Basic Characteristics of Oligodendrogliomas at the Shohada-e Tajrish Hospital (2008 to 2014)

Similar documents
Anatomic locations in high grade glioma

Anaplastic Oligodendroglioma in an Adolescent Male; A rare case Report and Review of the Literature.

Epidemiology and outcome research of glioma patients in Southern Switzerland: A population based analysis

Zurich Open Repository and Archive. Procarbazine and CCNU as initial treatment in gliomatosis cerebri

Cerebral Lymphoma: Clinical and Radiological Findings in 90 Cases

Prior to 1993, the only data available in the medical

The Radiologic Evaluation of Glioblastoma (GBM) and Differentiation from Pseudoprogression

Anaplastic Pilocytic Astrocytoma: The fusion of good and bad

CASE OF THE WEEK PROFESSOR YASSER METWALLY

Radioterapia no Tratamento dos Gliomas de Baixo Grau

Background. Central nervous system (CNS) tumours. High-grade glioma

Morphological features and genetic alterations

Survival of High Grade Glioma Patients Treated by Three Radiation Schedules with Chemotherapy: A Retrospective Comparative Study

Histopathological Spectrum of Central Nervous System Tumors: A Single Centre Study of 100 Cases

MolDX: Chromosome 1p/19q deletion analysis

PROPOSED/DRAFT Local Coverage Determination (LCD): MolDX: Chromosome 1p/19q deletion analysis (DL36483)

In 1988 Dumas-Duport et al. first used

Pediatric Brain Tumors: Updates in Treatment and Care

Response to postoperative radiotherapy as a prognostic factor for patients with low-grade gliomas

Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, Minn.

Integrating molecular markers into the World Health Organization classification of CNS tumors: a survey of the neuro-oncology community

AMERICAN BRAIN TUMOR ASSOCIATION. Oligodendroglioma and Oligoastrocytoma

Carmustine implants and Temozolomide for the treatment of newly diagnosed high grade glioma

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

Rapid recurrence of a malignant meningioma: case report

Oligodendrogliomas & Oligoastrocytomas

Original Article The potential risk factors for atypical and anaplastic meningiomas: clinical series of 1,239 cases

Pathologic Characteristics and Treatment Outcome of Patients with Malignant Brain Tumors: A Single Institutional Experience from Iran

Systemic Treatment. Third International Neuro-Oncology Course. 23 May 2014

CNS SESSION 3/8/ th Multidisciplinary Management of Cancers: A Case based Approach

Low grade glioma: a journey towards a cure

Dysembryoplastic Neuroepithelial Tumor (DNT): Morphological and Immunohistochemical Features

HEMORRHAGIC GLIOBLASTOMA MULTIFORM: PREVALENCE, PREDISPOSING FACTORS AND PROGNOSIS AMONG ADULT KFMC PATIENTS.

AMERICAN BRAIN TUMOR ASSOCIATION. Oligodendroglioma and Oligoastrocytoma

Visual Rating Scale Reference Material. Lorna Harper Dementia Research Centre University College London

Gangliogliomas: A Report of Five Cases

Astroblastoma: Radiologic-Pathologic Correlation and Distinction from Ependymoma

Oligodendroglioma: Toward Molecular Definitions in Diagnostic Neuro-Oncology

The incidence of gliomas has increased worldwide

The New WHO Classification and the Role of Integrated Molecular Profiling in the Diagnosis of Malignant Gliomas

Long-term follow-up in adult patients with low-grade glioma (WHO II) postoperatively irradiated. Analysis of prognostic factors

UPDATES ON CHEMOTHERAPY FOR LOW GRADE GLIOMAS

21/03/2017. Disclosure. Practice Changing Articles in Neuro Oncology for 2016/17. Gliomas. Objectives. Gliomas. No conflicts to declare

In 2005, Wang and coworkers 1 described a report of 8

Gliomas in the 2016 WHO Classification of CNS Tumors

The Utility of MR in Planning the Radiation Therapy of Oligodendroglioma

Neuro-Oncology Practice

Survival, Prognostic Factors, and Therapeutic Efficacy in Low-Grade Glioma: A Retrospective Study in 379 Patients

PROCARBAZINE, lomustine, and vincristine (PCV) is

4.4 CNS malignancy. Radiotherapy fractionation in the CNS

Fourth Ventricular Lesions in Metastatic Gliomas: A Rare Predilection?

Examining large groups of cancer patients to identify ways of predicting which therapies cancers might respond to.

성균관대학교삼성창원병원신경외과학교실신경종양학 김영준. KNS-MT-03 (April 15, 2015)

Symtomatic Subependymoma Of The Lateral Ventricle: A Rare Entity A Case report and review of literature

PRESURGICAL PLANNING. Strongly consider neuropsychological evaluation before functional imaging study Strongly consider functional imaging study

Pediatric and Adolescent Oligodendrogliomas

Clinicopathological Diagnosis of Gliomatosis Cerebri

Key Words. Oligodendroglioma Oligoastrocytoma 1p 19q MGMT Temozolomide

Scottish Medicines Consortium

Recent reports have shown that many oligodendroglial

THE EFFECTIVE OF BRAIN CANCER AND XAY BETWEEN THEORY AND IMPLEMENTATION. Mustafa Rashid Issa

Citation Pediatrics international (2015), 57.

Neuro-Oncology. Martin J. van den Bent. Department of Neuro-oncology/Neurology, Erasmus M.C. Cancer Institute, Rotterdam, Netherlands

Relationship of P53 Protein With Histopathology Degree of Intracranial Astrocytoma at Haji Adam Malik Hospital Medan

PRINCESS MARGARET CANCER CENTRE CLINICAL PRACTICE GUIDELINES

Oligodendroglioma: imaging findings, radio-pathological correlation and evolution

Chemotherapy plus Radiotherapy versus Radiotherapy Alone for Patients with Anaplastic Oligodendroglioma: Long Term Results of RTOG 9402

Review of Longitudinal MRI Analysis for Brain Tumors. Elsa Angelini 17 Nov. 2006

The Nervous System. Divisions of the Nervous System. Branches of the Autonomic Nervous System. Central versus Peripheral

5-hydroxymethylcytosine loss is associated with poor prognosis for

Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: the EORTC randomised trial

2017 Diagnostic Slide Session Case 3

Neuroanatomy lecture (1)

A population-based study of the incidence and survival rates in patients with pilocytic astrocytoma

SUPPLEMENTARY INFORMATION

Prognostic Factors of Atypical Meningioma : Overall Survival Rate and Progression Free Survival Rate

Oligodendroglioma Metastatic to Bone Marrow

Ma l i g n a n t glial tumors are located most frequently. Exophytic giant cell glioblastoma of the medulla oblongata. Case report.

University of Zurich. Temozolomide and MGMT forever? Zurich Open Repository and Archive. Weller, M. Year: 2010

MANAGEMENT N OF PRIMARY BRAIN TUMOURS IN THE ELDERLY

The Ki-67 labeling index as a prognostic factor in Grade II oligoastrocytomas

Outcome and Prognostic Features in Pediatric Gliomas

Population-based incidence and survival of central nervous system (CNS) malignancies in Girona (Spain)

CS Tumor Size CS Extension CS Tumor Size/Ext Eval CS Lymph Nodes CS Lymph Nodes Eval Reg LN Pos Reg LN Exam CS Mets at DX CS Mets Eval

CACA. Original Article. Wei 鄄 Ying Yue 1,2*, Ke Sai 1,2*, Qiu 鄄 Liang Wu 1,3, Yun 鄄 Fei Xia 1,4, Su 鄄 Huan Yu 5 and Zhong 鄄 Ping Chen 1,2

IAP XXVI International Congress Slide Seminar 07 (SS07)

Journal of Biostatistics and Epidemiology

The CNS and PNS: How is our Nervous System Organized?

Anna Maria Buccoliero Department of Biomedicine, Careggi Hospital Florence

Brain and CNS Cancer. Measurability of Quality Performance Indicators Version 3.0

CNS pathology Third year medical students. Dr Heyam Awad 2018 Lecture 12: CNS tumours 2/3

SPECIAL SLIDE SEMINAR CASE 3

Contemporary Management of Glioblastoma

Treatment with Tumor-Treating Fields therapy and pulse dose bevacizumab in patients with bevacizumab-refractory recurrent glioblastoma: A case series.

Case Report Atypical Presentation of Atypical Teratoid Rhabdoid Tumor in a Child

Correlation of Neurodevelopmental Outcome and brain MRI/EEG findings in term HIE infants

Modeling origin and natural evolution of low-grade gliomas

Molecular analysis of anaplastic oligodendroglial tumors in a prospective randomized study: A report from EORTC study 26951

ASJ. Myxopapillary Ependymoma of the Cauda Equina in a 5-Year-Old Boy. Asian Spine Journal. Introduction

Neuropathology Evening Session: Case 3

Transcription:

Original Article Iran J Pathol. 2017; 12(3): 241-247 Iranian Journal of Pathology ISSN: 2345-3656 Basic Characteristics of Oligodendrogliomas at the Shohada-e Tajrish Hospital (2008 to 2014) Mahsa Ahadi 1, Afshin Moradi 1, Azadeh Rakhshan 1, Alireza Arefian 1, Mitra Rafizadeh 1, Hanieh Zham 1 1. Cancer Research Center, Shohada-e Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran KEYWORDS ABSTRACT Oligodendrogliomas Central nervous system Location Grade Age Article Info Received 15 Jan 2016; Accepted 26 Jul 2016; Published Online 01 Jul 2017; Background and Objectives: Gliomas are the most prevalent subgroup of primary brain tumors with a relatively high mortality. However, oligodendrogliomas have a better prognosis compared to other subtypes due to their sensitivity to chemotherapy. Considering the low incidence and the resulting lack of information about oligodendrogliomas, particularly in Iran, this study aimed at assessing their basic characteristics. Methods:In this descriptive retrospective study, patients with definite diagnosis of oligodendroglioma were identified by reviewing the archives of pathology reports at the department of pathology of Shohada-e Tajrish Hospital during years 2008 to 2014. Age, gender, location, and the grade of the tumor were extracted and entered to the SPSS statistical software for analysis. Results: A total of 182 patients, including 115 males (63.2%) and 67 females (36.8%), were included with a mean age of 38.5±13.36 years. Frontal lobe was involved in 53 patients (29.1%), parietal lobe in 31 (17.0%), temporal lobe in 22 (12.1%), frontoparietal area in 15 (8.2%), parieto-occipital area in 11 (6.0%), temporoparietal and frontotemporal areas each in 9 subjects (4.9%), occipital lobe in 5 (2.7%), and the brainstem in 4 (2.2%). Furthermore, 108 cases (59.3%) had grade- 2 and the remaining74 patients (40.7%) had grade-3 anaplastic oligodendrogliomas. The mean age of subjects with brainstem oligodendrogliomas was significantly lower than the other patients (p=0.025). Conclusion: Oligodendrogliomas commonly effects the frontal lobe, followed by the parietal and temporal lobes. The mean age of subjects with brainstem lesions was significantly lower than other patients. Age, gender or location of the tumor did not independently predict a higher grade lesion. Corresponding Information: Hanieh Zham, Address: Pathology department, Shohada-e Tajrish Hospital, Tajrish Square, Tehran, Iran,Phone number: +982122718049, +989123023947,Postal code: 1989934148,Email: dr.hanieh.zham@gmail.com Copyright 2017,. This is an open-access article distributed under the terms of the Creative Commons Attribution-noncommercial 4.0 International License which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited. Introduction: Gliomas are the most prevalent subgroup of primary brain tumors, a heterogeneous group of uncommon brain cancers with a relatively high mortality. However, there is a rare type among these tumors that are considered to have a better prognosis compared to other subtypes, due to their sensitivity to chemotherapy, known as Oligodendrogliomas (1-10). Recently, a correlation has been found between the response of these tumors to chemotherapy with certain genetic anomalies, including loss of 1p and 19q (1, 5, 7, 8, 11). Oligodendrogliomas commonly effect adults aged 40 to 60 years old, and a slight male preponderance has been observed in these cases (12-14). The slowly progressing tumors usually

242 Basic Characteristics of Oligodendrogliomas originate from the white matter of the brain and the frontal lobe is involved in more than half of the cases. The characteristic diffusely infiltrative growth of oligodendrogliomas leads to a high risk of seizures in patients during the course of their disease (12, 15-17). No risk factors have been identified for these tumors, yet, a few cases have been found with a history of radiation for other reasons (18). The incidence rate reported for oligodendrogliomas of all gliomas ranges from 4% to 33% in different studies (4, 18-22). The differences between previous reports could be attributed to improvements in diagnosis of tumors due to an increased accessibility to diagnostic scans and greater knowledge about the prognosis of the disease. Changes in definition, classification and diagnosis of these tumors might be another reason for the wide range in the documented incidence rates (20, 22). Considering the low incidence of oligodendrogliomas and the resulting lack of information on this subject, particularly in Iran, the present study aimed at providing basic characteristics of oligodendroglioma tumors diagnosed in patients referred to Shohada-e Tajrish Hospital during a 7- year period from 2008 to 2014. Methods: In this descriptive retrospective study, patients with definite diagnosis of oligodendroglioma, determined by histopathological evaluations, were identified by reviewing the archives of pathology reports documented at the department of pathology of Shohada-e Tajrish Hospital during years 2008 to 2014. Age, gender, location and grade of the tumor were extracted from medical records and entered in the SPSS software v.22 (23) for statistical analysis. The extracted data were used anonymously and the patients information was regarded confidential throughout the research. The study protocol was evaluated and approved by the Ethics Committee of Shahid Beheshti University of Medical Sciences. Descriptive results were presented as frequencies and percentages for gender, location and grade of the tumor, and as mean and standard deviation for age. The relationship between qualitative variables was evaluated by Chi-square test and Fisher s exact test if required. Independent samples T test was used to compare the difference in age of patients based on their gender and grade of their tumor. Analysis of Variance (ANOVA) test with Tukey s HSD post hoc test were also used to compare the mean age of patients based on the location of their tumor. Finally, binary logistic regression analysis was applied to identify the independent risk factors for high-grade tumors. Results: A total of1736 patients were diagnosed with glial brain tumor at the department of pathology of Shohada-e Tajrish Hospital during years 2008 to 2014, of which 182 (10.5%) were found to be oligodendrogliomas. A male preponderance was observed in the sample population with 115 males (63.2%) and 67 females (36.8%), and a male to female ratio of 1.71. The mean age of the subjects was 38.5±13.36 years with a minimum of 6 and a maximum of 73 years old. The average age of male patients was slightly higher than females, yet the difference was not statistically significant (38.94±12.87 versus 37.75±14.22, p=0.563) (Table 1). The most commonly affected site was the frontal lobe reported in 53 patients (29.1%) and the least commonly affected site was the brainstem, reported in 4 subjects (2.2%), including two tumors in pons, one in the midbrain and one involving the entire brainstem. Other affected sites based on their prevalence included the parietal lobe in 31 patients (17.0%), temporal lobe in 22 (12.1%), front oparietal area in 15 (8.2%), parietooccipital area in 11 (6.0%), temporoparietal and frontotemporal areas each in 9 subjects (4.9%) and occipital lobe in 5 patients (2.7%). Sporadic involvement of the fourth ventricle, insula, supra sellar area, diencephalon, corpus callosum, and hypothalamus were observed in a total of 11 subjects (6.0%). The site of brain lesion was not recorded in 12 patients (6.6%). Considering the grade of the tumor, 108 cases (59.3%) had grade2 oligodendrogliomas and the

Hanie Zham et al 243 remaining74 patients (40.7%) had grade3 anaplastic oligodendrogliomas (Table 1). The average age of patients with grade2 tumors was lower than patients with grade3 oligodendrogliomas, yet the difference was not statistically significant (37.35±11.7 versus 40.18±15.35 years, p=0.162). Furthermore, 43.5% of male subjects had grade3 anaplastic tumors while this figure was 35.8% among female subjects; however, the difference was not statistically significant (p=0.350). The differences in age of patients were evaluated based on the location of their tumor using the ANOVA test and Tukey s HSD post hoc test. The results of this analysis are presented in Table 2. Table 1- Demographic Characteristics of the Patients Variable Count/Mean Age (mean ± standard deviation) 38.5±13.36 years Gender Male 115 (63.2%) Female 67 (36.8%) Location Frontal lobe 53 (29.1%) Temporal lobe 22 (12.1%) Parietal lobe 31 (17.0%) Occipital lobe 5 (2.7%) Frontotemporal Area 9 (4.9%) Frontoparietal Area 15 (8.2%) Temporoparietal Area 9 (4.9%) Parieto-occipital Area 11 (6.0%) Sporadic involvement 11 (6.0%) Site not specified 12 (6.6%) Brainstem 4 (2.2%) Grade Grade 2 oligodendroglioma Grade 3 anaplastic oligodendroglioma 108 (59.3%) 74 (40.7%) The results of this analysis are presented in Table 2. As indicated, the mean age of the subjects with brainstem oligodendrogliomas was significantly lower than the mean age of patients with tumors in other locations (p=0.025) Table 3 shows the relationship between the location of the tumor, and gender of the patients and the grade of the lesion. The P value calculated using the Chi-square test for the correlation between location and grade of the tumor was 0.013 and the differences were found to be statistically significant, while the P value for the gender of the subjects was 0.427. Table 2- ge of Patients Based on the Location of their Tumor (Tukey s HSD analysis) Subset for alpha = 0.05 Location N 1 2 Brainstem 4 12.50 Frontoparietal Area 15 34.00 Sporadic involvement 11 35.73 Site not specified 12 37.67 Parieto-occipital Area 11 37.82 Occipital lobe 5 38.40 Parietal lobe 31 39.06 Frontotemporal Area 9 40.00 Frontal lobe 53 40.58 Temporal lobe 22 40.59 Temporoparietal Area 9 42.11 Sig. 1.000.947 Considering the grade of tumors according to their location, 11% of grade3 oligodendrogliomas were found in the frontotemporal lesions, with this being the lowest percentage, while 19.4% were found in parietal lobe lesions. The highest percentage was observed in occipital lobe lesions (80.0%) followed by the parieto-occipital lesions with a percentage of 72.7%. However, when the other two variables were controlled through binary logistic regression analysis, none of the variables of age (p=0.104), gender (p=0.409) or location of the tumor (p=0.141) was independently predictive of a higher-grade lesion.

244 Basic Characteristics of Oligodendrogliomas Table 3- The Relationship between Grade of the Tumors and Their Location Grade Gender Total Grade 2 Grade3 Male Female Location Frontal lobe 30 (56.6%) 23 (43.4%) 32 (60.4%) 21 (39.6%) 53 Temporal lobe 14 (63.6%) 8 (36.4%) 12 (54.5%) 10 (45.5%) 22 Parietal lobe 25 (80.6%) 6 (19.4%) 17 (54.8%) 14 (45.2%) 31 Occipital lobe 1 (20.0%) 4 (80.0%) 5 (100.0%) 0 (0.0%) 5 Frontotemporal Area 8 (88.9%) 1 (11.1%) 5 (55.6%) 4 (44.4%) 9 Frontoparietal Area 7 (46.7%) 8 (53.3%) 11 (73.7%) 4 (26.7%) 15 Temporoparietal Area 5 (55.6%) 4 (44.4%) 6 (66.7%) 3 (33.3%) 9 Parieto-occipital Area 3 (27.3%) 8 (72.7%) 10 (90.9%) 1 (9.1%) 11 Sporadic involvement 5 (45.5%) 6 (54.5%) 8 (72.7%) 3 (27.3%) 11 Site not specified 9 (75.0%) 3 (25.0%) 7 (58.3%) 5 (41.7%) 12 Brainstem 1 (25.0%) 3 (75.0%) 2 (50.0%) 2 (50.0%) 4 Total 108 (59.3%) 74 (40.7%) 115 (63.2%) 67 (36.8%) 182 P value 0.013 0.427 Discussion: In this descriptive retrospective study, 181 patients with definite diagnosis of oligodendroglioma were included from patients treated at the referral center of Shohada-e Tajrish Hospital during years 2008 to 2014. A male preponderance was observed in the sample population with a male to female ratio of 1.71, which was compatible with the results of current literature. Previous studies had also reported a higher risk of developing oligodendrogliomas among males compared to females (4, 6, 12-14, 16, 18). The average age of male patients was slightly higher than females, yet the difference was not statistically significant (38.94±12.87 vs. 37.75±14.22, p=0.563). This finding was incongruent with the results reported by Fleury et al. (6) and Nielsen et al.(24). These researchers found that the peak incidence occurred at a slightly higher age in females compared to males. They speculated that this difference might have been due to the effects of female sex hormones and older age, which may have offered protective effects against developing oligodendrogliomas. However, their hypothesis was not confirmed and was further opposed by the current results. The most commonly affected site was the frontal lobe (29.1%) and the least commonly affected site was the brainstem (2.2%). Other tumor sites in order of frequency were as follows, parietal lobe (17.0%), temporal lobe (12.1%), frontoparietal area (8.2%), parieto-occipital area (6.0%), temporoparietal and frontotemporal areas (4.9%), and occipital lobe (2.7%). Therefore, the total involvement of the frontal, temporal and parietal lobes were 42.2%, 17% and 36.1%, respectively. In the study conducted by Mørk et al. in 1985, 208 patients with oligodendrogliomas were identified, among which the most frequent site of tumor was the frontal lobe consisting of53% of the cases. Parietal lobe was the second most common site reported in one-third of cases followed by the temporal lobe in one-quarter and the occipital lobe in one-sixteenth of cases (25). The commonality of tumor sites was similar between the two studies and the differences observed in the percentages was due to the fact that Mork et al. did not include subgroups of common areas between the main lobes, such as frontoparietal, parieto-occipital, temporoparietal and frontotemporal. Chin et al. also reported that the frontal lobe was the most commonly affected site involving approximately half of cases evaluated in their study, followed by the temporal lobe (26). In another survey, Shaw et al. reported

Hanie Zham et al 245 the overall involvement of frontal, temporal and parietal lobes to be 50%, 42% and 32%, respectively(22). All these studies were congruently indicating that the most common site affected by oligodendrogliomas is the frontal lobe. Considering the grade of the tumor, 59.3% of patients had grade2 oligodendrogliomas and the remaining 40.7%were reported to have grade3 anaplastic oligodendrogliomas. The average age of patients with grade2 tumors was lower than patients with grade3 oligodendrogliomas, yet the difference was not statistically significant (37.35±11.7 versus 40.18±15.35 years, p=0.162).shaw et al. reported similar frequencies for tumor grades in their research on patients referred to the Mayo clinic (22). Although the frequency of grade 3 tumors in their study was slightly higher than grade 2 oligodendrogliomas, yet they were very similar and their ratio was approximately 1. Another finding of the present study was that the mean age of subjects with brainstem oligodendrogliomas was significantly lower than the mean age of patients with tumors at other locations (p=0.025). A bimodal age distribution has been previously reported for the prevalence of brainstem gliomas in children and adults. Accordingly, these results can be explained by the fact that these tumors represent up to 20% of brain tumors in the pediatric population, but only 1% to 2% of adult brain tumors (27). There was a statistically significant correlation between location and grade of the tumor (p=0.013) and the percentage of grade3 oligodendrogliomas was lowest in frontotemporal lesions with 11.1%while the highest percentage was observed in occipital lobe lesions with 80%. However, when the 2 variables were controlled, none of the variables of age (p=0.104), gender (p=0.409) or location of the tumor (p=0.141) independently predicted a higher grade lesion. This study was one of the few studies conducted on basic characteristics of oligodendrogliomas in Iran, evaluating a wide temporal range of 7 years. However, important variables such as the hemisphere, size of the lesions, imaging characteristics of the tumors, the clinical presentation of the patients, their treatment, and survival were not evaluated in the present study due to the lack of resources. Therefore, it is suggested that further studies should be conducted to include greater sample populations and to evaluate more of these important variables. Conclusion: The incidence of oligodendrogliomas shows a male preponderance with a male/female ratio of 1.71. The most commonly affected site is the frontal lobe, followed by the parietal lobe and the temporal lobe. The mean age of subjects with brainstem oligodendrogliomas was significantly lower than mean age of patients with tumors in other locations. Age, gender or location of the tumor did not independently predict a higher grade lesion. Acknowledgments: The authors would like to thank all the staff of Shohada-e Tajrish Hospital, who helped us in conducting this study. Conflict of interests: All authors declare no conflicts of interests. References: 1. Allison RR, Schulsinger A, Vongtama V, Barry T, Shin KH. Radiation and chemotherapy improve outcome in oligodendroglioma. IJROBP. 1997;37(2):399-403. 2. Karim AB, Afra D, Cornu P, Bleehan N, Schraub S, De Witte O, et al. Randomized trial on the efficacy of radiotherapy for cerebral lowgrade glioma in the adult: European Organization for Research and Treatment of Cancer Study 22845 with the Medical Research Council study BRO4: an interim analysis. IJROBP. 2002;52(2):316-24.

246 Basic Characteristics of Oligodendrogliomas 3. Ellis TL, Stieber VW, Austin RC. Oligodendroglioma. Curr Treat Options Oncol. 2003;4(6):479-90. 4. Engelhard HH, Stelea A, Mundt A. Oligodendroglioma and anaplastic oligodendroglioma:: Clinical features, treatment, and prognosis. Surg Neurol. 2003;60(5):443-56. 5. Van den Bent M, Taphoorn M, Brandes Aa, Menten J, Stupp R, Frenay M, et al. Phase II study of first-line chemotherapy with temozolomide in recurrent oligodendroglial tumors: the European Organization for Research and Treatment of Cancer Brain Tumor Group Study 26971. J Clin Oncol. 2003;21(13):2525-8. 6. Fleury A, Menegoz F, Grosclaude P, Daures JP, Henry Amar M, Raverdy N, et al. Descriptive epidemiology of cerebral gliomas in France. Cancer. 1997;79(6):1195-202. 7. Van den Bent M. Advances in the biology and treatment of oligodendrogliomas. Curr Opin Neurol. 2004;17(6):675-80. 8. Hashimoto N, Murakami M, Takahashi Y, Fujimoto M, Inazawa J, Mineura K. Correlation between genetic alteration and long term clinical outcome of patients with oligodendroglial tumors, with identification of a consistent region of deletion on chromosome arm 1p. Cancer. 2003;97(9):2254-61. 9. Jacob R, Jyothirmayi R, Dalal Y, Nambiar U, Rajan B, Nair M. Oligodendroglioma: clinical profile and treatment results. Neurol India. 2002;50(4):462. 10. HELSETH A, MØRK SJ, JOHANSEN A, TRETLI S. Neoplasms of the central nervous system in Norway. APMIS. 1989;97(7 12):646-54. 11. Nutt CL, Mani D, Betensky RA, Tamayo P, Cairncross JG, Ladd C, et al. Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res. 2003;63(7):1602-7. 12. Peterson K, Cairncross JG. Oligodendroglioma. Cancer Invest. 1996;14(3):243-51. 13. Kleihues P, Cavenee WK. Pathology and genetics of tumours of the nervous system: International Agency for Research on Cancer; 2000. 14. Celli P, Nofrone I, Palma L, Cantore G, Fortuna A. Cerebral oligodendroglioma: prognostic factors and life history. Neurosurgery. 1994;35(6):1018-35. 15. Daumas-Duport C, Varlet P, Tucker M-L, Beuvon F, Cervera P, Chodkiewicz J-P. Oligodendrogliomas. Part I: Patterns of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neurooncol. 1997;34(1):37-59. 16. Engelhard HH, Stelea A, Cochran EJ. Oligodendroglioma: pathology and molecular biology. Surg Neurol. 2002;58(2):111-7. 17. Paleologos NA, Cairncross JG. Treatment of oligodendroglioma: an update. Neuro Oncol. 1999;1(1):61-8. 18. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97-109. 19. Feigenberg SJ, Amdur RJ, Morris CG, Mendenhall WM, Marcus Jr RB, Friedman WA. Oligodendroglioma: does deferring treatment compromise outcome? Am J Clin Oncol. 2003;26(3):e60-e6. 20. Fortin D, Cairncross GJ, Hammond RR. Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurgery. 1999;45(6):1279. 21. Sunyach M, Pommier P, Lafay IM, Guyotat J, Ginestet G, Jouanneau E, et al. Conformal irradiation for pure and mixed oligodendroglioma: the experience of Centre Leon Berard Lyon. IJROBP. 2003;56(1):296-303. 22. Shaw EG, Scheithauer BW, O'Fallon JR, Tazelaar HD, Davis DH. Oligodendrogliomas: the Mayo clinic experience. J Neurosurg. 1992;76(3):428-34.

Hanie Zham et al 247 23. SPSS I. IBM SPSS statistics 22. Algorithms Chicago: IBM SPSS Inc. 2013. 24. Nielsen MS, Christensen HC, Kosteljanetz M, Johansen C. Incidence of and survival from oligodendroglioma in Denmark, 1943 2002. Neuro Oncol. 2009;11(3):311-7. 25. Mørk SJ, Lindegaard K-F, Halvorsen TB, Lehmann EH, Solgaard T, Hatlevoll R, et al. Oligodendroglioma: incidence and biological behavior in a defined population. J Neurosurg. 1985;63(6):881-9. 26. Chin HW, Hazel JJ, Kim TH, Webster JH. Oligodendrogliomas I. A clinical study of cerebral oligodendrogliomas. Cancer. 1980;45(6):1458-66. 27. Reyes-Botero G, Mokhtari K, Martin- Duverneuil N, Delattre J-Y, Laigle-Donadey F. Adult brainstem gliomas. The oncologist. 2012;17(3):388-97. How to Cite This Article: Ahadi M, Moradi A, Rakhshan A, Arefian A, Rafizadeh M, Zham H. Basic Characteristics of Oligodendrogliomas: The Shohada-e Tajrish Hospital Experience (2008-2014). Iran J Pathol. 2017;12(3):241-247.