronitrosoguanidine. Figure 5. Percentage of γh2ax positive MG 63 cells treated with 20 mm methylnitronitrosoguanidine (CT) and 0, 20, 40, 60 or 80 mm berberine for 12 and 24 h. Data are presented as the mean ± standard error of the mean of three independent experiments. * P<0.05 and ** P<0.01 compared with control was demonstrated to induce apoptosis and DNA damage of MG 63 cells in a dose and time dependent manner. Therefore, berberine acts as a potent genotoxin by inducing marked accumulation of DNA double strand breaks. The results indicated that treatment with berberine triggered a cascade that includes DNA damage (Fig. 4). Berberine induced double strand DNA damage and apoptosis in Ehrlich ascites carcinoma cells (20). Treatment with berberine in vivo resulted in additive cytotoxicity and indicated that berberine has potent antitumor activity against human and rat malignant brain tumors (22). A study involving Saccharomyces cerevisiae demonstrated that berberine exhibited no cytotoxic, mutagenic or recombinogenic activity in non dividing cells. However, it had significant cytotoxic and cytostatic effects on dividing cells (23). Notably, berberine is more toxic to yeast mutants that are deficient in rad52 1, suggesting that homologous recombination repair is required for the repair of berberine induced DNA damage. These results suggest that berberine possesses recombinogenic activity. By contrast, coralyne, a close derivative of berberine, has not been revealed to have detectable mutagenic activity, when analyzed using the Ames test (24). Further studies are required to evaluate the mutagenic activities of berberine. Berberine has been widely prescribed for the treatment of bacterial diarrhea and has potential applications in several other diseases, including cancer. The findings of the present study demonstrated that berberine causes DNA damage in cultured cells, which raises concerns for its safety in clinical use. However, the present study did not determine whether the induction of apoptosis is directly associated with the genotoxicity of berberine. The mechanisms underlying the genotoxicity of berberine require further investigation to clearly demonstrate that berberine causes genotoxocity and apoptosis. Furthermore, more studies are required to understand the biological consequences of DNA damage on exposure to berberine in vivo. Considering the widespread clinical use of berberine, thorough evaluation of its genotoxocity in vivo is warranted. References 1. Mirabello L, Troisi RJ and Savage SA: Osteosarcoma incidence and survival rates from 1973 to 2004: data from the Surveillance, Epidemiology, and End Results Program. Cancer 115: 1531 1543, 2009.

1738 2. Craig WJ: Health promoting properties of common herbs. The Am J Clin Nutr 70: 491S 499S, 1999. 3. Sun Y, Xun K, Wang Y and Chen X: A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs 20: 757 769, 2009. 4. Liu Z, Liu Q, Xu B, et al: Berberine induces p53 dependent cell cycle arrest and apoptosis of human osteosarcoma cells by inflicting DNA damage. Mutat Res 662: 75 83, 2009. 5. Mantena SK, Sharma SD and Katiyar SK: Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki Cdk cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 27: 2018 2027, 2006. 6. Katiyar SK, Meeran SM, Katiyar N and Akhtar S: p53 Cooperates berberine induced growth inhibition and apoptosis of non small cell human lung cancer cells in vitro and tumor xenograft growth in vivo. Mol Carcinog 48: 24 37, 2009. 7. Letasiová S, Jantová S, Cipák L and Múcková M: Berberine antiproliferative activity in vitro and induction of apoptosis/necrosis of the U937 and B16 cells. Cancer Lett 239: 254 262, 2006. 8. Meeran S, Katiyar S and Katiyar S: Berberine induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation. Toxicol Appl Pharmacol 229: 33 43, 2008. 9. Hwang JM, Kuo HC, Tseng TH, Liu JY and Chu CY: Berberine induces apoptosis through a mitochondria/caspases pathway in human hepatoma cells. Arch Toxicol 80: 62 73, 2006. 10. Anis KV, Rajeshkumar NV and Kuttan R: Inhibition of chemical carcinogenesis by berberine in rats and mice. J Pharm Pharmacol 53: 763 768, 2001. 11. Nishino H, Kitagawa K, Fujiki H and Iwashima A: Berberine sulfate inhibits tumor promoting activity of teleocidin in two stage carcinogenesis on mouse skin. Oncology 43: 131 134, 1986. 12. Peng PL, Hsieh YS, Wang CJ, Hsu JL and Chou FP: Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase plasminogen activator and matrix metalloproteinase 2. Toxicol Appl Pharmacol 214: 8 15, 2006. 13. Kim S, Choi JH, Kim JB, et al: Berberine suppresses TNF alpha induced MMP 9 and cell invasion through inhibition of AP 1 activity in MDA MB 231 human breast cancer cells. Molecules 13: 2975 2985, 2008. 14. Parry MC, Bhabra G, Sood A, et al: Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials 31: 4477 4483, 2010. 15. Sokolov MV, Smilenov LB, Hall EJ, Panyutin IG, Bonner WM and Sedelnikova OA: Ionizing radiation induces DNA double strand breaks in bystander primary human fibroblasts. Oncogene 24: 7257 7265, 2005. 16. Liu J, Yang F, Zhang Y and Li J: Studies on the cell immunosuppressive mechanism of Oridonin from Isodon serra. Int Immunopharmacol 7: 945 954, 2007. 17. Zhao YY, Shen X, Chao X, et al: Ergosta 4,6,8(14), 22 tetraen 3 one induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Biochim Biophys Acta 1810: 384 390, 2011. 18. Guanggang X, Diqiu L, Jianzhong Y, et al: Carbamate insecticide methomyl confers cytotoxicity through DNA damage induction. Food Chem Toxicol 53: 352 358, 2013. 19. Scott EN, Gescher AJ, Steward WP and Brown K: Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila) 2: 525 530, 2009. 20. Letasiová S, Jantová S, Miko M, Ovádeková R and Horváthová M: Effect of berberine on proliferation, biosynthesis of macromolecules, cell cycle and induction of intercalation with DNA, dsdna damage and apoptosis in Ehrlich ascites carcinoma cells. J Pharm Pharmacol 58: 263 270, 2006. 21. Patil JB, Kim J and Jayaprakasha GK: Berberine induces apoptosis in breast cancer cells (MCF 7) through mitochondria dependent pathway. Eur J Pharmacol 645: 70 78, 2010. 22. Zhang RX, Dougherty DV and Rosenblum ML: Laboratory studies of berberine used alone and in combination with 1,3 bis(2 chloroethyl) 1 nitrosourea to treat malignant brain tumors. Chin Med J (Engl) 103: 658 665, 1990. 23. Pasqual MS, Lauer CP, Moyna P and Henriques JA: Genotoxicity of the isoquinoline alkaloid berberine in prokaryotic and eukaryotic organisms. Mutat Res 286: 243 252, 1993. 24. Cheng CC, Engle RR, Hodgson JR, et al: Absence of mutagenicity of coralyne and related antileukemic agents: structural comparison with the potent carcinogen 7,12 dimethylbenz[a] anthracene. J Pharm Sci 66: 1781 1783, 1977.