Clinical Nodal Staging Scores for Bladder Cancer: A Proposal for Preoperative Risk Assessment

Similar documents
Does the Extent of Lymphadenectomy in Radical Cystectomy for Bladder Cancer Influence Disease-Free Survival? A Prospective Single-Center Study

Lymph Node Positive Bladder Cancer Treated With Radical Cystectomy and Lymphadenectomy: Effect of the Level of Node Positivity

Extranodal Extension Is a Powerful Prognostic Factor in Bladder Cancer Patients with Lymph Node Metastasis

Radical Cystectomy for Urothelial Carcinoma of the Bladder Without Neoadjuvant or Adjuvant Therapy: Long-Term Results in 1100 Patients

EUROPEAN UROLOGY 60 (2011)

Lymphadenectomy in Invasive Bladder Cancer: Knowns and Unknowns Seth P. Lerner, MD, FACS Professor of Urology Beth and Dave Swalm Chair in Urologic

346

Radical Cystectomy Often Too Late? Yes, But...

A Fourteen-Year Review of Radical Cystectomy for Transitional Cell Carcinoma Demonstrating the Usefulness of the Concept of Lymph Node Density

Radical Cystectomy in the Treatment of Bladder Cancer: Oncological Outcome and Survival Predictors

BJUI. Principal component analysis based pre-cystectomy model to predict pathological stage in patients with clinical organ-confined bladder cancer

Lymph node dissection: how much is enough?

BJUI. 35% had lymph node involvement at radical cystectomy or subsequent recurrence within the dissection template.

Conclusions. Keywords

Lymphadenectomy with Cystectomy: Is It Necessary

Predicting Clinical Outcomes After Radical Nephroureterectomy for Upper Tract Urothelial Carcinoma

Does skip metastasis or other lymph node parameters have additional effects on survival of patients undergoing radical cystectomy for bladder cancer?

MUSCLE-INVASIVE AND METASTATIC BLADDER CANCER

ORIGINAL ARTICLE. World J Urol (2011) 29: DOI /s

Extent of Pelvic Lymph Node Dissection During Radical Cystectomy: Is Bigger Better?

Development and external validation of nomograms predicting disease-free and cancer-specific survival after radical cystectomy

Research Article Partial Cystectomy after Neoadjuvant Chemotherapy: Memorial Sloan Kettering Cancer Center Contemporary Experience

Clinical Outcomes of Patients with pt0 Bladder Cancer after Radical Cystectomy: A Single-institute Experience

MUSCLE - INVASIVE AND METASTATIC BLADDER CANCER

Radical cystectomy for bladder cancer: oncologic outcome in 271 Chinese patients

EUROPEAN UROLOGY 62 (2012)

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Lymphadenectomy at the Time of Nephroureterectomy for Upper Tract Urothelial Cancer

models; Kaplan meier curves were also extrapolated for each cohort to compare disease specific and overall survival patterns.

Staging and Grading Last Updated Friday, 14 November 2008

Should We Screen for Bladder Cancer in a High Risk Population: A Cost per Life-Year Saved Analysis?

Urologic Oncology: Seminars and Original Investigations xx (2010) xxx. Original article

The Predictors of Local Recurrence after Radical Cystectomy in Patients with Invasive Bladder Cancer

ROBOTIC VS OPEN RADICAL CYSTECTOMY

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Ode to a node Lymph node dissec3on in prostate and bladder cancer

Role of Pelvic Lymphadenectomy in the Treatment of Bladder Cancer: A Mini Review

Sang Eun Lee, Hakmin Lee, Hyun Hwan Sung, Seong Il Seo, Seong Soo Jeon, Hyun Moo Lee, Han-Yong Choi, Byong Chang Jeong

SLN Mapping in Cervical Cancer. Memorial Sloan Kettering Cancer Center New York, USA

Lymph Node Density Affects Cancer-Specific Survival in Patients with Lymph Node Positive Urothelial Bladder Cancer Following Radical Cystectomy

Invasive Bladder Transitional Cell Carcinoma OBJECTIVES

Review Article Lymphadenectomy in Management of Invasive Bladder Cancer

Early radical cystectomy in NMIBC Marko Babjuk

EUROPEAN UROLOGY 61 (2012)

Presentation with lymphadenopathy

Presentation with lymphadenopathy

The Role of Pelvic Lymph Node Dissection During Radical Cystectomy for Bladder Cancer

Collection of Recorded Radiotherapy Seminars

A comparison of preliminary oncologic outcome and postoperative complications between patients undergoing either open or robotic radical cystectomy

Role and extension of lymph node dissection in kidney, bladder and prostate cancer. Omar Ghanem (PGY3 ) Moderator: Dr A. Noujem 30 th March 2017

The Impact of Blue Light Cystoscopy with Hexaminolevulinate (HAL) on Progression of Bladder Cancer ANewAnalysis

Upper urinary tract urothelial carcinomas (UTUC)

Impact of adjuvant chemotherapy on patients with pathological Stage T3b and/or lymph node metastatic bladder cancer after radical cystectomy

BJUI. Prognostic role of ECOG performance status in patients with urothelial carcinoma of the upper urinary tract: an international study

Alicia K. Morgans, MD Assistant Professor of Medicine Division of Hematology/Oncology Vanderbilt University Medical Center January 24, 2015

The Efficacy of Adjuvant Chemotherapy for Locally Advanced Upper Tract Urothelial Cell Carcinoma

Neoadjuvant vs. Adjuvant Chemotherapy for Muscle-Invasive Bladder Cancer

EUROPEAN UROLOGY 56 (2009)

Accepted for publication 12 August 2009 S.F.S. and G.G. are currently at Memorial Sloan-Kettering Cancer Center in New York, NY, USA

Hierro-Majadahonda, Universidad Aut ó noma de Madrid, Madrid, Spain,

1. Introduction. Correspondence should be addressed to Franklin C. Lee; Received 5 August 2013; Accepted 24 October 2013

Bladder Sparing Treatment of Muscle Invasive Bladder Cancer

International Journal of Health Sciences and Research ISSN:

GUIDELINES ON NON-MUSCLE- INVASIVE BLADDER CANCER

Bone Metastases in Muscle-Invasive Bladder Cancer

Influence of stage discrepancy on outcome in. in patients treated with radical cystectomy.

Treatment of Non-Metastatic Muscle-Invasive Bladder Cancer: AUA/ASCO/ASTRO/SUO Guideline

Radical cystectomy with pelvic lymphadenectomy: pathologic, operative and morbidity outcomes in a Brazilian cohort

Impact of renal function on eligibility for chemotherapy and survival in patients who have undergone radical nephro-ureterectomy


Evaluation of regional lymph node dissection in patients with upper urinary tract urothelial cancer

FDG-PET/CT in Gynaecologic Cancers

Nodal staging and lymphadenectomy in patients undergoing radical cystectomy

The Depth of Tumor Invasion is Superior to 8 th AJCC/UICC Staging System to Predict Patients Outcome in Radical Cystectomy.

The Feasibility of Robot-Assisted Laparoscopic Radical Cystectomy with Pelvic Lymphadenectomy: from the Viewpoint of Extended Pelvic Lymphadenectomy

The Rationale for Immunotherapy as an Adjuvant Treatment for Locally Advanced BC

EUROPEAN UROLOGY 58 (2010)

Original Article APMC-276

Best Papers. F. Fusco

Long-Term Oncologic Outcomes after Radical Cystectomy for Bladder Cancer at a Single Institution

Urology Department, Inselspital, Bern, Switzerland. Key Words. Extended pelvic lymph node dissection Bladder cancer Prostate cancer

Large blocks in prostate and bladder pathology

When to Integrate Surgery for Metatstatic Urothelial Cancers

Correspondence should be addressed to Taha Numan Yıkılmaz;

Neoadjuvant chemotherapy for bladder cancer: fighting between evidence 1 level and real life.

Risk groups in bladder cancer patients treated with radical cystectomy

Debate: Adjuvant vs. Neoadjuvant Therapy for Urothelial Cancer

Nomograms for Bladder Cancer

Surgeons Perspective: LN as a Draining Pattern. Jose A. Karam, MD, FACS Associate Professor Department of Urology

1. Introduction. 2. Methods. high-risk NMIBC in men with and without a prior history of RT for PC.

Good Outcome for Patients with Few Lymph Node Metastases After Radical Retropubic Prostatectomy

Title: What is the role of pre-operative PET/PET-CT in the management of patients with

Urological Oncology. Dae Hyeon Kwon, Phil Hyun Song, Hyun Tae Kim.

Koji Ichihara Hiroshi Kitamura Naoya Masumori Fumimasa Fukuta Taiji Tsukamoto

Carcinoma of the Urinary Bladder Histopathology

Urinary Bladder, Ureter, and Renal Pelvis

Open Radical Cystectomy Tips and Tricks in Males and Females

L approccio alle stazioni linfonodali in presentazione di malattia ed all eventuale recidiva nodale: il punto di vista dell urologo

Transcription:

EUROPEAN UROLOGY 61 (2012) 237 242 available at www.sciencedirect.com journal homepage: www.europeanurology.com Platinum Priority Bladder Cancer Editorial by Alexandre R. Zlotta on pp. 243 244 of this issue Clinical Nodal Staging Scores for Bladder Cancer: A Proposal for Preoperative Risk Assessment Shahrokh F. Shariat a,1, *, Behfar Ehdaie a,1, Michael Rink a,b, Eugene K. Cha a, Robert S. Svatek c, Thomas F. Chromecki a,d, Harun Fajkovic a,e, Giacomo Novara f, Scott G. David a, Siamak Daneshmand g, Yves Fradet h, Yair Lotan i, Arthur I. Sagalowsky i, Thomas Clozel a, Patrick J. Bastian j, Wassim Kassouf k, Hans-Martin Fritsche l, Maximilian Burger l, Jonathan I. Izawa m, Derya Tilki j, Firas Abdollah n, Felix K. Chun b, Guru Sonpavde o, Pierre I. Karakiewicz n, Douglas S. Scherr a, Mithat Gonen p a Weill Cornell Medical College, New York, NY, USA; b University Medical Center Hamburg-Eppendorf, Hamburg, Germany; c University of Texas San Antonio, San Antonio, TX, USA; d Medical University of Graz, Graz, Austria; e St. Poelten General Hospital, St. Poelten, Austria; f University of Padua, Padua, Italy; g University of Southern California, Los Angeles, CA, USA; h Laval University, Québec City, Québec, Canada; i University of Texas Southwestern Medical Center, Dallas, TX, USA; j Ludwig-Maximilians-Universität München, Klinikum Grosshadern, Munich, Germany; k McGill University Health Centre, Montréal, Québec, Canada; l Caritas St. Josef Medical Centre, University of Regensburg, Regensburg, Germany; m University of Western Ontario, London, Ontario, Canada; n University of Montréal, Montréal, Québec, Canada; o Baylor College of Medicine, Houston, TX, USA; p Memorial Sloan-Kettering Cancer Center, New York, NY, USA Article info Article history: Accepted October 12, 2011 Published online ahead of print on October 21, 2011 Keywords: Lymph node Radical cystectomy Prognosis Bladder cancer Urothelial carcinoma Survival Abstract Background: Radical cystectomy (RC) with pelvic lymph node dissection (LND) is the standard of care for refractory non-muscle-invasive and muscle-invasive bladder cancer. Although consensus exists on the need for LND, its extent is still debated. Objective: To develop a model that allows preoperative determination of the minimum number of lymph nodes (LNs) needed to be removed at RC to ensure true nodal status. Design, setting, and participants: We analyzed data from 4335 patients treated with RC and pelvic LND without neoadjuvant chemotherapy at 12 academic centers located in the United States, Canada, and Europe. Measurements: We estimated the sensitivity of pathologic nodal staging using a betabinomial model and developed clinical (preoperative) nodal staging scores (cnss), which represent the probability that a patient has LN metastasis as a function of the number of examined nodes. Results and limitations: The probability of missing a positive LN decreased with an increasing number of nodes examined (52% if 3 nodes were examined, 40% if 5 were examined, and 26% if 10 were examined). A cnss of 90% was achieved by examining 6 nodes for clinical Ta-Tis tumors, 9 nodes for ct1 tumors, and 25 nodes for ct2 tumors. In contrast, examination of 25 nodes provided only 77% cnss for ct3-t4 tumors. The study is limited due to its retrospective design, its multicenter nature, and a lack of preoperative staging parameters. Conclusions: Every patient treated with RC for bladder cancer needs an LND to ensure accurate nodal staging. The minimum number of examined LNs for adequate staging depends preoperatively on the clinical T stage. Predictive tools can give a preoperative estimation of the likelihood of nodal metastasis and thereby allow tailored decisionmaking regarding the extent of LND at RC. # 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved. 1 Both authors contributed equally to the manuscript. * Corresponding author. Brady Urologic Health Center, Weill Cornell Medical College, 525 East 68th St., Box 94, Starr 900, New York, NY 10065, USA. E-mail address: sfshariat@gmail.com (S.F. Shariat). 0302-2838/$ see back matter # 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved. doi:10.1016/j.eururo.2011.10.011

238 EUROPEAN UROLOGY 61 (2012) 237 242 1. Introduction Radical cystectomy (RC) with bilateral pelvic lymph node dissection (LND) is the standard of care for refractory non-muscle-invasive and muscle-invasive bladder cancer. Despite advancements in surgical technique, imaging, perioperative management, and chemotherapy, approximately 50% of patients develop metastases and die from their disease [1 3]. Lymph node (LN) positivity is a critical factor for disease-specific survival and a primary determinant of therapeutic course following surgery. Multiinstitutional series of patients treated with RC have shown that approximately 80% of patients with pathologic nodepositive disease experience disease recurrence, compared with 30% of patients with extravesical disease and pathologically negative LN [4 6]. Several studies have found that in addition to nodal status, the extent of LND (defined by number of nodes removed, the number of positive nodes detected, and LN density) can have prognostic and therapeutic implications [7 9]. In an effort to reduce understaging and maximize survival, many studies have tried to establish a minimum number of LNs needed to be taken at time of RC [10 12]. While a minimum number of LNs needed to be removed has been proposed, the survival probability continues to improve with increasing number of LNs removed [7 13]. The discrepancy between studies in the number of LNs needed to be removed may be due to extent of dissection, pathologic factors (ie, the manner in which specimens are submitted or interpreted by pathologists), and variability in patients pelvic anatomy [14]. The difference in disease severity between study populations likely also contributed to the discrepancies. Indeed, the rate of LN metastasis increases from a low of 5 10% in non-muscle-invasive bladder tumors (pt0, pta, ptis, pt1) to 15 20% in superficial muscle-invasive tumors (pt2a), to 25 30% in deep muscleinvasive tumors, and to >40% in extravesical tumors (pt3-4) [1 3,5,6,15]. We hypothesized that the number of LNs needed to be removed to ensure accurate nodal staging could be predicted based on clinical (preoperative) tumor stage. Recently, Gonen et al. used a beta-binomial model to estimate the probability that a colorectal cancer patient is correctly staged as node negative [16]. Using a similar approach, we developed a model that uses the clinical (preoperative tumor stage) to determine the number of nodes needed to be removed at RC to determine the true nodal status. 2. Methods 2.1. Patient selection and data collection Prior to analysis, the database was frozen and the final data set was produced. A total of 12 academic centers worldwide provided data. This study comprised 4335 patients who underwent RC with bilateral pelvic LND between 1980 and 2008. No patient received preoperative radiotherapy or chemotherapy. No patient had distant metastatic disease at the time of RC. 2.2. Pathologic evaluation All surgical specimens were processed according to standard pathologic procedures as discussed by Shariat et al. [5]. Genitourinary pathologists assigned pathologic stage, which was reassigned according to the 2002 American Joint Committee on Cancer (AJCC) Tumor, Node, Metastasis (TNM) staging system. All lymphoid tissue removed was submitted for histologic examination. The extent of LND was at the surgeon s discretion. Extended LND was not routinely performed. Clinical stage was assigned based on the information from the pathologic evaluation of the transurethral resection (TUR) specimen, bimanual examination, and imaging study results. 2.3. Statistical analysis The method we followed is identical to an earlier work on colon cancer [16]. Briefly, we were concerned with the probability of incorrect nodal staging as a function of the number of examined nodes. The true nodal status is unascertainable, but information from node-positive patients can used to determine if the number of nodes examined and the number of these that are negative are sufficient to classify a patient as node negative. Consider a patient with a large number of examined nodes and small, positive k, wherek is the number of positive nodes from patients with node involvement: If fewer nodes were examined, there would be a chance that this patient would be incorrectly deemed node negative. Conversely, for a patient with a small number of examined nodes and large k, itisunlikelythatnodaldiseasewouldhavebeen missed, even though fewer nodes were examined. Hence, the data from node-positive patients were used to interpret the data for the nodenegative patients. The probability that a node-negative patient has nodal disease can be computed using the following algorithm: Compute the probability of missing a positive node, compute the prevalence, and compute the nodal staging score from sensitivity and prevalence. 2.3.1. Probability of missing a positive node The probability of missing a positive node (1, the sensitivity) is inherent to the process of pathologic detection and, as such, depends on the number of examined nodes but not on patient characteristics. We used a beta-binomial model for this purpose, allowing for heterogeneity in the intensity of nodal spread across patients. Two key assumptions underlie this step: (1) There are no false positives (if the specimen contains a positive node, it will be correctly identified by the pathologist), and (2) sensitivity is the same for node-positive and node-negative patients. These assumptions may not be completely tenable, but we find them to be sufficient approximations to our biologic understanding of nodal spread and clinical practice of nodal staging. This was an institutional review board approved study, with all participating sites providing the necessary institutional data-sharing agreements prior to initiation. A computerized databank was generated for data transfer. After combining the data sets, reports were generated for each variable to identify data inconsistencies and other data integrity problems. Through regular communication with all sites, resolution of all identified anomalies was achieved before analysis. 2.3.2. Estimation of prevalence of nodal disease The observed prevalence was an underestimate and needed to be adjusted for false negatives. This was done in two steps. The first step invokes Assumption 1 and estimates #FN k as a function of k: ½ #FN k ¼ 1 PðFN kþš#tp k PðFN k Þ

EUROPEAN UROLOGY 61 (2012) 237 242 239 Table 1 Characteristics of the 4335 patients treated with radical cystectomy with pelvic lymphadenectomy Patients, no. Patients, % Clinical T stage Ta 138 3.2 Tis 316 7.3 T1 1114 25.7 T2 2450 56.5 T3-T4 317 7.3 Pathologic T stage T0-Ta-Tis 774 17.9 T1 585 13.5 T2 1042 24.0 T3-T4 1934 44.6 Pathologic N stage Negative 3216 74.2 Positive 1119 25.8 Median Range Age, yr 67 23 93 Examined nodes, no. 18 1 136 Removed nodes in patients with positive nodes, no. 18 1 136 Positive nodes in patients with positive nodes, no. 2 1 93 In this step, #TP k is the number of true positives for a given k. Since prevalence is not a function of k, the second step obtains the adjusted prevalence by averaging over k: P kð Prev ¼ FN k þ TP k Þ P kð FN k þ TP k þ TN k Þ Estimation of prevalence was stratified by T stage for clinical (preoperative) nodal staging scores (cnss), but this is not explicitly noted in the above formula to avoid cumbersome notation. 2.3.3. Nodal staging score Adequate staging was assessed by computing NSS, the probability that a pathologically node-negative patient is indeed free of nodal disease: 1 Prev NSS ¼ 1 Prev þ ½PrevPðFN k ÞŠ 2.3.4. Confidence intervals The precision of the reported estimates was assessed by creating 2000 bootstrap samples from the entire data set and replicating the estimation process [17]. We formed 95% confidence intervals (CIs) using this bootstrap estimate of the corresponding sampling distributions. [(Fig._1)TD$FIG] Analyses were performed with SPSS 17 (IBM Corp., Armonk, NY, USA). 3. Results Table 1 shows the descriptive characteristics of the patients. The median number of removed LNs was 18 (quartiles: 11 31) and 74.2% of the patients were deemed node negative. LN metastases were present in 32 of 774 (4.1%) pt0/ta/tis patients, 40 of 585 (6.8%) pt1 patients, 188 of 1042 (18.0%) pt2 patients, and 859 of 1934 (44.4%) pt3-4 patients. Using our model, the beta-binomial parameters a and b were estimated to be 0.194 (95% CI, 0.189 0.199) and 0.306 (95% CI, 0.301 0.311). The resulting probability of missing nodal disease (1 the sensitivity) as a function of the number of LN examined is plotted in Figure 1. As expected, the probability of missing nodal disease decreased as the number of nodes examined increased (Table 2): If only a single node was examined in all patients, 76% of nodal disease would be missed. Even with 11 nodes examined (observed median), 24% of the nodepositive patients would be incorrectly staged. Sensitivity of nodal staging exceeded 80% only when 15 nodes were examined. The clinical nodal staging score is presented in Table 3 and Figure 2. For Ta-Tis tumors, six examined nodes provide 90% confidence that the patient was, indeed, node negative. For the same level of confidence, one would need 9 nodes for T1, and 25 for T2 tumors. Even with 30 examined nodes, the probability of incorrect nodal staging remains 20%. Bootstrap CIs for all the estimates reported in Table 2 and Table 3 are all within 1% (in absolute terms) of the estimates (data not shown). Table 2 Probability of missing nodal disease for selected values of examined nodes in 4335 patients treated with radical cystectomy with pelvic lymphadenectomy Nodes examined, no. 1 3 5 8 10 15 20 25 Fig. 1 Probability of missing nodal disease as a function of nodes examined in 4335 patients who were treated with radical cystectomy with pelvic lymphadenectomy. Probability of missing nodal disease, % 76 52 40 30 26 19 15 13

240 EUROPEAN UROLOGY 61 (2012) 237 242 Table 3 Clinical nodal staging score for selected values of numbers of nodes examined in 4335 patients who were treated with radical cystectomy with pelvic lymphadenectomy * Nodes examined, no. 2 5 8 10 15 20 25 30 Tumor stage, % Ta-Tis 84.3 89.2 91.7 92.8 94.5 95.6 96.3 96.8 T1 80.8 86.6 89.6 91.0 93.1 94.4 95.3 95.9 T2 65.7 74.7 79.8 82.1 86.0 88.5 90.2 91.4 T3-T4 45.4 52.0 59.2 62.8 69.4 73.9 77.1 79.7 * This score can be used to find the probability of having nodal disease despite a pathologic N0 classification. The number corresponding to patient s T stage and the number of examined nodes is the percent probability of patient having node-negative disease. [(Fig._2)TD$FIG] Fig. 2 Sensitivity of the pathologic evaluation of nodal disease stratified by clinical tumor stage in 4335 patients who were treated with radical cystectomy with pelvic lymphadenectomy. Vertical axis is the probability of missing nodal disease (1 sensitivity) and horizontal axis is the number of examined nodes. 4. Discussion Researchers have tried to identify the minimum necessary number of LNs needed to be removed at RC. However, the analysis of a large tertiary care center s database revealed that the probability of survival continues to rise as the number of LNs removed increases and that no minimum number of LNs can be determined [12]. One potential limitation of that and previous studies is that they did not adjust for clinical factors. To address this need, the primary aim of our study was to assess whether every patient needs the same extent of LND, and if not, whether we could identify a minimal number of LN needed based on clinical tumor stage. We found that the number of LNs needed to be removed varies largely among patients according to their tumor stage. However, in accordance with previous studies, we found that every patient treated with RC for bladder cancer, even those with cta-tis, needs an LND to ensure accurate nodal staging. On the other hand, even an extended LND does not ensure 100% accuracy with regard to nodal status. Indeed, different studies have shown 8% extrapelvic skip lesions above the aortic bifurcation, although these skip lesions have not been reported exclusively above the extended LND template [8,18]. However, not all patients benefit from an extended LND. Furthermore, extended LND may incur morbidity. Therefore, an estimation of the minimum number of LNs needed to be removed to ensure detection of possible cancer-burdened LNs could help establish an individualized risk-based determination of the extent of LND each patient should undergo. We found that clinical tumor stage is a powerful predictor of the number of LNs needed to be removed to ascertain LN status. In patients with clinical Ta-Tis disease, at least six LNs need to be removed to achieve 90% confidence that the patient is node negative. Up to 6% of patients with refractory ctis treated with RC harbor LN metastasis [19]. Moreover, 71% and 32 48% of patients with cta and ctis, respectively, are upstaged at RC to pathologic T1 or higher [20,21]. One potential reason for this relatively high range of discrepancy between clinical and pathologic stage could be the lack of routine restaging TUR and currently inadequate imaging technology [22]. While one cannot extrapolate from the number of LNs removed to the surgical template, an LND limited to the true pelvis or even to the obturator fossa in patients with cta-tis seems adequate. Conversely, in patients with ct1, at least 10 LNs need to be removed to ensure 90% probability of ascertaining true nodal status. In ct2 bladder cancer patients, removal of 25 LNs results in a >90% probability of ascertaining true nodal status. In ct3-4 bladder cancer, the 90% probability is not reached, with an asymptotic approach to a maximum 80% probability of detecting a positive LN. One possible reason for this is the higher likelihood of skip lesions outside of the regular template in patients with locally advanced tumor stage [23]. Taking these data together, it seems that a safe approach would be to recommend an extended LND in patients with stage ct1 and higher bladder cancer. In patients with ct3-4 bladder cancer, one has to realize that even with an extended LND, there is the probability of missing 20% of LN metastasis. This further reinforces the need of multimodal therapy in patients with pt2 or greater disease. We developed a simple probabilistic model to predict the number of LNs needed to be removed as a function of clinical determinants of stage, including pathologic examination of the TUR specimen, bimanual examination, and imaging studies. Generally, the extent of LND is performed based on the surgeon s intuitive experience integrating his beliefs and patient factors such as health status and tumor features. Our model is a simple tool that could guide preoperative clinical decision-making regarding the extent

EUROPEAN UROLOGY 61 (2012) 237 242 241 of LND. Performing an extended LND in all patients would result in overtreatment of many patients, with resulting side effects and cost. While an extended pelvic LND is not associated with increased morbidity compared with a limited LND in experienced hands, the risk of longer operative time and associated complications needs to be determined for each individual patient [8,24]. In contrast, removing too few LNs may result in inaccurate staging and possibly inferior survival [8,9,25,26]. However, neither intuition nor nomograms [6] can give a personalized risk/ benefit analysis integrating threshold probabilities based on individual preferences. Our tool may enable the physician and the patient to engage in shared decision making and determine risks by incorporating the risk of missing a positive node compared with the risk/benefit of an extended LND. Therefore, our cnss can be incorporated to individualize treatment and demonstrates the incremental improvement of nodal stage accuracy with each individual node resected. Nevertheless, our study has some limitations. First and foremost are limitations inherent to its retrospective design and multicenter nature, as well as the lack of routine repeat TUR [27], failure to control for the quality of the TUR [28], and failure to control for other preoperative prognostic factors, such as lymphovascular invasion [29]. Other limitations include the variability in preoperative imaging and pathologic evaluation, as well as differences in treatment decisions and surgical technique. Newer imaging techniques such as positron emission tomography/ computer tomography and magnetic resonance imaging with ultrasmall superparamagnetic iron oxide may allow better decision making about the extent of LND [30]. In addition, the number of LNs removed is not only a factor of the extent of LND but also is dependent on the pathologic evaluation and inherent differences between patients. Moreover, the number of LNs removed is not an exact surrogate for the extent of LND. Central pathology review was not performed, which might have an undefined impact, given differences in the rigor used by different pathologists to identify LNs. Conversely, our data reflect a real-world multicenter experience and pathologic examination was performed by genitourinary pathologists in major academic centers. Our study did not examine the differential impact of the extent of LND on long-term outcomes; two randomized trials are comparing a standard with extended extent of LND and may shed more light on this issue. Finally, the location of LNs is important. Removing nodes from an area of high likelihood of malignancy may be more valuable than removing nodes less likely to be involved with cancer [23]. 5. Conclusions We found that the risk of LN metastases and the number of LNs needed to be removed to ensure true node-negative status increases with advancing clinical stage. There is no one-size-fits-all for LND in patients treated with RC for bladder cancer. While all patients need an LND, a limited LND seems sufficient in patients with cta-tis, while an extended LND should be recommended for those with ct1 and higher stage. In patients with ct3-4, even an extended LND still misses about 20% of LN metastasis. We developed a simple cnss to aid preoperative clinical decision making about the extent of LND in patients for whom RC for bladder cancer is planned. After validation, such a tool could help physicians decide treatment strategies prior to RC and tailor the extent of LND at RC. Author contributions: Shahrokh F. Shariat had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Shariat, Ehdaie, Gonen. Acquisition of data: Svatek, Novara, Lotan, Sagalowsky, Fradet, Kassouf, Fritsche, Bastian, Burger, Izawa, Tilki, Abdollah, Scherr, Shariat. Analysis and interpretation of data: Shariat, Gonen. Drafting of the manuscript: Shariat, Ehdaie, Rink, Cha. Critical revision of the manuscript for important intellectual content: Shariat, Ehdaie, Rink, Cha, Svatek, Chromecki, Fajkovic, Novara, David, Daneshmand, Fradet, Lotan, Sagalowsky, Clozel, Bastian, Kassouf, Fritsche, Burger, Izawa, Tilki, Abdollah, Chun, Sonpavde, Karakiewicz, Scherr, Gonen. Statistical analysis: Shariat, Gonen. Obtaining funding: None. Administrative, technical, or material support: None. Supervision: Gonen, Shariat. Other (specify): None. Financial disclosures: I certify that all conflicts of interest, including specific financial interests and relationships and affiliations relevant to the subject matter or materials discussed in the manuscript (eg, employment/ affiliation, grants or funding, consultancies, honoraria, stock ownership or options, expert testimony, royalties, or patents filed, received, or pending), are the following: M. Burger has consulted and lectured for Astellas Pharma, GE Healthcare, and Photocure ASA. Funding/Support and role of the sponsor: None. References [1] Madersbacher S, Hochreiter W, Burkhard F, et al. Radical cystectomy for bladder cancer today a homogeneous series without neoadjuvant therapy. J Clin Oncol 2003;21:690 6. [2] Shariat SF, Karakiewicz PI, Palapattu GS, et al. Outcomes of radical cystectomy for transitional cell carcinoma of the bladder: a contemporary series from the Bladder Cancer Research Consortium. J Urol 2006;176:2414 22, discussion 2422. [3] Stein JP, Lieskovsky G, Cote R, et al. Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 2001;19:666 75. [4] Karakiewicz PI, Shariat SF, Palapattu GS, et al. Nomogram for predicting disease recurrence after radical cystectomy for transitional cell carcinoma of the bladder. J Urol 2006;176:1354 61, discussion 1361 2. [5] Shariat SF, Karakiewicz PI, Palapattu GS, et al. Nomograms provide improved accuracy for predicting survival after radical cystectomy. Clin Cancer Res 2006;12:6663 76. [6] Karakiewicz PI, Shariat SF, Palapattu GS, et al. Precystectomy nomogram for prediction of advanced bladder cancer stage. Eur Urol 2006;50:1254 62, discussion 1261 2. [7] Capitanio U, Suardi N, Shariat SF, et al. Assessing the minimum number of lymph nodes needed at radical cystectomy in patients with bladder cancer. BJU Int 2009;103:1359 62.

242 EUROPEAN UROLOGY 61 (2012) 237 242 [8] Leissner J, Ghoneim MA, Abol-Enein H, et al. Extended radical lymphadenectomy in patients with urothelial bladder cancer: results of a prospective multicenter study. J Urol 2004;171:139 44. [9] May M, Herrmann E, Bolenz C, et al. Association between the number of dissected lymph nodes during pelvic lymphadenectomy and cancer-specific survival in patients with lymph node-negative urothelial carcinoma of the bladder undergoing radical cystectomy. Ann Surg Oncol 2011;18:2018 25. [10] Herr HW, Bochner BH, Dalbagni G, et al. Impact of the number of lymph nodes retrieved on outcome in patients with muscle invasive bladder cancer. J Urol 2002;167:1295 8. [11] Konety BR, Joslyn SA, O Donnell MA. Extent of pelvic lymphadenectomy and its impact on outcome in patients diagnosed with bladder cancer: analysis of data from the Surveillance, Epidemiology and End Results Program data base. J Urol 2003;169:946 50. [12] Koppie TM, Vickers AJ, Vora K, Dalbagni G, Bochner BH. Standardization of pelvic lymphadenectomy performed at radical cystectomy: can we establish a minimum number of lymph nodes that should be removed? Cancer 2006;107:2368 74. [13] Hugen CM, Polcari AJ, Fitzgerald MP, et al. Risk factors for recurrence following radical cystectomy for pathologic node negative bladder cancer. J Surg Oncol 2010;102:334 7. [14] Bochner BH, Cho D, Herr HW, et al. Prospectively packaged lymph node dissections with radical cystectomy: evaluation of node count variability and node mapping. J Urol 2004;172:1286 90. [15] Kassouf W, Agarwal PK, Herr HW, et al. Lymph node density is superior to TNM nodal status in predicting disease-specific survival after radical cystectomy for bladder cancer: analysis of pooled data from MDACC and MSKCC. J Clin Oncol 2008;26:121 6. [16] Gonen M, Schrag D, Weiser MR. Nodal staging score: a tool to assess adequate staging of node-negative colon cancer. J Clin Oncol 2009; 27:6166 71. [17] Efron B, Tisbshirani R. An Introduction to the Bootstrap. New York, NY: Chapman and Hall; 1994. [18] Roth B, Wissmeyer MP, Zehnder P, et al. A new multimodality technique accurately maps the primary lymphatic landing sites of the bladder. Eur Urol 2010;57:205 11. [19] Tilki D, Reich O, Svatek RS, et al. Characteristics and outcomes of patients with clinical carcinoma in situ only treated with radical cystectomy: an international study of 243 patients. J Urol 2010; 183:1757 63. [20] Shariat SF, Palapattu GS, Karakiewicz PI, et al. Discrepancy between clinical and pathologic stage: impact on prognosis after radical cystectomy. Eur Urol 2007;51:137 49, discussion 149 51. [21] Svatek RS, Shariat SF, Novara G, et al. Discrepancy between clinical and pathological stage: external validation of the impact on prognosis in an international radical cystectomy cohort. BJU Int 2011; 107:898 904. [22] Herr HW, Donat SM. A re-staging transurethral resection predicts early progression of superficial bladder cancer. BJU Int 2006;97: 1194 8. [23] Vazina A, Dugi D, Shariat SF, et al. Stage specific lymph node metastasis mapping in radical cystectomy specimens. J Urol 2004;171: 1830 4. [24] Brossner C, Pycha A, Toth A, Mian C, Kuber W. Does extended lymphadenectomy increase the morbidity of radical cystectomy? BJU Int 2004;93:64 6. [25] Dhar NB, Klein EA, Reuther AM, et al. Outcome after radical cystectomy with limited or extended pelvic lymph node dissection. J Urol 2008;179:873 8, discussion 878. [26] Steven K, Poulsen AL. Radical cystectomy and extended pelvic lymphadenectomy: survival of patients with lymph node metastasis above the bifurcation of the common iliac vessels treated with surgery only. J Urol 2007;178:1218 23, discussion 1223 4. [27] Divrik RT, Şahin AF, Yildirim Ü, Altok M, Zorlu F. Impact of routine second transurethral resection on the long-term outcome of patients with newly diagnosed pt1 urothelial carcinoma with respect to recurrence, progression rate, and disease-specific survival: a prospective randomised clinical trial. Eur Urol 2010;58: 185 90. [28] Mariappan P, Zachou A, Grigor KM, for the Edinburgh Uro-Oncology Group. Detrusor muscle in the first, apparently complete transurethral resection of bladder tumour specimen is a surrogate marker of resection quality, predicts risk of early recurrence, and is dependent on operator experience. Eur Urol 2010;57:843 9. [29] Cho KS, Seo HK, Joung JY, et al. Lymphovascular invasion in transurethral resection specimens as predictor of progression and metastasis in patients with newly diagnosed T1 bladder urothelial cancer. J Urol 2009;182:2625 30. [30] Cowan NC, Crew JP. Imaging bladder cancer. Curr Opin Urol 2010;20:409 13.