Saemah Nuzhat Zafar, Sorath Noorani Siddiqui, Ayesha Khan 1

Similar documents
ABSTRACT. Sorath Noorani Siddiqui, FCPS; Ayesha Khan, FCPS, FRCS

2/26/2017. Sameh Galal. M.D, FRCS Glasgow. Lecturer of Ophthalmology Research Institute of Ophthalmology

Complication and Visual Outcome after Peadiatric Cataract Surgery with or Without Intra Ocular Lens Implantation

For the surgical correction of traumatic aphakia, several

Paediatric cataract pathogenesis and management

Management of Ectopia Lentis in Children

Myopic Shift After Intraocular Lens Implantation in Children Less Than Two Years of Age

Iris Claw versus Scleral Fixation Intraocular Lens Implantation during Pars Plana Vitrectomy

Glaucoma after Congenital Cataract Surgery

Patient Selection IOL Power Calculation. Patient Selection. Biometry IOL-Power calculation using Vericalc 2.0. AC-Depth > 3.0 mm (FDA 3.

OVERVIEW OF OCULAR MANAGEMENT IN MARFAN SYNDROME

Learn Connect Succeed. JCAHPO Regional Meetings 2015

Intrascleral-fixated intraocular lenses for aphakic correction in the absence of capsular support

SPONTANEOUS, LATE, IN-THE-BAG IOL DISLOCATION: ETIOLOGY, RISK FACTORS, PREVENTION, AND MANAGEMENT

Pediatric traumatic cataract Presentation and Management. Dr. Kavitha Kalaivani Pediatric ophthalmology Sankara Nethralaya Nov 7, 2017

MEDICAL POLICY SUBJECT: CORNEAL ULTRASOUND PACHYMETRY. POLICY NUMBER: CATEGORY: Technology Assessment

Megalocornea is a non-progressive, uniformly

Journal of Ophthalmology & Clinical Research

Title: Fitting Gas Permeable Contact Lenses on Aphakic Infants with Congenital Cataracts: Case Report

Choroidal detachment following retinal detachment surgery: An analysis and a new hypothesis to minimize its occurrence in high-risk cases

Medical Policy An independent licensee of the Blue Cross Blue Shield Association

Artisan Phakic Intraocular Lens for the Correction of Severe Myopic Astigmatism

Optometric Postoperative Cataract Surgery Management

Secondary Intraocular Lens Implantation in University Hospital l, Kuala Lumpur

Capsule fixation device for cataract surgery

The aim of refractive surgery is to modify the refractive

Objectives. Tubes, Ties and Videotape: Financial Disclosure. Five Year TVT Results IOP Similar

Comparison of Intraocular Lens Power Calculation Using the Binkhorst and SRK Formulae: A Clinical Study

Revitalization of the Anterior Segment: Corneal Transplantation and Secondary Lens Repair

IOL Power Calculation for Children

Structural changes of the anterior chamber following cataract surgery during infancy

Relevant and Reliable Systematic Review Mapped to this Section. Relevance of Review to other sections of AAO PPP- 2011

Secondary Artisan Verysise aphakic lens implantation

Abstract. Med. J. Cairo Univ., Vol. 78, No. 2, December: , 2010

Three-year Follow-up of the Artisan Phakic Intraocular Lens for Hypermetropia

The Evolving Story of Aphakic and Pseudophakic Glaucoma after Cataract Surgery in Children: What s New?

Refractive Changes after Removal of Anterior IOLs in Temporary Piggyback IOL Implantation for Congenital Cataracts

TRABECULECTOMY THE BEST AND WORST CANDIDATES

Refractive Dilemma. Challenging Case

Predicting Factor of Visual Outcome in Unilateral Idiopathic Cataract Surgery in Patients Aged 3 to 10 Years

Incidence and Risk Factors of Early-onset Glaucoma following Pediatric Cataract Surgery in Egyptian Children: One-year Study

Cataract is one of the major causes of childhood. Primary Intraocular Lens Implantation for Unilateral Idiopathic Cataract in Children

Lessons learned about cataract surgery in infants from the Infant Aphakia Treatment Study

The Management of Infant Aphakia

The visual outcome after implantation of the Multifocal Intra Ocular Lens. Dr.Bhargav Dave National Institute of Ophthalmology Pune

An Injector s Guide to OZURDEX (dexamethasone intravitreal implant) 0.7 mg

Appendix Table 1. Ophthalmic drugs approved by the US Food and Drug Administration,

Keratoconus Clinic. Optometric Co-management Opportunities

Incidence of Early Onset Glaucoma after Infant Cataract Extraction With and Without

Keywords: malignant glaucoma; pars plana vitrectomy; risk factors; complications; intraocular pressure

Lens Embryology. Lens. Pediatric Cataracts. Cataract 2/15/2017. Lens capsule size is fairly constant. Stable vs. progressive

Nature and Science 2016;14(9)

Measure #192: Cataracts: Complications within 30 Days Following Cataract Surgery Requiring Additional Surgical Procedures

Visual Impairment Secondary to Congenital Cataracts: A Case Report

Posterior Chamber Intraocular Lens Implantation in Pediatric Cataract with Microcornea and/or Microphthalmos

Shedding Light on Pediatric Cataracts. Kimberly G. Yen, MD Associate Professor of Ophthalmology Texas Children s Hospital

Prakash S 1*, Giridhar 2, Harshila Jain 3. Original Research Article. Abstract

LENS INDUCED GLAUCOMA

Late Intraocular Lens Subluxation in Patients with Uveitis

Clinical study of traumatic cataract and its management

PRESENTED By DR. FAISAL ALMOBARAK, MD

GLAUCOMA FOLLOWING CATARACT SURGERY IN CHILDREN: SURGICALLY MODIFIABLE RISK FACTORS

The Outcome Of 23 Gauge Pars Plana Vitrectomy Without Scleral Buckle For Management Of Rhegmatogenous Retinal Detachment. By:

PedsCases Podcast Scripts

Early versus late traumatic cataract surgery and intraocular lens implantation

Unilateral Scleral Fixation of Posterior Chamber Intraocular Lenses in Pediatric Complicated Traumatic Cataracts

Department of Phaco and Refractive Surgery, Nethradhama Super-Speciality Eye Hospital, Bangalore, India

Clinical and functional features of the eyes with phakic lenses before and after bilensectomy

Original Article. Address for Correspondance Dr. Charu Mithal Upgraded Dept. of Ophthalmology, LLRM Medical College Meerut.

Postcataract surgery outcome in a series of infants and children with Down syndrome

Prominent Decrease of Superior Midperipheral Endothelial Cell Density After Iris-fixated Phakic Intraocular Lens Implantation

Preoperative anterior segment optical coherence tomography as a predictor of postoperative phakic intraocular lens position

Comparison of Preoperative and Postoperative Ocular Biometry in Eyes with Phakic Intraocular Lens Implantations

Clear Lens Extraction for Correction of High Myopia

INTRODUCTION. Trans Am Ophthalmol Soc 2007:105:

Silicone oil pupillary block after laser retinopexy in aphakic eyes with presumed closed peripheral iridectomy: report of three cases

The incidence of glaucoma following paediatric cataract surgery: a 20-year retrospective study

Inaccuracy of Intraocular Lens Power Prediction for Cataract Surgery in Angle-Closure Glaucoma

Artiflex Toric Phakic Intraocular Lens Implantation in Congenital Nystagmus

Meet Libby. Corneal Dysgenesis, Degeneration, and Dystrophies Definitions. Dr. Victor Malinovsky

Anatomical results and complications after silicone oil removal

Prediction Error After Lens Implantation in Children With Axial Length Less than 22 mm Below 2 Yrs

Author s Affiliation. Original Article. Comparison of Biometry in Phakic and Dense Modes. Muhammad Suhail Sarwar. Unaiza Mariam

Surgical management of non-traumatic pediatric ectopia lentis: A case series and review of the literature

Predictability and accuracy of IOL formulas in high myopia

PRECISION PROGRAM. Injection Technique Quick-Reference Guide. Companion booklet for the Video Guide to Injection Technique

Cataract surgery in children using the BIL technique

Eye diseases in infancy and early childhood

Role of Initial Preoperative Medical Management in Controlling Post-Operative Anterior Uveitis in Patients of Phacomorphic Glaucoma

They are updated regularly as new NICE guidance is published. To view the latest version of this NICE Pathway see:

84 Year Old with Rosacea

Sutureless Intrascleral Pocket Technique of Transscleral Fixation of Intraocular Lens in Previous Vitrectomized Eyes

Non-Descemet Stripping Automated Endothelial Keratoplasty for Bullous Keratopathy in Buphthalmic Eye

Pediatric cataract. Nikos Kozeis MD, PhD, FICO, FEBO, MRCOphth. Surgical challenges and postoperative complications

STUDY OF EFFECTIVENESS OF LENS EXTRACTION AND PCIOL IMPLANTATION IN PRIMARY ANGLE CLOSURE GLAUCOMA Sudhakar Rao P 1, K. Revathy 2, T.

Management Strategies of Ocular Abnormalities in Patients with Marfan Syndrome: Current Perspective

Paediatric cataract: IOL vs aphakia. Νikolas G. Ziakas Aristotle University of Thessaloniki

DNB Question Paper. December 1

Visual outcomes and complications following posterior iris-claw aphakic intraocular lens implantation combined with penetrating keratoplasty

Outcomes of Iris-Claw Anterior Chamber versus Iris-Fixated Foldable Intraocular Lens in Subluxated Lens Secondary to Marfan Syndrome

Transcription:

Original Article Effects of Artisan aphakic intraocular lens on central corneal thickness and intra ocular pressure in pediatric eyes with crystalline subluxated lenses Saemah Nuzhat Zafar, Sorath Noorani Siddiqui, Ayesha Khan 1 Department of Pediatric Ophthalmology and Strabismus, Al Shifa Trust Eye Hospital, Rawalpindi, Pakistan, 1 Department of Ophthalmology, Montreal Children Hospital, Canada Purpose: To study effects of Artisan iris fixated intraocular lens (IOL) on central corneal thickness (CCT) and intraocular pressure (IOP) in pediatric eyes with crystalline subluxated lenses. Materials and Methods: The study included 17 eyes undergoing Artisan aphakic IOL implantation after lensectomy for subluxated crystalline lenses. CCT and IOP measurements were recorded pre operatively and post operatively taking the mean of 4 post operative visits. Patients were divided into Group A (n = 8) including patients with lensectomy and iris fixation of Artisan IOL as a primary procedure and Group B (n = 9) including patients in which lensectomy was carried out as a primary surgery and Artisan IOL fixation as a secondary procedure. Results: Children ranged in age from 08 years to 16 years, mean 11.59 ± 2.96 years. Follow up period ranged from 7 months to 16 months, mean 11.24 months ± 4.27. Mean pre operative and post operative IOP in Group A was 14.88 ± 2.80 and 14.16 ± 0.59 respectively (P = 0.528). In Group B it was 12.44 ± 2.79 and 14.44 ± 1.15 respectively (P = 0.080). Mean pre operative and post operative CCT in Group A was 529.13 ± 24.23 and 529.87 ± 17.46 respectively (P = 0.674). In Group B it was 567.33 ± 29.13 and 568.83 ± 25.69 respectively (P = 0.859). Conclusions: Primary and secondary Artisan aphakic IOL implantation did not cause any significant changes in corneal thickness or IOP during the follow up period. Keywords: Artisan aphakic intraocular lens, central corneal thickness, intraocular pressure, subluxated lens Introduction In 1978, Jan Worst and Fechner invented Artisan iris claw lens. It was previously known as the Worst Fechner claw lens. Artisan aphakic intraocular lens (IOL) has been largely used in adult cataract surgery. Several studies have reported the effects of Artisan Quick Response Code: Access this article online Website: www.ojoonline.org DOI: 10.4103/0974-620X.111914 aphakic IOL on corneal endothelial cell density (ECD). [1,2] Sminia et al. reported central corneal thickness (CCT) in patients with aphakic Artisan IOL implant after pediatric cataract surgery. [3] A few other articles have reported the long term effects of Artisan or Verisyse phakic IOL implantation on CCT and ECD following IOL implantation. [4,5] A study on CCT before and after congenital cataract extraction with and without IOL implantation in pediatric cataract surgery is published in literature. [6] The present study is the first of its kind in our part of the world, which includes analysis of the CCT and intraocular pressure (IOP) of patients undergoing Artisan aphakic IOL implantation in the pediatric age group. Materials and Methods This prospective, consecutive study was conducted in the Copyright: 2013 Zafar SN,et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Correspondence: Dr. Saemah Nuzhat Zafar, Department of Pediatric Ophthalmology and Strabismus, Al Shifa Trust Eye Hospital, Rawalpindi, Pakistan. E mail: saemahsaqib@yahoo.co.uk 44 Oman Journal of Ophthalmology, Vol. 6, No. 1, 2013

Department of Pediatric Ophthalmology and Strabismus from December 2010 to April 2012. The study was approved by the Institutional Review Board. Informed consent was taken from the patients and their guardians. Seventeen eyes of 10 children were implanted with Artisan aphakic iris fixated IOL in aphakic eyes as a primary procedure or as a secondary procedure following lensectomy of subluxated crystalline lens. The post operative follow up period ranged between 7 months and 16 months. Bio data, history, and examination findings of these patients were recorded. A detailed ophthalmological examination was carried out by a pediatric ophthalmologist. Biometry was performed using hand held touch probe A scan. CCT, IOP with an applanation tonometer and dilated fundoscopy in office was noted on each follow up. The CCT was recorded with ultrasonic pachymeter (Pac Scan 300p SONOMED). The patients were divided into two groups. Group A included patients who had lensectomy and primary Artisan iris fixated IOL implantation. Group B included patients who had lensectomy as a primary procedure and Artisan iris fixation as a secondary implant. IOP and CCT differences were compared in the two groups pre operatively and mean CCT and IOP of four follow up visits post operatively. Eyes having subluxated lenses due to axial myopia or buphthalmos as a result of glaucoma were excluded from the study. All patients underwent general anesthesia after thorough in office examination and consultation by the anesthesia team. We performed lensectomy and anterior vitrectomy. Peripheral iridectomy was performed in all eyes. Artisan (Ophtec, Groningen, the Netherlands) aphakic IOL was implanted through the standard insertion and enclavation technique described by the company. Intracameral moxifloxacin hydrochloride 0.5% (Vigamox, Alcon) and dexamethasone 0.4 mg were given at the end of the procedure. Topical antibiotic and steroid combination was given post operatively. Descriptive analysis of the data was performed on SPSS software. Non parametric Wilcoxon test was applied to compare the pre operative and post operative IOP and CCT. Results Seventeen eyes of 10 children with subluxated lenses were implanted Artisan aphakic iris fixated IOL. Seven children were female and 3 were male. Children ranged in age from 08 years to 16 years (mean 11.59 ± 2.96 years). Follow up period ranged from 7 months to 16 months (mean 11.24 ± 4.27). Table 1 shows the pre operative and post operative IOP and CCT in 17 eyes included in the study. Mean pre operative IOP of all eyes was 13.59 ± 2.98 (range 08 19 mmhg), compared to mean post operative IOP ranging from 12 to 16 with a mean of 14.31 mmhg ± 0.916 (P = 0.351). Pre operative CCT ranged from 491 micron to 613 micron (mean 549.35 ± 32.68) compared to post operative CCT ranging from 502 micron to 608 micron (mean 550.50 ± 29.418) with P value of 0.906 using the non parametric Wilcoxon test. Table 2 shows the mean and P value of pre and post operative IOP and CCT of the two groups in our study. Raised IOP of 24 mmhg was recorded in one eye of Group B (eye no 10) that responded well to the topical beta blocker. The IOP was monitored and remained within normal limits even after discontinuing topical anti glaucoma drops. Complications like glaucoma, corneal decompensation or bullous keratopathy were not seen in this study. One eye (no 6) developed endophthalmitis 1 month after surgery, affecting the IOP (6 mmhg) and CCT (600 µ) of the operated eye on the last follow up at 11 months. Discussion Several surgical techniques have been used to manage ectopia lentis in children such as anterior chamber angle supported IOL implantation following lensectomy, scleral fixation of posterior chamber IOL and use of intracapsular tension ring for posterior chamber IOL implantation post lensectomy and anterior vitrectomy. Each procedure has its own merits and demerits. We used Artisan aphakic IOL implant in selected cases to facilitate and accommodate more cases amongst the large number of patients with subluxated lenses. This procedure involves lesser surgical time and lesser manipulation of ocular tissues as compared to other surgical options. Since, the study is the first of its kind at our center we compared 2 different surgical approaches, in order to make it clear if two staged surgery can be as safe as a one step surgery, in case one is not able to implant the iris fixated lens in a single surgery. The authors hope to have a clear idea whether the patients previously rendered aphakic (not included in the present study) can be offered the option of iris fixated intra ocular lens. The pre operative spherical equivalent (SE) data includes the refractive status before aphakic Artisan iris fixated lens implant but after the lensectomy hence, the mean of + 12.22 D in Group B, compared to the myopic SE in Group A. This however, does not affect the comparison of the 2 groups as pre operative corneal thickness and IOP are given from the start of the study before any surgery was attempted in both the groups. In the present study, we focused on the effect of the Artisan aphakic IOL on CCT and IOP. ECD of these eyes is being monitored for long term effects in another study. This CCT has been shown to increase after cataract surgery in children. [7,8] This has been attributed to endothelial cell damage at the time of surgery due to mechanical stress. [9] This increase in CCT was less in pseudophakic eyes as compared to aphakic eyes in a study by Faramarzi et al. [6] They found that the mechanical stress during surgery was less probable because theoretically endothelial cell trauma would be greater while implanting intra ocular lens as compared to leaving the eye aphakic. [6] A study by Pirouzian and Ip showed that CCT remained stable for 36 months follow up period after Verisyse phakic IOL implantation. [4] In our study, the eyes in Group A after a single surgery as well as eyes in Group B with 2 surgical procedures did not have statistically significant changes in the pre and post operative CCT and IOP [Table 2]. A study proposed that surgical trauma due to manipulation or irrigation solutions or post operative inflammation affect post operative CCT. [9] In our study, these factors seem to have no impact on CCT. The present study on Artisan iris fixated IOL implantation Oman Journal of Ophthalmology, Vol. 6, No. 1, 2013 45

Table 1: Pre operative and post operative IOP and CCT of 17 eyes Eye Age (years) Laterality Pre operative IOP (mmhg) IOP (mmhg) on last follow up Mean IOP (mmhg) of 4 follow up visits Pre operative CCT (microns) CCT (microns) on last follow up Mean CCT (microns) of 4 follow up visits 1 13 RE 16 12 13.33 592 574 583 2 10 RE 14 12 15.33 583 609 593 3 16 RE 8 16 14.00 546 555 583 4 8 RE 12 14 15.33 532 548 550 5 10 RE 14 14 14.00 572 559 556 6 12 RE 14 16 14.67 505 600 548 7 15 RE 18 14 13.33 531 520 530 8 9 RE 12 16 14.67 547 541 535 9 13 LE 14 12 13.33 571 567 573 10 10 LE 12 12 16.67 613 622 604 11 16 LE 8 12 13.33 575 508 502 12 8 LE 12 16 14.00 552 541 552 13 10 LE 14 12 14.67 522 551 549 14 15 LE 16 16 14.67 541 539 527 15 8 LE 19 14 14.67 556 558 554 16 9 LE 12 14 14.00 510 514 511 17 15 LE 16 12 13.33 491 511 501 RE: Right eye, LE: Left eye, CCT: Central corneal thickness, IOP: Intraocular pressure Table 2: Pre operative and post operative parameters of primary versus secondary Artisan aphakic IOL implantation Parameters Primary Artisan aphakic IOL implantation group A N=8 Secondary aphakic IOL implantation group B N=9 Follow up (months) Range 7 11 Range 7 16 Mean 7.50±1.41 Mean14.56±2.88 Pre operative IOP 14.88±2.8 12.44±2.79 Mean post operative IOP 14.16±0.59 14.44±1.15 P=value within* 0.528 0.080 Pre operative CCT 529.13±24.23 567.33±29.13 Mean post operative CCT 529.87±17.46 568.83±25.69 P=value within* 0.674 0.859 Pre operative SE 1.75±8.24 12.44±1.81 Mean post operative SE 3.15±2.55 1.5±1.6 IOL: Intraocular lens, IOP: Intraocular pressure, CCT: Central corneal thickness, SE: Spherical equivalent,*based on Wilcoxon test also, did not show any statistically significant increase in CCT whether we compared the pre operative CCT with the CCT at last follow up (P = 0.237) or with the mean CCT of three follow up visits (P = 0.906) using the non parametric Wilcoxon test. Eye no 6, which developed endophthalmitis showed negative culture results of aqueous and vitreous tap. It was treated according to the treatment protocol for post operative endophthalmitis of our hospital. [10] The eye became soft and showed delayed increase in CCT at 11 months of follow up with an IOP of 6 mmhg. The readings recorded in this eye affected the mean CCT and IOP of our study, as well. Even though the difference in pre and post operative readings of this patient s eye varied from the rest of the eyes in our study it did not significantly affect the final results, while comparing the mean pre operative IOP with the post operative mean IOP of 3 follow up visits (P = 0.351) or with the last follow up IOP (P = 0.633), post operatively using the non parametric Wilcoxon test. Similar statistically insignificant difference in mean pre operative and 6 month post operative IOP after pediatric cataract surgery within the aphakic and pseudophakic group (P = 0.58 and P = 0.74, respectively) was reported in a study. [6] The study by Faramarzi et al. shows that IOL may have a protective role against increase in CCT after surgery as he found lesser change in CCT in pseudophakic patients than aphakic patients after cataract surgery. [6] Our patients having iris fixated IOL implantation did not cause significant change in CCT after surgery. We can presume that IOL in this position also carries the unknown protective effect found in posterior chamber IOL implantation. Several studies have shown effect on endothelial cell count after Artisan aphakic implant. [1 3] Endothelial cell loss in these studies is significant, but it did not affect the corneal thickness as mentioned in a study by Sminia et al., which gives only the final reading of CCT at the last follow up. The calculated mean CCT of their study was 545 µ ±64 SD. [3] Our study with a mean CCT of 550.50 µ ±29.41 recorded at the last follow up is comparable to the above study. The other studies however did not mention the CCT or IOP effects, after implanting the aphakic Artisan IOL s in children. Decrease in corneal ECD takes place due to cataract surgery. [11] Risk factors for reduced ECD before cataract surgery is influenced by many factors, including pre operative IOP. [12] These studies do not provide the effects on CCT. Patients having age range of 12.7 ± 6.6 years in a study compared to 11.59 ± 2.96 years in our study showed thicker CCT after congenital cataract surgery compared to controls. Their study shows adjusted IOP for the increase in CCT. [13] This consideration is required where corneas are significantly thick. [14] Conversely minor elevations in IOP are of less concern in children with thick corneas. [9] Spearman non parametric test did not give any significant correlation between IOP and CCT before (P = 0.589) and between mean IOP and mean CCT after surgery (P = 0.935) in our study. IOP adjustment according to CCT was not required in our study. Corneal thickness can increase as a result of impaired endothelial cell function which may result from surgical trauma at the time of cataract surgery or after that. [9,15,16] We did not find any 46 Oman Journal of Ophthalmology, Vol. 6, No. 1, 2013

identifiable corneal edema on clinical examination after surgery in our patients. From this preliminary study, we can conclude that the primary or secondary Artisan iris fixated IOL implantation would be safe in children as the IOP and CCT were not statistically significant during the follow up period after surgery. However, studies with longer follow up and larger sample size are required for long term effects and obtaining statistically significant values for comparison. References 1. Cleary C, Lanigan B, O Keeffe M. Artisan iris claw lenses f 170 or the correction of aphakia in children following lensectomy for ectopia lentis. Br J Ophthalmol 2012;96:419 21. 2. Lifshitz T, Levy J, Klemperer I. Artisan aphakic intraocular lens in children with subluxated crystalline lenses. J Cataract Refract Surg 2004;30:1977 81. 3. Sminia ML, Odenthal MT, Prick LJ, Mourits MP, Völker Dieben HJ. Long term follow up of the corneal endothelium after aphakic iris fixated IOL implantation for bilateral cataract in children. J Cataract Refract Surg 2011;37:866 72. 4. Pirouzian A, Ip KC. Anterior chamber phakic intraocular lens implantation in children to treat severe anisometropic myopia and amblyopia: 3 year clinical results. J Cataract Refract Surg 2010;36:1486 93. 5. Tychsen L, Hoekel J, Ghasia F, Yoon Huang G. Phakic intraocular lens correction of high ametropia in children with neurobehavioral disorders. J AAPOS 2008;12:282 9. 6. Faramarzi A, Javadi MA, Jabbarpoor Bonyadi MH, Yaseri M. Changes in central corneal thickness after congenital cataract surgery. J Cataract Refract Surg 2010;36:2041 7. 7. Muir KW, Duncan L, Enyedi LB, Wallace DK, Freedman SF. Central corneal thickness: Congenital cataracts and aphakia. Am J Ophthalmol 2007;144:502 6. 8. Lupinacci AP, da Silva Jordão ML, Massa G, Arieta CE, Costa VP. Central corneal thickness in children with congenital cataract and children with surgical aphakia: A case control study. Br J Ophthalmol 2009;93:337 41. 9. Simon JW, O Malley MR, Gandham SB, Ghaiy R, Zobal Ratner J, Simmons ST. Central corneal thickness and glaucoma in aphakic and pseudophakic children. J AAPOS 2005;9:326 9. 10. Ishaq N. Al Shifa Endophthalmitis Study: Protocol of treatment and prognosis. Al Shifa J Ophthalmol 2005;1:88 94. 11. Yeniad B, Corum I, Ozgun C. The effects of blunt trauma and cataract surgery on corneal endothelial cell density. Middle East Afr J Ophthalmol 2010;17:354 8. 12. Ishikawa A. Risk factors for reduced corneal endothelial cell density before cataract surgery. J Cataract Refract Surg 2002;28:1982 92. 13. Nilforushan N, Falavarjani KG, Razeghinejad MR, Bakhtiari P. Cataract surgery for congenital cataract: Endothelial cell characteristics, corneal thickness, and impact on intraocular pressure. J AAPOS 2007;11:159 61. 14. Doughty MJ, Zaman ML. Human corneal thickness and its impact on intraocular pressure measures: A review and meta analysis approach. Surv Ophthalmol 2000;44:367 408. 15. Simon JW, Miter D, Zobal Ratner J, Hodgetts D, Belin MW. Corneal edema after pediatric cataract surgery. J AAPOS 1997;1:102 4. 16. Amino K, Miyahara S, Tanihara H. Corneal thickness in eyes following pars plana lensectomy for congenital cataracts. Jpn J Ophthalmol 2004;48:169 71. Cite this article as: Zafar SN, Siddiqui SN, Khan A. Effects of Artisan aphakic intraocular lens on central corneal thickness and intra ocular pressure in pediatric eyes with crystalline subluxated lenses. Oman J Ophthalmol 2013;6:44-7. Source of Support: Nil, Conflict of Interest: None declared. Oman Journal of Ophthalmology, Vol. 6, No. 1, 2013 47